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Abstract

An overview of the reconstruction problem of sum of exponentials functions from truncated
series is presented. We recall Prony's method for univariate problems, analyse the alge-
braic properties underlying this reconstruction problem and describe an extension of Prony's
method for sparse modeling in several variables. Applications of this method are developed.
A special attention is given to tensor decomposition problems.
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1 Introduction

In many context of applications, it is nowadays possible to recover a huge amount of information
on a phenomenon that we want to analyse. Sensors, scanners, etc. can produce a deluge of data,
which in principle should be helpful for this analysis. But too much information may destroy the
information. An important problem is to extract for this data, a structured representation which
is simpler to manipulate and understand. Recovering this underlying structure can boil down to
compute an explicit representation of a function in a given basis of a functional space. Classical
interpolation problems can be used in this framework, as well as Fourrier decomposition. Usually,
a �good� numerical approximation of the function as a linear combination of the function basis
elements is su�cient. But the choice of the function basis is very important from this perspective.
It can lead to a sparse representation which involve few non-zero coe�cients or many coe�cients.
To illustrate this problem, consider for instance a linear function over an intervalle of R. In the
monomial basis it is represented by two coe�cients. Its description as Fourier series involves an
in�nite sequence of (decreasing) Fourrier coe�cients.

This raises two important problems:

� How to determine a good functional space, in which the functions we consider have a sparse
representation with few non-zero coe�cients, which exhibit the main characteristics of these
functions.

� How to compute such a decomposition, using a small (if not minimal) amount of information
or measurements.

These problems known as sparse modeling have in important impact in many domains such as
Signal Processing, Image Analysis, Computer Vision, Statistics ...

Hereafter, we are going to study a speci�c reconstruction problem of truncated series, which
allows to treat many other sparse modeling problems. With the multi-index notation: 8�=(�1; :::;
�n) 2 Nn; 8u 2 Cn, �! =

Q
i=1
n

�i!, u� =
Q

i=1
n

ui
� and e�(z) =

P
�2Nn

1

�!
��z� = eh�;zi =

e�1z1+���+�nzn, it can be stated as follows:

Problem 1. (Reconstruction from truncated series) Given the coe�cients �� of the series

�(z)=
X
�2Nn

��
z�

�!

for j�j6d, recover r the number of terms, the points �1; :::; �r2Cn and the polynomial coe�cients !i(z)2C[z]

such that

�(z)=
X
i=1

r

!i(z) e�i(z):

1.1 Examples
Let us show in some examples how this problem can appear.
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Example 1. (Train of spikes) A train of spikes is a (complex) measure � which is a weighted sum
of Dirac measures

�=
X
i=1

r

!i ��i (1)

where �1; :::; �r are pairwise distinct points of C, ��i is the Dirac measure at �i and !i2Cnf0g. It
can represent for instance a sequence of impulsions over an interval of time, when �i2R.

We want to recover

� the number r of points,

� the distinct points �1; :::; �r2C,

� the weights wi2C n f0g,

from measurements of these impulsions. Classical measurements used in Signal processing are the
Fourier coe�cients of the measure or its convolution with a function f :

�k=
1
2T

Z
T

2

T

2

f(x) e ¡2i� (k x) d�:

If � is of the form (1), the generating series of �k is

�(z) =
X
k2N

�k
zk

k!
=
X
i=1

r

wi f(�i) e
�iz:

The decomposition problem consists in recovering the number r, the frequencies �1; :::; �r2C and
the weights wi f(�i)2C n f0g from the �rst (Fourier) coe�cients (�k)06k62r¡1 of the series �(z).

Another problem, related to the previous one by Fourier transform, is the decomposition of an
exponential polynomial from its values.

Example 2. (Recovery of exponential polynomials from values) Given a function h 2 C1(C) of
the form

x2C 7! h(x)=
X
i=1

r

ai(x) e
fix (2)

where f1; :::; fr2C are pairwise distinct, ai(x)2C[x] n f0g, the problem consists in recovering

� the distinct frequency vectors f1; :::; fr2C ,

� the polynomial coe�cients ai(x)2C[x] n f0g,

This problem is sometimes called blind identi�cation in signal processing [17]. We assume
the �signal� h is the superposition of signals of a certain family, namely a product of a poly-
nomial by an exponential and we want to �nd its decomposition. This may be useful to identify
the number sources and some characteristics of these sources. Here is an example of a signal,
which is the superposition of several �oscillations� with di�erent frequencies.
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This problem can also be reformulated into a truncated series reconstruction problem. By
choosing an arithmetic progression of points (�) in C, for instance N, we can associate to h, the
generating series:

�(z)=
X
�2N

h(�)
z�

�!
2C[[z]];

where C[[z]] is the ring of formal power series in z. If h is of the form (21), then

�(z) =
X
i=1

r X
�2N

ai(�) �i
�z

�

�!
=
X
i=1

r

bi(z) e
�i z

where �i= efi and bi(z) are polynomials in z, uniquely determined by ai.
In practice, the evaluation of h may be marred by errors of measurements or by noise, the

decomposition problem consists then in computing an approximate decomposition which satis�es

j�(p)¡
X
i=1

r

ai (p)e
hfi;pij<�; 8p2P ;

for some given tolerance � and a set of points P �C.

1.2 A general framework
The problem of truncated series can be considered in a general context that we describe now :

� Let F be a functional space (in which �leaves the signals�).

� Let S1; :::; Sn:F!F be linear operators of F which are commuting: Si�Sj=Sj �Si.

� Let �: h2F 7!�[h]2C be a linear functional on F.

The problem of decomposition of an element h2F can be restated in terms of its generating series:

De�nition 3. For h2F, the generating series associated to h is

�h(z) =
X
�2Nn

1
�!
�[S�(h)] z� (3)

where S�=S1
�1 � ��� �Sn�n.

The elements in F that we are going to chose to decompose h2F are the eigenfunctions of the
operators Si. If E is an eigenfunction of Si for the eigenvalue �i, we easily check that

�E(z)= e�(z)�(E):

To �nd the sparse decomposition of the signal h, we consider the truncated generating series �h(z).
The following results shows that solving the truncated series problem for �h(z) yields a solution
of the sparse recovery problem.
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Proposition 4. Let S1; :::; Sn be linear operators of F which are commuting: Si�Sj=Sj �Si. Let
E1; :::; Er be eigenfunctions of these operators: Sj(Ei)= �i; jEi with �i=(�i;1; :::; �i;n)2Cn pairwise
distinct. Let �:h2F 7!�[h]2C be a linear functional on F such that �[Ei] = 1.

If h=
P

i=1
r !iEi then �h(z)=

P
�2Nn �[S

�(h)]
z�

�!
=
P

i=1
r !i e�i(z):

Proof. If h=
P

i=1
r !iEi, then S�(h) =

P
i=1
r !i S

�(Ei) =
P

i=1
r !i �

�Ei and we have

�h(z)=
X
�2Nn

�[S�(h)]
z�

�!
=
X
i=1

r X
�2Nn

!i �
��[Ei]

z�

�!
=
X
i=1

r

!i
X
�2Nn

��
z�

�!
=
X
i=1

r

!ie�i(z):

�

The general decomposition problem consists in computing a decomposition of h as a weighted
sum of eigenfunctions, from the �rst coe�cients of its generating series �h.

If the map �:h2F 7!�h(z)2C[[z]] is injective, then the solution �h(z)=
P

i=1
r

!ie�i(z) of the
truncated series problem yields the solution of this decomposition problem in F: h=

P
i=1
r !iEi.

Let us illustrate how the previous examples �t with this framework.

