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Abstract

We show the equivalence between the exact Ben-Or/Tiwari algorithm and
numerical Prony’s method. Taking advantage of the recent results in both
exact and numerical approaches, we present new algorithms and outline
possible developments.

1. Introduction

In 1988 Ben-Or and Tiwari gave an exact multivariate interpolation algorithm
that interpolates all the terms at once and is sensitive to the number of terms
(Ben-Or and Tiwari, 1988). At the same time, the Prony’s method (de Prony,
1795) has long been existed as a numerical algorithm fitting a sum of exponential
functions.

We present the equivalence between the Prony’s method and Ben-Or/Tiwari
algorithm. Some results built upon Ben-Or/Tiwari algorithm have been extended
to a sum of exponential functions. Finally, we outline our current work that is
based on the recent progress on both algorithms.

2. Ben-Or/Tiwari algorithm and its early termination

Consider the polynomial

f(x1, . . . , xn) =
t∑

i=1

cix
e1,i

1 · · ·xen,i
n with ci 6= 0.
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Let βi(x1, . . . , xn) = x
e1,i

1 · · · xen,i
n be terms in f , and bi denote βi evaluated at

distinct primes p1, . . . , pn, that is, bi = βi(p1, . . . , pn) = p
e1,i

1 · · · pen,i
n . Define an

auxiliary polynomial Λ(θ):

Λ(θ) =
t∏

i=1

(θ − bi) = θt + λt−1θ
t−1 + · · ·+ λ0.

Ben-Or and Tiwari gave a multivariate interpolation algorithm that is sensitive
to the number of terms, and thus efficient when the target polynomial is sparse.

Theorem 2.1 (Ben-Or/Tiwari algorithm): For i ≥ 0, ai = f(pi
1, . . . , pi

n)
where p1, . . . , pn are distinct primes, the sequence {ai}i≥0 is linearly generated by
the auxiliary polynomial Λ(θ). Moreover, Λ(θ) is the minimal linear generator
of {ai}i≥0 (Ben-Or and Tiwari, 1988).

The Ben-Or/Tiwari sparse interpolation algorithm

Input:

f : f = f(x1, . . . , xn), a multivariate black box polynomial.

σ: σ ≥ t, t the number of non-zero terms.

Output:

ci and βi: f =
∑t

i=1 ciβi.

1. (The Berlekamp/Massey algorithm.)
ai = f(pi

1, . . ., pi
n), 0 ≤ i ≤ 2σ − 1, p1, . . . , pn are distinct primes.

Compute Λ(θ) from {ai}0≤i≤2σ−1.

2. (Determine βi.)
Find all t distinct roots of Λ(θ), which are bi.
Determine each βi through repeatedly divide bi by p1, . . . , pn.

3. (Compute the coefficients ci.)
solve a transposed Vandermonde system.

End.

The Ben-Or/Tiwari algorithm (Ben-Or and Tiwari, 1988) needs to know the
number of terms, t, or an upper bound σ ≥ t. Or we can guess σ, compute a
candidate polynomial g for f , and compare g and f at an additional point. If f
and g do not agree at the additional point, or we fail in computing g, then we
can double the guess for σ.

Based on the strategy of “early termination” (Kaltofen et al., 2000), with high
probability the interpolation can be finished within a single interpolation run.
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Theorem 2.2 (Early termination Ben-Or/Tiwari algorithm):
Pick p1, . . . , pn randomly and uniformly from a subset S of the domain of values,
which is assumed to be an integral domain, then for the sequence {ai}i≥1 with
ai = f(pi

1, . . . , p
i
n), the Berlekamp/Massey algorithms encounters ∆ = 0 and

i > 2L the first time at i = 2t + 1 with probability no less than

1− t
(
t + 1

)(
2t + 1

)
deg(f)

6 ·#(S)
,

where #(S) is the number of elements in S (Kaltofen et al., 2000).

In the implementation, the user can supply an integer ζ ≥ 1, and the early
termination is triggered only after a zero discrepancy with i > 2L occurs ζ
times in a row. The higher thresholds can weed out bad random choices from
sets that are much smaller than Theorem 2.2 would require. Nevertheless, the
precise analysis for higher thresholds is complicated.

The early termination Ben-Or/Tiwari algorithm

Input:

f : f = f(x1, . . . , xn), a multivariate black box polynomial.

ζ: a positive integer, the threshold for early termination.

Output:

ci and βi: f =
∑t

i=1 ciβi with high probability.

Or an error message: if the procedure fails to complete.

1. (The early termination within the Berlekamp/Massey algorithm.)
Pick random elements: p1, . . . , pn /∈ {0, 1}.
For i = 1, 2, . . .

ai = f(pi
1, . . ., pi

n);
Perform the Berlekamp/Massey algorithm on a1, . . . , ai.
If ∆i = 0 and i > 2L happens ζ times in a row, then

Λ(θ) is determined; break out of the loop;

2. (Determine βj.)
Compute all the roots of Λ(θ) in the domain of pi.
If Λ(z) does not completely factor, or not all the roots are distinct, then

the early termination was false.

Else, determine terms βj from the roots of Λ(θ), which are bj:

repeatedly divide bj by p1, . . . , pn. Again, the term recovery might fail for
unlucky p1, . . . , pn.

3. (Determine cj.)

solve a transposed Vandermonde system.

End.
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3. The Prony’s method and Ben-Or/Tiwari algorithm

In 1795, Gaspard Clair Franois Marie Riche de Prony gave a two-step method
(de Prony, 1795) for fitting asum of t exponential functions of the form:

f(x) = c1e
µ1x + c2e

µ2x + · · ·+ cte
µtx.

Knowing that f(x) is a sum of t exponential functions and having no less than
2t evaluations of f(x) at equally spaced points, Prony’s method determines the
coefficients ci and the bases in terms of µi, for 1 ≤ i ≤ t. We notice that
Prony’s method is closedly related to the modern Ben-Or/Tiwari multivariate
sparse interpolation algorithm (Ben-Or and Tiwari, 1988), in which the target
polynomial is evaluated at powers of a point so that the terms in the polynomial
would behave like exponential functions. For comparison, we outline Prony’s
method in parallel with the Ben-Or/Tiwari algorithm in Table 1.

Table 1: Comparison between Prony’s method and Ben-Or/Tiwari algorithm

Prony’s method Ben-Or/Tiwari algorithm
Interpolate: Interpolate:

f(x) =
∑t

i=1 cie
µix f(x1, . . . , xn) =

∑t
i=1 cix

e1,i

1 · · ·xen,i
n

Evaluate: f(p0
1, . . . , p

0
n), f(p1

1, . . . , p
1
n), . . . ,

Evaluate: f(0), f(1), . . . , f(2t− 1) f(p2t−1
1 , . . . , p2t−1

n ), where p1, . . . , pn are
distinct primes.

1. Solve λi in the t× t system: 1. Compute† the minimal generating∑t−1
i=0 λif(i + j) = −f(t + j), polynomial Λ(θ) of sequence

and j = 0, . . . , t− 1. {f(pi
1, . . . , p

i
n)}2t−1

i=0 .
2. Solve: 2. Solve:

Λ(θ) = θt + λt−1θ
t−1 + · · ·+ λ0 = 0. Λ(θ) = θt + λt−1θ

t−1 + · · ·+ λ0 = 0.
The t distinct roots are eµi , 1 ≤ i ≤ t. The t distinct roots are p

e1,i

1 · · · pen,i
n ,

1 ≤ i ≤ t.
3. Determine cj from eµj and evaluations 3. Determine cj from p

d1,j

1 · · · pdn,j
n and

of f evaluations of f

† Berlekamp/Massey algorithm

Remark: In Prony’s method, f can be evaluated at any 2t equally spaced
points. Also, so far we have only seen λi in Prony’s method being computed
through either solving a linear system or least square methods (in the approxi-
mate case). Nevertheless, clearly in the exact case the Berlekamp/Massey algo-
rithm can be utilized in locating λi.