Reconstruction from Fourier coe�cients. In this problem, we take

� F is the space of distributions on C:

� S:h(x) 7! e¡2�ixh(x) is the multiplication by e2�ix.

� �: h(x) 7! 1

T

R
¡T

2

¡T

2 h(x)dx.

We easily check that for a Dirac measure �� at � 2
h
¡T

2
;
T

2

i
, we have S(��) = � ��, �[��] =

1

T
and

for any h2F, �[Sk(h)] = 1

T

R
¡T

2

¡T

2 h(x) e¡2�ikxdx is kth Fourier coe�cient of h.

Reconstruction from values. In this problem, we take

� F=C1(R),

� S:h(x) 7! h
¡
x+

1

T

�
the shift operator by 1

T
for T 2R+,

� �: h(x) 7!�[h] =h(0) the evaluation at 0,

We have S(efi x)= �ie
fi x, �[efix]=1 and �[Sk(h)]=h( k

T
). Thus the series �h(z) is the series given

in (3).

A more general context can be considered, replacing eigenfunctions by generalized eigenfunc-
tions:

Theorem 5. Let S1; :::; Sn be commuting operators of F. Let E1;1; :::; E1;�1;:::;; Er;1; :::; Er;�r2F
be generalized eigenfunctions of S1; :::; Sn such that for i=1; :::; r, j=1; :::; n, k=1; :::; �i,

Sj(Ei;k)= �i; jEi;k+
X
k 0<k

mi; j;k 0Ei;k 0

with �i=(�i;1; :::; �i;n)2Cn pairwise distinct. Let �0 be a linear functional on C1(Cn) and pi;1; :::;
pi;�i2C[x] such that �0[pi;k(S)Ei;k0] =

�
1 if k= k 0;
0 otherwise:

for i=1; :::; r, k; k 0=1; :::; �i.

If h(x)=
P

i=1
r P

k=1

�i
!i;kEi;k(x), the generating series �h is:

�h(z) =
X
�2Nn

1
�!
�[S�(h)] z�=

X
i=1

r

wi (z) e�i(z)

where wi (z) uniquely determines the coe�cients !i;k:


wi (z) e�i(z)j pi;k (x)

�
=!i;k .

Proof. �
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1.3 Previous works
The approximation of functions by a linear combination of exponentials appears in many context.
It is the basis of Fourier analysis, where in�nite series are involved in the decomposition of these
functions. For �nice� functions, the coe�cients are decreasing exponentially and the series can be
approximated by a �nite sum of exponential functions. This problem of �nding an approximation
of a function by a �nit sum of exponentials has a long history and many applications, in particular
in signal processing [13], [23].

Many works have been developed in the one dimensional case (n=1), which refers to the well-
known problem of parameter estimation for exponential sums . A �rst family of methods can be
classi�ed as Prony-type methods. It goes back to the work of Gaspard-Clair-François-Marie Riche
de Prony in 1795 [9], who proposed to construct a recurrence relation of minimal size for the
sequence (h(k))k2N when h is a linear combination of exponential functions. To take into account
the problem of noisy data, the recurrence relation is be computed by minimization techniques
[23][chap. 1]. Another type of methods is called Pencil-matrix. Instead of computing a recurrence
relation, the generalized eigenvalues of a pencil of Hankel matrices are computed [23][chap. 1].

The survey paper [13] describes some of these minimization techniques implementing a variable
projection algorithm and their applications in various domains, including antenna analysis with
so-called MUSIC [25] or ESPRIT [24] methods.

In [5], another approach based on conjugate-eigenvalue computation and low rank Hankel
matrix approximation is proposed. The extension of this method using controlled perturbations
and called Approximate Prony Method is described in [21].

Another approach known as compressive sensing is considered for instance in [8] for one-
dimensional problems. In this approach, a large dictionary of functions is chosen and a sparse
combination with few non-zero coe�cients is computed from some observation. This boils to �nd a
sparse solution X of an underdetermined linear system Y =AX. Such a solution, which minimizes
the L0 �norm� can be computed by L1 minimization, under some hypothesis.

In the sparse reconstruction problem we are considering, the Fourrier coe�cients are chosen
in a subset 
 of Z, which is not necessarily of the form [0; :::; 2r]. If this set is �big enough� and
random (here of size >4r), it is shown in [8] that a sparse decomposition can be recovered by L1
minimization.

Only recently the problem was studied in the multi-dimensional case like in [1], [22]. These
methods project the problem in one dimension by sampling data along a line and recover the
multivariate solution from projections along several directions. This approach is also used in sparse
interpolation of black box polynomials. In the methods developed in [2] [27], and further improved
in [12], the sparse polynomial is evaluated at points of the form (!1

k; :::; !n
k) where !i are prime

numbers or primitive roots of unity of coprime order.

2 Prony's method in one variable.

Gaspard Riche de Prony, mathematician and Engineer of the École Nationale des Ponts et
Chaussées, was working on Hydraulics. To analyze the expansion of various gases, he proposed
in [9] a method to �t a sum of exponentials to equally spaced data points in order to extend
the model at intermediate points. We describe hereafter this method and will study later its
extension to multivariate decomposition problems.

Let h(x)=
P

i=1
r

wiefix be a linear combination of exponentials with distinct frequencies fi2C
and weights wi2C n f0g.

Prony's method performs as follows:

� Evaluate the function h at values on a grid of a certain step size 1

T
2R+:

�k :=h(
k
T
)=
X
i=1

r

wi

�
e
fi
T

�
k
=
X
i=1

r

wi �i
k

for k 2 [0;:::; 2r¡ 1 ] and �i= e
fi
T .
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� From these values, compute the polynomial

p(x)=
Y
i=1

r

(x¡ �i)=xr¡
X
j=0

r¡1

pjxj ;

which roots are �i= e
fi
T , i=1; :::; r as follows. Since it satis�es the recurrence relations

8j 2 [0; :::; r¡ 1];
X
i=0

r¡1

�j+i pi¡�j+r=
X
i=1

r

wi �i
j p(�i)= 0;

it is the unique solution of the system:0BBBB@
�0 �1 ::: �r¡1
�1 ������ ��� ������
�r¡1 ::: �2r¡2

1CCCCA
0BBBB@

p0
p1
������

pr¡1

1CCCCA=
0BBBB@

�r
�r+1
������

�2r¡1

1CCCCA: (4)

� Compute the roots �1; :::; �r of the polynomial p(x).

� To determine the weight coe�cients w1; :::; wr, solve the following linear (Vandermonde)
system: 0BBB@

1 1 ::: 1
�1 �2 ::: �r
��� ��� ���

�1
r¡1 �2

r¡1 ::: �r
r¡1

1CCCA
0BB@

w1
w2
���
wr

1CCA=
0BB@

h0
h1
���

hr¡1

1CCA:
This approach can be improved by computing the roots �1; :::; �r, directly as the generalized

eigenvalues of a pencil of Hankel matrices. Namely, Equation (4) implies that

0BBBB@
�0 �1 ::: �r¡1
�1 ������ ��� ������
�r¡1 ::: �2r¡2

1CCCCA
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {H0 0BBBB@

0 p0
1 ��� p1
��� ��� ������ 0 ���

1 pr¡1

1CCCCA
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {C�

=

0BBBB@
�1 �2 ::: �r
�2 ������ ��� ������
�r ::: �2r¡1

1CCCCA
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {H1

; (5)

so that the generalized eigenvalues of the pencil (H1; H0) are the eigenvalues of the companion
matrix Cp of p(x), that is, its the roots �1; :::; �r. This variant of Prony's method is also called the
pencil method in the literature.