4. Applications of sparse interpolation to Prony’s method

Due to the similarities between Prony’s method and the Ben-Or/Tiwari algo-
rithm, some recent results in sparse polynomial interpolations are immediate to
sums of exponential functions.
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4.1. The early termination of Prony’s method

Consider a black box f(x) that is a sum of exponential functions:

f(x) =
t∑

i=1

cie
µix. (1)

Without knowing t, with high probability we still can interpolate f(x): randomly
pick p and s 6= 0; perform the Berlekamp/Massey algorithm on sequence f(p +
s), f(p + 2s), . . . , f(p + i · s), . . .. Then with high probability when i = 2t + 1 the
first zero discrepancy at i > 2L occurs. This is based on early termination in the
Ben-Or/Tiwari algorithm (Theorem 2.2). Therefore, without knowing t, we can
probabilistically interpolate the sum of exponential functions in (1) after 2t + ζ
evaluations.

The early termination Prony’s method

Input:

f : f(x) =
∑t

i=1 cie
µix, a black box function.

ζ: a positive integer, the threshold for early termination.

Output:

ci and µi: f =
∑t

i=1 cie
µix with high probability.

Or an error message: if the procedure fails to complete.

1. (The early termination within the Berlekamp/Massey algorithm.)
Pick random elements: p, s 6= 0.
For i = 1, 2, . . .

ai = f(p + i · s);
Perform the Berlekamp/Massey algorithm on a1, . . . , ai.
If ∆i = 0 and i > 2L happens ζ times in a row, then

Λ(θ) is determined; break out of the loop;

2. (Determine µj.)
Compute all the roots of Λ(θ).
If Λ(θ) does not completely factor, or not all the roots are distinct, then

the early termination was false.

Else, determine µj from the roots of Λ(θ), which are eµj .

3. (Determine cj.)

solve a transposed Vandermonde system.

End.
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4.2. The multivariate Prony’s method

We now consider a multivariate black box f(x1, . . . , xn) that is a sum of expo-
nential functions:

f(x1, . . . , xn) =
t∑

i=1

cie
µ1,ix1+µ2,ix2+···+µn,ixn . (2)

Here we implement a variable by variable approach similar to Zippel’s method
(Zippel, 1979) and the prunings via early termination (Kaltofen et al., 2000). By
the early termination Prony’s method, we first interpolate f(x1, p2, . . . , pn) in
x1 with (x2, . . . , xn) fixed at random (p2, . . . , pn). If f is correctly interpolated
in x1, we obtain f1(x1) =

∑
i c1,ie

µ1,ix1 , where each c1,i is
∑

a1,r=a1,i

cre
a2,rx2+···+an,rxn evaluated at (x2, . . . , xn) = (p2, . . . , pn).

We then continue the interpolation of each c1,i in x2 and obtain f2(x1, x2). As-
sume we obtain the correct result at every stage, which is with high probability,
finally fn interpolate (2). For reference, we outline the algorithm steps.

The multivariate Prony algorithm with early termination

Input:

f : a black box function that is a sum of exponential functions.

(x1, . . . , xn): an ordered list of variables in f .

ζ: a positive integer, the threshold for early termination.

Output:∑t
i=1 cie

µ1,ix1+µ2,ix2+···+µn,ixn: which equals f with high probability.

Or an error message: if the procedure fails.

1. (Initialize the anchor points.)
Randomly pick p1, . . . , pn and s1 6= 0, . . . , sn 6= 0;

2. (Interpolate one more variable: with high probability, we have fj−1 = f(x1,
. . ., xj−1, pj, . . ., pn) =

∑
r∈Kj−1

cj−1,re
a1,rx1+···+aj−1,rxj−1 .)

For j = 1, . . . , n Do

kj−1 ← #(Kj−1)

3. (Interpolate every cj−1,r in xj by early termination Prony’s method. Locate
the value of every such coefficient at xj = pj + i · sj by solving a kj−1 by
kj−1 transposed Vandermonde system.)

For i = 1, . . . , while not all cj−1,r(xj) are interpolated do

For r = 1, . . . , kj−1 Do
∑

r∈Kj−1

c
[i]
j−1,re

µ1,r(p̃1+rs̃1)+···+µj−1,r(p̃j−1+rs̃j−1)

= f(p̃1 + rs̃1, . . . , p̃j−1 + rs̃j−1, pj + isj, pj+1, . . . , pn);
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If the system is singular then report ”Failure;”
Else solve for all c

[i]
j−1,r;

4. (Interpolate kj−1 many sums of exponential functions in xj. They are the
coefficients for exponential functions in x1, . . . , xj−1.)

For every r ∈ Kj−1 Do

the early termination Prony’s method on {c[1]
j−1,r, . . . , c

[i]
j−1,r};

if early termination occurs: cj−1,r(xj) ←
∑

r̃

cj−1,r,r̃e
µj,r̃xj ;

5. (Update Kj.)
Kj = ∅; rnew = 1;
For every r ∈ Kj−1 and r̃ Do

If cj−1,r,r̃ 6= 0 then

cj,rnew ← cj−1,r,r̃; Kj ← Kj ∪ {rnew}; rnew ← rnew + 1;

Randomly pick p̃j, s̃j 6= 0;

End.

4.3. Applications to a linear ordinary differential equations

Now we again consider a univariate black box f(x) that is a sum of exponential
functions and its derivatives:

f(x) =
t∑

i=1

cie
µix

f (1)(x) =
t∑

i=1

µicie
µix

...

f (j)(x) =
t∑

i=1

µj
icie

µix

Based on the early termination Ben-Or/Tiwari algorithm, for a random p, per-
form the Berlekamp/Massey algorithm on f (1)(p), f (2)(p), . . . , f (j)(p), . . . , with
high probability at j = 2t + 1 we shall obtain Λ(θ) whose t distinct roots are µi.
The recovery of ci is based on locating cie

µip as the coefficients of µi and that
p and all µi are known at this point. This provides an algorithm to interpolate
a sum of exponential functions from evaluating its consecutive derivatives at a
point.

Note that in this case, the auxiliary polynomial Λ(θ) gives a linear ordinary
differential equation such that f and its derivatives, f (i) for i ≥ 0, are all its
solutions, that is, for i ≥ 0:

Λ(
d

dx
)(f (i)) =

dt

dxt
f (i) + λt−1

dt−1

dxt−1
f (i) + · · ·+ λ1

d

dx
f (i) + λ0f

(i) = 0. (3)
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4.4. Linear partial differential system

When f is given as

f(x1, . . . , xn) =
t∑

i=1

cie
µ1,ix1+µ2,ix2+···+µn,ixn ,

and

Λj(θ) =

tj∏
r=1

(θ − µj,r) = θtj + λj,tj−1θ
tj−1 + · · ·+ λj,1θ + λj,0,

then for every j, di

dxi
j
f for all i ≥ 0 satisfy the equation in (4):

Λj(
d

dxj

)(
dif

dxi
j

) =
dt

dxt
j

dif

dxi
j

+ λj,t−1
dt−1

dxt−1
j

dif

dxi
j

+ · · ·+ λj,0
dif

dxi
j

= 0. (4)

Remark: Similar results to (4) and (3) can be extended to other linear dif-
ferential operators, such as Dx1,x2 = d2

dx1dx2
.

5. Current developments

Although Prony’s method has long been appeared as a numerical algorithm, it
is unstable due to its root finding procedure. We note that certain least square
approaches has been exploited in (Milanfar et al., 1995). On the other hand, by
reformulating it as a generalized eigenvalue problem, Golub et al. (1999) gave a
stable algorithm. Based on the recent numerical results in Prony’s method, we
intend to develop numerical sparse interpolation algorithms.
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