3 Duality and Hankel operators

In this section, we consider polynomials and series with coe�cients in a �eld K of characteristic
0. In the applications, we are going to take K=C or K=R.

3.1 Duality
In this section, we analyze the natural isomorphism between the ring of formal power series and
the dual space of the ring of polynomials R=K[x1; :::xn]. It is given by the following pairing:

K[[z1; :::; zn]]�K[x1; :::xn] ! K

(z�;x�) 7! hz�jx�i=
�
�! if �= �
0 otherwise:
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Namely, if � 2 HomK(K[x];K) = R� is an element of the dual of K[x], it can be represented by
the series:

�(z)=
X
�2Nn

�(x�)
z�

�!
2K[[z1; :::; zn]]; (6)

so that we have h�(z)j x�i = �(x�). This map � 2 R� 7!
P

�2Nn �(x�)
z�

�!
2K[[z]] is an

isomorphism and any series �(z) =
P

�2Nn ��
z�

�!
2K[[z]] can be interpreted as a linear form

p=
X

�2A�Nn

p�x
�2K[x] 7! h�j pi=

X
�2A�Nn

p���:

From now on, we identify the dual HomK(K[x];K) with K[[z]]. Using this identi�cation, the dual

basis of the monomial basis (x�)�2Nn is
�
z�

�!

�
�2Nn

. The coe�cients �� = h�j x�i are called the
moments of �.

In this identi�cation, we can introduce new variables y=(y1; :::; yn) and replace z�

�!
by ya so

HomK(K[x];K) is identi�ed with K[[y1; :::; yn]]. This allows to extend the duality properties that
we will use to a �eld K which is not of characteristic 0. But the relation with di�erential operators
is less natural, that is why we assume that K is of characteristic 0 and use the identi�cation (6).

IfK is a sub�eld of a �eld L,K[[z]] ,!L[[z]] and any element ofK[x]� can be uniquely identi�ed
with an element of L[x]�.

The truncation of an element �(z)=
P

�2Nn ��
z�

�!
2K[[z]] in degree 6d is

P
j�j6d ��

z�

�!
. It

is denoted �(z) + ((z))d+1, that is, the class of � modulo the ideal (z1; :::; zn)
d+1�K[[z]].

Among interesting elements of Hom(K[x];K)�K[[z]], we have the evaluations at points ofCn:

De�nition 6. The evaluation at a point � 2Kn is:

e
�
:K[x1; :::xn] ! K

p(x) 7! p(�)

which corresponds to the formal series:

e
�
(z) =

X
�2Nn

��
z�

�!
= eh�;zi:

Using this formalism, the series �(z)=
P

i=1
r !ie�i(z) can be interpreted as a linear combination

of evaluations at the points �i which coe�cients are !i, for i=1; :::; r.
Notice that the product of z�e

�
(z) with a monomial x�+� 2C[x1; :::xn] is given by


z�e
�
(z) jx�+�

�
=

(�+ �)!
�!

�
�
= @x1

�1���@xn
�nx�+�(�);

so that �(z)=
P

i=1
r

!i(z) e�i(z) can be seen as a sum of polynomial di�erential operators !i(@) �at�
the points �i, that we call in�nitesimal operators : 8p2C[x]; h�(z)j p(x)i=

P
i=1
r !i(@)p(�) .

De�nition 7. For any �(z)2K[[z]], the inner product associated to �(z) on K[x] is

K[x]�K[x] ! K

(p(x); q(x)) 7! hp(x); q(x)i� := h�(z)j p(x)q(x)i:

The dual space Hom(K[x]; K) � K[[z]] has a natural structure of K[x]-module, de�ned as
follows: 8�(z)2K[[z]]; 8p(x); q(x)2K[x],

hp(x) ? �(z) j q(x)i = h�(z) j p(x)q(x)i= hp(x); q(x)i�:

We easily check that 8�2K[[z]]; 8p; q 2K[x], (pq) ? �= p ? (q ? �).

Example 8. If �(z) =
P

i=1
r

!i e�i(z); with !i2K and �i2Kn and p(x)2K[x], we have

p(x) ? �(z) =
X
i=1

r

!i p(�i)e�i(z): (7)

8 Section 3



An interesting property of this external product is that polynomials act as di�erentials on the
series:

Lemma 9. 8p2K[x]; 8� 2K[[z]], p(x) ? �(z)= p(@z1; :::; @zn)(�).

Proof. We �rst prove the relation for p=xi and �=z�. Let ei=(0; :::; 0;1;0; :::; 0) be the exponent
vector of xi. 8� 2Nn, we have

hxi? z� jx�i = hz� jxix�i= �! if �= �+ ei and 0 otherwise
= �i hz�¡ei jx�i:

with the convention that z�¡ei=0 if �i=0. This shows that xi?z�=�iz�¡ei=@zi(z
�) as elements

of R��K[[z]].
By transitivity and bilinearity of the product ?, we deduce that 8p 2 K[x]; 8� 2 K[[z]],

p(x) ? �(z)= p(@z1; :::; @zn)(�). �

For a subset D�K[[z]], the inverse system generated by D is the vector space spanned by the
elements p(x) ? �(z) for �(z) 2D and p(x) 2K[x]. By Lemma 9, the inverse system of D is the
space generated by the elements of D and all their derivative in the variables z at any order.

For an ideal I�R=K[x], we denote by I?�K[[z]] the space of linear forms �2K[[z]], such that
8p2 I, h�(z) j p(x)i=0.
Let d2N and let I6d be the set of polynomials degree 6d in I. We denote by I6d? �K[[z]], the

set of linear forms � such that 8p2 I6d, h�(z) j p(x)i=0.

Lemma 10. I6d
? = I?+((z))d+1.

This lemma says that an element of I6d? is the truncation in degree 6d of an element of I?.

3.2 Artinian algebra
In this section, we consider an ideal I �K[x] and the associated quotient algebra A=K[x]/I.

De�nition 11. The quotient algebra A is artinian if dimK (A)<1:

Notice that if K is a sub�eld of a �eld L, dimK (K[x]/I)=dimL (L[x]/IL)=dimLA
L where
IL is the ideal of L[x] generated by the element in I. Hereafter, we are going to assume that K is
algebraically closed.

Theorem 12. Let A be an artinian algebra of dimension r de�ned by an ideal I. Then we have
a direct sum

A=A�1� ��� �A�r 0

where

� V(I)= f�1; :::; �r0g�Kn with r 06 r.
� I =Q1\ ��� \Qr0 is a minimal primary decomposition of I with Qi m�i-primary,

� A�i�K[x]/Qi and A�i � A�j� 0 if i=/ j.

The dual A�=HomK(A;K) of A is naturally identi�ed with the sub-space

I?= f�2K[x]�=K[[z]]j 8p2 I ;�(p)= 0g:

As I is stable by multiplication by the variables xi, the orthogonal I? = A� is stable by the
derivations d

dzi
.

Proposition 13. Let Q be a primary ideal for the maximal ideal m� of the point � 2Kn and let
A�=K[x]/Q. Then there exists a vector space D�K[z] stable by the derivations d

dzi
such that

Q?=A�
�=D�e�(z):

Duality and Hankel operators 9



Theorem 14. Let A be an artinian algebra of dimension r with V(I) = f�1; :::; �r 0g�Kn. There

exists vector spaces Di�K[z] stable by derivation of dimension �i with
P

i=1
r 0

�i= r, such that the
elements of A� are the elements �2K[[z]] of the form

�(z)=
X
i=1

r 0

!i(z) e�i(z);

with !i(z)2Di.

De�nition 15. Let g be a polynomial in A. The g-multiplication operator Mg is de�ned by

Mg: A ! A
h 7! Mg(h) = g h:

The transpose application Mg
t of the g-multiplication operator Mg is de�ned by

Mg
t : A� ! A�

� 7! Mg
t (�)=� �Mg= g ?�:

Let B be a monomial basis in A and B� its dual basis in A�. As the matrix Mg
t of the transpose

application Mg
t in the dual basis B� in A� is the transpose of the matrix Mg of the application

Mg in the basis B in A, the eigenvalues are the same for both matrices.
The main property we need is the following (see e.g. [11]):

Proposition 16. Let I be an ideal of R=K[x] and suppose that V(I) = f�1; �2; :::; �rg. Then
� for all g2A, the eigenvalues ofMg andMg

t are the evaluations at the polynomial g, namely
g(�1); :::; g(�r),

� The eigenvectors common to allMg
t with g2A are - up to a scalar - the evaluations e�1; :::;

e�r.

Remark 17. If (x�)�2B is a basis of A, then the coe�cient vector of the evaluation

e�i=
X
�2B

�i
� z�

�!
+ ���

in the dual basis of A� is
� 

e
�i
jx�

� �
�2B=

�
�i
� �

�2B. The previous proposition says that if [Mg]

is the matrix of Mg in the basis (x�)�2B of A, then

[Mg]
t
�
�i
� �

�2B= g(�i)
�
�i
� �

�2B

If moreover the basis (x�)�2B contains the monomials 1; x1; x2; :::; xn, then the root �i can be
computed from the coe�cient vector of any multiple c e�i, c 2 K ¡ f0g of the evaluation e�i,
by taking the ratio of the coe�cients of the monomials x1; :::; xn by the coe�cient of 1. Thus
computing the common eigenvectors of all these matrices Mg

t yield the roots �i (i = 1; :::; r). In
practice, it is su�cient to compute the common eigenvectors of [Mx1]

t; :::; [Mxn]
t since we have

[Mg]
t= g([Mx1]

t; :::; [Mxn]
t).

3.3 Hankel operators
The external product ? allows us to de�ne an Hankel operator as a multiplication operator by a
dual element 2K[[z]]:

De�nition 18. The Hankel operator associated to an element �(z)2C[[z]] is

H�:K[x] ! K[[z]]

p(x) 7! p(x) ? �(z):

Its kernel is denoted I�. We say that the series � has a �nite rank r2N if rankH�= r <1.

Example 19. If �= e� is the evaluation at a point � 2Cn, then He�: p2K[x] 7! p(�) e� 2K[[z]]
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Remark 20. The matrix of the operator H� in the bases (x�)�2Nn and
�
z�

�!

�
�2Nn

is

[H�] = (��+�)�;�2Nn=
¡

� jx�+�

��
�;�2Nn:

De�nition 21. For two vector spaces V ;V 0�K[x] and �2hV �V 0i��K[[z]], we denote by H�
V ;V 0

the following map:

H�
V ;V 0:V ! V 0�= homC (V 0;C)

p(x) 7! p(x) ? �(z)jV 0:

It is called the truncated Hankel operator on (V ; V 0).

When V 0=V , The truncated Hankel operator is also denoted H�
V .

If B = fb1; :::; brg (resp. B 0 = fb10 ; :::; br0 g) is a basis of V (resp. V 0), then the matrix of the
operator H�

V ;V 0 in B and the dual basis of B 0 is�
H�
B;B 0�=(h� j bi bj0 i)16i6r;16j6r 0:

If B and B 0 are monomial sets, we obtain the so-called truncated moment matrix of �:�
H�
B;B 0� = (��+� 0)�2B;� 02B 0

When n = 1, this matrix is a classical Hankel matrices, which entries depend only of the sum of
the indices of the rows and columns. When n> 2, we have a similar family of structured matrices,
which rows and columns are indexed by exponents in Nn and which entries depends on the sum
of the row and column indices. These structured matrices called quasi-Hankel matrices have been
studied for instance in [19].

3.4 Artinian Gorenstein algebra
In this section, we analyze the properties of artinian algebra that are obtained as quotient by the
kernel I�=fp2C[x]jp?�=0g of an Hankel operator H�. We assume that K is algebraically closed.

As 8p; q2K[x], pq ?�= p? (q ?�), we easily check that I� is an ideal of K[x], and we construct
the quotient algebra A� =K[x]/I�. By construction, A�

� = I�
? contains the elements p ? � for all

p2K[x] and imH��A�
�. The Hankel operator H� is a map from K[x] into A�

� :

0! I�!K[x]!!!!!!!!!!!!!!!!!!!!!!
H� A�

�: (8)

The variety de�ned by I� in Kn is denoted hereafter VK(I�) or simply V(I�) when K is
algebraically closed.

A classical result states that a quotient algebra A�=K[x]/I� is �nite dimensional, i.e. artinian
i� V(I�) is �nite, that is, I� de�nes a �nite number of (isolated) points in Kn.

The multiplicity of an isolated point � of V(I�) is the dimension over K of A� localized at �.

If �(z)=
P

i=1
r !i(z) e�i(z) then, by Lemma 9, the kernel I� is the set of polynomials p2K[x]

such that 8q 2K[x], p is a solution of the following partial di�erential equation:X
i=1

r

!i(@)(pq)(�i) = 0:

Since 8p(x); q(x)2K[x], hp(x) + I�; q(x) + I�i�= hp(x); q(x)i�, h: ; :i� induces an inner product
on A�.

Theorem 22. Let �(z)2K[[z]] n f0g.
� rankH�= dimK (A�)<1, if and only if,

�(z)=
X
i=1

r 0

!i(z) e�i(z) (9)
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with !i(z)2K[z] n f0g and �i2Kn pairwise distinct.

� If �(z) =
P

i=1
r 0

!i(z) e�i(z) with !i(z)2K[z] n f0g, then

� the map H�:A�!A�
� induced by H� is an isomorphism.

� the inner product h:; :i� is non-degenerate on A�=K[x]/I�.

� the rank of H� is
P

i=1
r 0 �i where �i is the dimension of the vector space spanned by

!i(z) and all its derivatives @z1
�1���@zn

�n!i(z) for �=(�1; :::; �n)2Nn;

� the variety V(I�) is the set of points �1; �2; :::; �r 02Kn, with multiplicity �1; :::; �r0.

Proof. By de�nition of I� and by the short exact sequence

0! I�!K[x]!!!!!!!!!!!!!!!!!!!!!!H� Im(H�)! 0; (10)

we have A� = K[x]/I� � Im(H�). If rank H� = dim (Im(H�)) = r < 1, then dim (A�) =
dim (K[x]/I�) = r and A�is an artinian algebra (of dimension r over K). By Theorem 12, it can
be decomposed as a direct sum of sub-algebras

A�=A�1� ��� �A�r0

where VK(I�) = f�1; :::; �r 0g and A�i is a local algebra for the maximal ideal m�i de�ning the root
�i 2Kn: A�i =K[x]/Qi with Qi an m�i-primary ideal of K[x]. Moreover, we have the minimal
primary decomposition I�=Q1\ ��� \Qr.

The series �(z) represents an element of the dual A�� = I�
?, which by Theorem 14 can be

decomposed as

�(z)=
X
i=1

r 0

!i(z) e�i(z) (11)

with !i(z) 2 C[z]. The polynomial !i(z) cannot be zero, otherwise Qi � ker H� = I�. As
I�=Q1\ ��� \ Qr, we deduce that I�=Qi and that �(z) =!i(z) e�i(z) = 0, which contradicts the
hypothesis.

Conversely, if �(z) =
P

i=1
r !i(z) e�i(z)with !i(z) 2K[z] n f0g and �i 2Kn pairwise distinct,

we easily check that I� contains \i=1r m�i
di+1 where di is the degree of !i(z). Thus V(I�)�f�1; :::; �rg.

The ideal I� contains in particular univariate polynomials in each variable xi.ThusA�=K[x]/I�
is of �nite dimension over K and rankH�<1.

Let us assume now that �(z)=
P

i=1
r 0 !i(z) e�i(z) with !i(z)2K[z]nf0g so that A�=K[x]/I�

is of dimension r over K.
As A� =K[x]/I�� Im(H�), H� induces an injection from A� into A�

� which is of dimension
r. We deduce that H� induces an isomorphism between A� and A��, and we have the short exact
sequence:

0! I�!K[x] !!!!!!!!!!!!!!!!!!!!!!H� A�
�! 0:

This shows that A�� is generated by elements p ? � for p 2K[x], that is, A�
� is the inverse system

generated by �.
By de�nition of I�, if p2K[x] is such that 8q2K[x]

hp(x); q(x)i�= hp ? �(z) j q(x)i=0;

then p ? �(z) = 0 and p 2 I�. We deduce that the inner product h� ; �i� is non-generate on
A�=K[x]/I�.

By Theorem 14, � 2 A�
� has a decomposition of the form (9) which must coincides with the

given one: �(z)=
P

i=1
r0 !i(z) e�i(z). Thus A�

�=A�1
� ���� �A�r 0

� where I�=Q1\��� \Qr0, A�i
� =Qi

?

is the inverse system generated by !i(z)e�i(z) for i=1; :::; r 0.
The dimension of �i= dimA�i

� = dimA�i of the inverse system A�i
� is the multiplicity of �i; it

is also the dimension of the vector space spanned by !i(z) and all its derivatives @z1
�1���@zn

�n!i(z)
for �=(�1; :::; �n)2Nn. We deduce that dimA�= dimA�

� = r=
P

i=1
r 0 �i.

As I� = Q1 \ ��� \ Qr 0, we deduce that V(I�) = f�1; :::; �r 0g, which concludes the proof of this
theorem. �
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De�nition 23. The rank of an element � 2K[[z]] is dimK (A�):

De�nition 24. The support of � is V(I�).

A special case of interest is when the roots are simple. We characterize it as follows:

Proposition 25. Let �(z)2K[[z]]. The following conditions are equivalent:

1. �(z) =
P

i=1
r !i e�i(z); with !i2K n f0g and �i2Kn pairwise distinct.

2. The rank of H� is r and the multiplicity of the points �1; :::; �r in V(I�) is 1.
3. A basis of A�

� is e�1; :::; e�r.

Proof. 1) 2: The dimension of the vector space spanned by !i2K n f0g and its derivatives is 1.
By Theorem 22, the rank A� is r=

P
i=1
r 1 and the multiplicity of the roots �1; :::; �r in V(I�) is 1.

2 ) 3: By Theorem 22, A�
� is the inverse system spanned by �. As 8p 2 K[x], p ? � =P

i=1
r !i p(�i)e�i, A�

� is in the vector space spanned by e�1; :::; e�r. As dim (A�
�)= r, it is a basis.

3) 1: As � 2A�
�, there exists !i2K such that � =

P
i=1
r !ie�i . If one of these coe�cients

!i vanishes that dim (A�
�)<r, which is contradicting point 3. Thus !i2K n f0g. �

In the case where all the coe�cients of � are in R, we can consider the following notion of
positivity:

De�nition 26. An element � 2R[[z]] =R[x]� is positive if 8p2R[x]; hp; pi�= h� j p2i> 0. It is
denoted �< 0.

The positivity of � induces the following property on its decomposition:

Proposition 27. Let � 2R[[z]] of �nite rank �< 0 i�

�(z)=
X
i=1

r

!i e�i(z)

with !i> 0, �i2Rn.

Proof. If �(z)=
P

i=1
r

!i e�i with !i> 0, �i2Rn, then clearly 8p2R[x],

h� j p2i=
X
i=1

r

!i p
2(�i)> 0

and �< 0.
Conversely suppose that 8p 2R[x], h� j p2i> 0. Then p 2 I� i� h� j p2i=0. We check that I�

is real radical: If p2k+
P

j qj
22 I� for some k 2N, p; qj 2R[x] then*
� j p2k+

X
j

qj
2

+
= h� j p2ki+

X
j

h� j qj2i=0

which implies that h� j (pk)2i=0 , h� j qj2i=0 and pk; qj2 I�. Let k 0= d
k

2
e. We have h� j (pk0)2i=0,

which implies that pk
02 I�. Iterating this reduction, we deduce that p2 I�: This shows that I� is

real radical and V(I�)�Rn. By Proposition 25, we deduce that �=
P

i=1
r !i e�i with !i2C n f0g

and �i2Rn . Let pi2R[x] be interpolation polynomials at �i2Rn: pi(�i)=1, pi(�j)=0 for j=/ i.
Then h� j pi2i=!i2R+. This proves that �(z)=

P
i=1
r !i e�i(z) with !i> 0, �i2Rn. �

3.5 The support of �
In this section, we consider the problem of computing the support f�1;:::; �rg of a series � =P

i=1
r

!i(z)e�i(z) from its hankel operator.
We recall classical results on the resolution of polynomial equations by eigenvalue and eigen-

vector computation. Hereafter, A=K[x]/I is the quotient algebra of K[x] by any ideal I and A�=
HomK(A ;K) is the dual of A. It is naturally identi�ed with the orthogonal I?=f�2K[[z]]j8p2I ;
h�; pi=0g. In the reconstruction problem, we will take I = I�.

Duality and Hankel operators 13



Coming back to our decomposition problem for which A = A�K[x]/I�, we observe that by
projection and restriction, H� induces the map

H�: A� ! A�
�

p(x) 7! p(x) ? �(z):

This map is a bijection, since we quotient H� through its kernel I� and restrict it onto its image
A�
� = I�

?.

Lemma 28. For any g 2K[x]; we have

Hg?�=Mg
t �H�=H� �Mg: (12)

Proof. This is a direct consequence of the de�nitions of Hg?� ;H� ;Mg
t and Mg. �

If (bi)16i6� and (bi0)16i6� are bases of A�, then the matrix of H� in the basis (bi)16i6� and
in the dual basis of (bi0)16i6� is [H�] = (h� j bi(x)bi0(x)i)16i; j6�. In particular, if (x�)�2B and
(x�

0
)� 02B 0 are bases of A�, its matrix in the corresponding bases is

[H�] = (h� jx�+� 0i)�2B;� 02B 0=
�
��+� 0

�
�2B;� 02B 0

=H�
B;B 0:

It is a submatrix of the (in�nite) matrix [H�]. Conversely, we have the following property:

Lemma 29. Let B; B 0 � Nn with jB j = jB 0j: The matrix
�
H�
B;B 0� = ���+� 0�

�2B;� 02B 0
is

invertible, if and only if, (x�)�2B and (x�
0
)� 02B 0 are linearly independent in A�.

In particular, if dimA�<+1, jB j= jB 0j=dimA� and H�
B;B 0 is invertible, then (x�)�2B and

(x�
0
)� 02B 0 are bases of A�.

Similarly, the matrix of Hg?� in the bases (bi)16i6� and (bi0
�)16i6� is

[Hg?�] = (h�(z)j g(x) bi(x) bi(x)i)16i; j6�:

If g = x�, the matrix Hx�?� in the basis (x�)�2B and the dual basis of (x�
0
)� 02B 0 is�

��+�+� 0
�
�2B;� 02B 0

=Hx�?�
B;B 0.

From this relation (12) and Proposition 16, we have the following property.

Proposition 30. If �(z)=
P

i=1
r !i(z)e�i(z)with !i2C[z] n f0g and �i2Cn distinct, then

� for all g 2 A, the generalized eigenvalues of (Hg?� ; H� ) are g(�i) with multiplicity �i,
i=1:::r,

� the generalized eigenvectors common to all (Hg?� ;H� ) with g 2 A are - up to a scalar -
H�
¡1(e�1); :::;H�

¡1(e�r).

Remark 31. If we take g= zi, then the eigenvalues are the i-th coordinates of the points �j.

3.6 The case of simple roots
In this section, we assume that �(z)=

P
i=1
r

!ie�i(z) with !i2C n f0g and �i2Cn distinct.
By Proposition 25, fe�1; :::; e�rg is a basis of A�

�. We denote by fu�1; :::; u�rg the basis of A�,
which is dual to fe�1; :::; e�rg, so that 8a(x)2A ;

a(x)�
X
i=1

r

he�i(z)j a(x)iu�i
(x)�

X
i=1

r

a(�i)u�i
(x) : (13)
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From this formula, we easily verify that the polynomials u�1; u�2; :::; u�r are the interpolation
polynomials at the points �1; �2; :::; �r, and satisfy the following relations:

� u�i(�j)=
�
1 if i= j;
0 otherwise:

� u�i(x)
2�u�i(x).

�
P

i=1
r

u�i(x)� 1.

These relations and Proposition 16 imply the following result:

Corollary 32. If g 2C[x] is separating the roots �1; :::; �r (i.e. g(�i) =/ g(�j) when i=/ j), then

� the operator Mg
t is diagonalizable and its eigenvalues are g(�1); :::; g(�r),

� the corresponding eigenvectors of Mg are, up to a non-zero scalar, the interpolation poly-
nomials u�1; :::; u�r.

� the corresponding eigenvectors of Mg
t are, up to a non-zero scalar, the evaluations e�1; :::;

e�r.

In our context, we have the following property:

Proposition 33. If �(z)=
P

i=1
r !i e�i(z) and g 2C[x] is separating the roots �1; :::; �r, then the

generalized eigenvectors of (Hg?� ;H� ) are, up to a non-zero scalar, the interpolation polynomials
u�1; :::; u�r.

Proof. By the relations (12) and Corollary 32, the eigenvectors u�1; :::; u�r of Mg are the
generalized eigenvectors of (Hg?� ;H� ). �

Remark 34. If vi(x) is a generalized eigenvector of (Hxj?� ;H�) for the eigenvalue �i; j, then by
the previous proposition, it is a multiple of u�i of the form vi(x) =vi(�i) ui(x) since ui(�i)=1,
and we have ui(x)=

1

vi(�i)
vi(x).

Let us recall other relations between the structured matrices involved in this eigen problem,
that will be useful to analyse the numerical behavior of the method. For more details, see e.g. [19].

De�nition 35. Let z�= (z�i)i=1;:::;r be a family of monomials in A. We de�ne the z�-Vander-
monde matrix for the points �1; :::; �r 2Cn as

V�=(he�j jx�i i)1�i; j�r=
¡
� j
�i
�
1�i; j�r:

By remark 17, if z� = (z�i)i=1;:::;r is a basis of A�, then V� is the matrix of coe�cients of
e�1; :::; e�r in the dual basis of (z�i)i=1;:::;r in A�

� and it is invertible. Conversely, we check that
V� invertible implies that z�1:::; :::; z�r are linearly independent elements in A�. Thus, they form
a basis of A�.

Proposition 36. Suppose that �(z) =
P

i=1
r !i e�i(z) with �1; :::; �r 2 C

n pairwise distinct and
!1; :::; !r 2C. Let W = diag(!1; :::; !r) be the diagonal matrix associated to the weights !i and let
Dg= diag(g(�1); :::; g(�r)) be the diagonal matrices associated to g(�1); :::; g(�r). Then we have

[H�] = V�WV�
t

[Hg?�] = V�WDgV�
t=V�DgWV�

t

[Mg
t ] = V�DgV�

¡1

Proof. If �(z) =
P

i=1
r !i e�i(z) and z� = (z�i)i=1;:::;r is a basis of A�, then [Hg?�] =

[
P

i=1
n

!ig(�i) �
�i+�j]i; j=1;:::;r. By an explicit computation, we check that [Hg?�] = V�

tWDg V�.
Equation (12) implies that [Mg

t ] = [Hg?�][H�]
¡1=V�

tDgV�
¡1. �
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Proposition 37. Let �(z) =
P

i=1
r !i e�i(z): The basis fu�1; :::; u�rg is an orthogonal basis of

A� for the inner product h: ; :i� and satis�es hu�i ; 1i�=h� ju�ii=!i for i=1:::; r.

Proof. For i; j=1:::r, we have hu�i ;u�ji�=h� j u�iu�ji=
P

k=1
r !ku�i(�k)u�j(�k). Thus

hu�i ;u�ji� =

�
wi if i= j
0 otherwise

and fu�1; :::; u�rg is an orthogonal basis of A�. �

4 Flat extensions and decomposition algorithm

To solve the truncated series problem, we use a characterization of all possible extension of the
truncated series that have �nite rank.

For a vector space V �C[x], we denote by V + the vector space V +=V +x1V +���+xnV . We
denote by @V a vector space such that V +=V �@V .

We says that V is connected to 1, if there exists an increasing sequence of vector spaces V0�
V1� ��� �Vs=V such that V0= h1i and Vl+1�Vl+. The index of an element v 2V is the smallest
l such that v 2Vl.

We say that a set of polynomials B �C[x] is connected to 1 if the vector space hB i spanned
by B is connected to 1. In particular, a monomial set B= fx�1; :::; x�rg is connected to 1 if for
all m2B, either m=1 or there exists m02B and i02 [1; :::; n] such that m=xi0m

0.

The truncated series problem is closely related to the notion of �at extension that we de�ne now:

De�nition 38. For any matrix H which is a submatrix of another matrix H 0, we say that H 0 is
a �at extension of H if rankH= rankH 0.

This �at extension property can be characterized as follows:

Proposition 39. Let H be a submatrix of H 0 and M;M 0; N be matrices such that

H 0=

�
H M 0

M t N

�
: (14)

Then, H 0 is a �at extension of H i� there exists matrices P, P 0, such that H

M =HtP ;M 0=HP 0; N =P tHP 0: (15)

If H and H 0 are symmetric, then one can take P =P 0.

Proof. Suppose that H 0 is a �at extension of H. As rankH 0= rankH, we have imM 0� imH
and there exists a matrix P 0 such that M 0=HP 0. Similarly, there exists P such that M =H

t
P .

We deduce that �
Id 0
¡P t Id

��
H M 0

M t N

��
Id ¡P 0
0 Id

�
=

�
H 0
0 N ¡MP 0

�
;

which has the same rank as H. Thus N ¡MP 0=N ¡P tHP 0=0.
Conversely, if we have M =HtP ;M 0=HP 0; N =P tHP 0, then

H 0=

�
H HP 0

P tH P tHP 0

�
has clearly the same rank as H.

If H and H 0 are symmetric, then using P 0=P yields the same relations as above. �

We can now give the main result, which will allow us to recover the decomposition of �. It
generalized the sparse �at extension results of [16], [6], [3] to any vector space connected to 1:
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Theorem 40. Let V ; V 0 � K[x] be a vector space connected to 1 and � 2


V �V 0

��. Let B�V,
B 0�V 0 connected to 1 such that B+�V, B 0+�V 0 and H�

B;B 0 invertible. Then the following points
are equivalent:

1. rankH�
V ;V 0= rankH�

B;B 0,

2. the operators Mi :=
¡
H�
B;B 0�¡1Hxi��

B;B 0 commute,

3. there is a unique extension �~ 2K[[z]] which coincides with � on hV � V 0i and such that a
basis of B is a basis of A�~. In this case, I�~=

�
kerH�

B;B 0+
�
.

Proof. 1) 2. Let r = dim (B) = dim (B 0) = rankH�
B;B 0since H�

B;B 0 is invertible. The condition
rankH�

B;B 0= rankH�
V ;V 0= r implies that kerH�

V ;B 0= kerH�
V ;V 0. In particular we have

�2 kerH�
V ;V 0 , 8v 02V 0; h�j kv 0i=0 (16)

, 8b02V 0; h�j kb0i=0 (17)

Let Mi :=
¡
H�
B;B 0�¡1Hxi?�

B;B 0. It is a linear operator of hB i. As Hxi?�
B;B 0=H�

B;B 0 �Mi, we have
8b2B, b02B 0

h�jxi bb0i= h�jMi(b) b
0i

As rankH�
V ;V 0= rankH�

B+;B 0
+

= rankH�
B;B 0= r, we also have 8j=1; :::; n,

h�jxixjbb0i= h�jxi bxjb0i= h�j xjMi(b) b
0i= h�jMj �Mi(b) b

0i:

We deduce that h�j Mj � Mi(b) b
0i = h�j Mi � Mj(b) b

0i and the operators Mi, Mj commute:
Mj �Mi=Mi�Mj.

2) 3. Let us de�ne the operator

�:K[x] ! B

p 7! p(M)(1)

and the linear form

�~:K[x] ! K

p 7! h�j p(M)(1)i

We are going to show that �~ extends � and that I�~=
�
kerH�~

B;B 0+
�
. As the operators Mi commute,

the operator obtained by substituting the variable xi byMi in a polynomial p2K[x] is well-de�ned
and the kernel J of � is an ideal of K[x].

We �rst prove that �~ coincides with � on hV �V 0i.
Let us prove by induction on the index that 8v 2 V , 8b0 2B 0, h�j vb0i= h�j �(v) b0i. If v is of

index 0, then b=1 (up to a scalar) and �(1)=1 so that the property is true.
Let us assume that the property is true for the elements of V of index l¡ 1> 0 and let v 2 V

of index l: there exists vi 2 V of index l ¡ 1 such that v =
P

i xi vi. By induction hypothesis and
the relations (16) and (17), we have 8b02B 0,

h�j vb0i =
X
i

h�j v ixi b0i=
X
i

h�j �(v i)xi b0i=
X
i

h�jMi � �(v i) b0i

=

*
�j
�X

i

xi�(v i)
�
b0

+
= h�j �(v) b0i:

Using relations (16) and (17), we also have

8v 2V ; 8v 02V 0; h�j vv 0i= h�j �(v) v 0i: (18)

In a similar way, we prove that

8b2B;8v 02V 0; h�j bv 0i= h�j v 0(M) (b)i: (19)
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The property is true for v 0=1. Let us assume that it is true for the elements of V 0 of index l¡1>0
and let v 02V 0 be an element of index l. There exist vi

02V 0 of index l¡ 1 such that v 0=
P

i xi vi
0.

By induction hypothesis and the relations (16) and (17), we have 8v 2V ,

h�j bv 0i =
X
i

h�j vi0xibi=
X
i

h�j v i0Mi(b)i=
X
i

h�j vi0(M)Mi(b) i

=

*
�j
�X

i

Mi� v i0 (M)
�
(b)

+
= h�j v 0(M) (b)i:

By the relations (18) and (19), we have 8v 2V , 8v 02V 0,

h�j vv 0i = h�j v 0 v(M)(1)i= h�j v 0(M) � v(M)(1)i=h�j �(vv 0)i= h�~j vv 0i:

This shows that �~ coincides with � on hV �V 0i.
We deduce from relation (18) that 8b 2 B, 8b0 2 B 0, h�j (b ¡ �(b)) b0i = 0 and �(b) = b since

H�
B;B 0 is invertible. Therefore � is the projection of K[x] on B along its kernel J and we have the

exact sequence

0!J!K[x]!!!!!!!!!!� B! 0:

Let I�=kerH�~ and A�=K[x]/I�. As J � I�, we have dimKA�6dimKK[x]/J =dimB= r and B
is generating A�. Since �~ coincides with � on hB �B 0i and H�

B;B 0 is invertible, a basis of the vector
space B�K[x] is free in A�. This shows that dimKA�= r and that J = I�.

Since B contains 1 and � is the projection of K[x] on B along I� = J , we check that I� is
generated by the element xib¡ �(xib) for b2B, i=1; :::; n, that is by the elements of kerH�

B+;B 0.
If there is another �~ 02K[[z]] which coincides with � on hV � V 0i, then J � I�~ 0 and 8p 2K[x],

h�~0j pi= h�~ 0j �(p)i= h�j �(p)i= h�~j pi, so that �~ 0=�~, which proves point 3.
3) 1. If �~ 2K[[z]] coincides with � on hV �V 0i and B is a basis of A�~, then

r= dimB= rankH�~>rankH�~
V ;V 0= rankH�

V ;V 0> rankH�
B;B 0= r

which proves point 1. �

If only the low degree coe�cients �� are known, this property can be used to �nd an extension
of �nite rank, by solving polynomial equations. We introduce a variable h� for each unknown
coe�cients of �. If we suppose that V (resp. V 0) is spanned by a set B (resp. B 0) of monomials
connected to 1, to �nd if an extension � of �nite rank of �� is such that B is a basis of A�, we use
the �at extension constraint, which yields polynomial equations in the unknown h�. As H�

B is a
submatrix of H�

B+, we have a decomposition of the form

H�
B+;B 0+=

 
H�
B;B 0 H�

@B;B 0

H�
B;@B 0 H�

@B;@B 0

!
;

where the rows and columns of H�
B;B 0 are indexed by the elements respectively in B 0 and B and

the rows and columns of H�
@B;B 0 are indexed by B 0 and a basis @B of a supplementary space of B

in B+.
By Proposition 39, the matrix H�

B+;B 0+ has the same rank as H�
B;B 0, if and only if, there exists

a matrix P such that

H�
B;@B ¡H�

B;B 0P =0; H�
@B;@B 0¡P tH�

B;B 0P =0: (20)

In these relations, the coe�cients of P can also be considered as variables and the system of
equations (20) gives the condition that H�

B+ is a �at extension of H�
B.

Each solution of this system gives a zero-dimensional ideal I� generated by ker H�
B+ which

uniquely de�nes all the coe�cients of the series � and such that rankH�= rankH�
B.

Remark 41. A basis of the kernel of H�
B+;B 0 is given by the columns of

�
¡P
I

�
, which represent

polynomials of the form

x�¡
X
�2B

p�;�x
�
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for �2@B. These polynomials are border relations which project monomials of @B on the vector
space spanned by B, modulo kerH�

B+. Using Theorem 40 and the characterization of border bases
in terms of commutation relations [18], [20], we can prove that they form a border basis of the ideal
generated by kerH�

B+ i� rankH�
B= rankH�

B+= jB j, or in other words, i� H�
B+ has a �at extension.

This condition is equivalent to the commutation property of formal multiplication operators.

4.1 Computing an orthogonal basis of A�

In this section, we describe a new method to construct a basis B of A�, from the knowledge of the
�rst terms �� of �(z). We assume that �0=/ 0.

To construct this basis B of A�, we are going to de�ne inductively vector spaces Vi as follows.
Start with V0= h1i and compute a vector space Ll of maximal dimension in Vl

+ such that

� Ll is orthogonal to Vl: hLl; Vli�=0,

� Ll\ kerH�
Vl
+

= f0g.
Then we de�ne Vl+1 = Vl + Ll. If there is no such Ll with dimension >0, this implies that

Vl
+=Vl+Kl with Kl� kerH�

Vl
+

and we stop. By theorem 40, a basis of Vl yields a basis of A�.
Suppose that b1; :::; bri is an orthogonal basis of Vi: hbi; bji�=0 if i=/ j and hbi; bii�=/ 0 . Then

Li can be constructed as follows: Compute the vectors

bj;k=xk bj ¡
X
i=1

rl hxk bj ; bii�
hbi; bii�

bi;

generating Vi? in Vi
+ and extract a maximal orthogonal family bri+1; :::; bri+1 for the inner product

h :; :i�, that form a basis of Li. This can be done for instance by computing a QR decomposition
of the matrix

[h bj;j ; bi0;j 0i�]16i;i06ri;16j;j 06n:

This leads to the following algorithm:

Algorithm 1

Input: the coe�cients �� of a series � 2C[[z]] for �2A�Nn connected to 1.

¡ Let B0 := f1g; s := 1; r := 1; E = hz�i�2A;
¡ While s> 0 and B+�E do

¡ compute bj;k : =xk bj¡
P

i=1
r hxk bj; bii�

hbi; bii�
bi for j=1; :::; r, k=1; :::; n;

¡ compute a maximal subset fbr+1; :::; br+sg of fbi; jg of orthogonal vectors for the inner
product h :; :i�;

¡ Bs+1 : =B [fbr+1; :::; br+sg; r+=s;

¡ If B+�E then return failed.

Output: failed or success with

¡ a basis B= fb1; :::; brg orthogonal for h :; :i�.

¡ the relations bj;k : =xk bj ¡
P

i=1
r hxk bj; bii�

hbi; bii�
bi for j=1; :::; r, k=1; :::; n.

In the main loop of this algorithm, when xk bj 2 hb1; :::; bri then bj;k=0.

Remark 42. If the polynomials bi are at most of degree d0 < d, then only the coe�cients of
�h(z) of degree 62d0 +1 are involved in this computation. In this case, the border basis and
the decomposition of the series � as a sum of exponential polynomials can be computed from
coe�cients �rst terms.

Remark 43. When all the coe�cients are not known, ...
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Theorem 44. If Algorithm 1 outputs with success a set B = fb1; :::; brg and the relations
bj;k := xk bj¡

P
i=1
r hxk bj; bii�

hbi; bii�
bi, j=1:::r, k=1:::n, then � coincides on hB+ �B+i with a series �~

such that

� rankH�~= r;

� B is an orthogonal basis of A�~ for the inner product h :; :i�~;

� I�~ is generated by xk bj ¡
P

i=1
r hxk bj; bii�

hbi; bii�
bi for j=1:::r, k=1:::n;

� The matrix of multiplication by xk in the basis B of A�~ is Mk :=
�
hxjbi; bki�
hbk; bki�

�
16i; j6r

.

Proof. Let V = hB i. By construction of B, V is connected to 1. A basis B 0 of V += hB+i is formed
by the elements of B and some of the polynomials bj;k. Since Algorithm 1 stops with success, the
matrix of H�

V + in this basis B 0 is of the form

H�
B 0=

 
H�
B 0
0 0

!
where H�

B is diagonal and invertible matrix. The kernel of H�
B 0 is generated by the polynomials

bj;k.
By Theorem 40, � coincides on hV + � V +i= hB 0 �B 0i= hB+ �B+i with a series �~ such that B

is a basis of A��=C[x]/I�~ and I�~=
¡
kerH�~

V +
�
=(bj;k)j=1:::r;k=1:::n:

This shows that rankH�~ = dimA��= jB j= r. By construction, B is orthogonal for the inner
product h :; :i�, which coincides with h :; :i�~ on hB+ � B+i. Thus B is also an orthogonal basis of
A�~ for the inner product h :; :i�~.

As bj;k � 0 in A��, we have xk bj�
P

i=1
r hxk bj; bii�

hbi; bii�
bi, which shows that the matrix of multipli-

cation by xk in the basis B of A�~ is Mk=
�
hxjbi; bki�
hbk; bki�

�
16i; j6r

. �

4.2 Computing the support of �
This leads to the following algorithm to compute the decomposition, if a basis of A� is known.

Algorithm 2

Input: a basis fb1; :::; brg of B�K[x], which is orthogonal for h :; :i�.
¡ Take a generic linear form l(x) = l1x1+ ���+ lnxn;

¡ Compute the matrices Mj=
�
hxjbi; bki�
hbk; bki�

�
16i; j6r

;

¡ Compute the eigenvectors v1; :::; vr of [Mj];

¡ Compute �i; j such that Mjvi¡ �i; j vi=0 for j=1; :::; n, i=1; :::; r;

¡ Compute ui(x)=
1

vi(�i)
vi(x) where �i=(�i;1; :::; �i;n);

¡ Compute h� juii=!i;

Output: a decomposition �~=
P

i=1
r

!ie�i(z) such that 8b; b02B+

h�j bb0i= h�~j bb0i:

The step which compute the interpolation polynomial ui(x) can be replace by the following
step: Let E be the coe�cient matrix of the eigenvectors v1(x); :::; vr(x) and U be the coe�cient
vector of 1 in the given basis of A�. Solve the system EC=U and compute ui(x)=

1

Ci
vi(x).

4.3 Generalized Prony method
The previous algorithms, used together, give the following method which generalizes Prony's
method to solve the reconstruction problems in several variables.
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Algorithm 3

Input: the coe�cients �� of a series � 2C[[z]] for �2A�Nn connected to 1.

¡ Apply Algorithm 1 to �nd an orthogonal basis of B�hxAi for h :; :i�.
¡ If success then

¡ apply Algorithm 2 to compute the decomposition �~ =
P

i=1
r

!i e�i(z), which coincides
with � on hB+ �B+i;

¡ check that the decomposition �~ coincides with � on A;

Output:

¡ failed or

¡ success with a decomposition �(z)=
P

i=1
r !ie�i(z) on A.

It can be applied in the following contexts:
Sparse reconstruction of sum of exponentials. Given a function h2C1(Cn) of the form

x=(x1; :::; xn)2Cn 7! h(x)=
X
i=1

r

ai(x) e
hfi;xi (21)

where f1; :::; fr2Cn are pairwise distinct, ai(x)2C[x]nf0gand 8 f;g2Cn; hf;gi= f1 g1+���+ fngn,
the problem consists in recovering
� the distinct frequency vectors f1; :::; fr2Cn ,
� the polynomial coe�cients ai(x)2C[x] n f0g,

from evaluations of the function h at some points of Cn. This corresponds to the following setting:
� F=C1(Rn),
� Si: h(x) 7! h(x + ei) the shift operators by the elements ei of the canonical basis of Cn

(i=1; :::; n),
� �: h(x) 7!�[h] =h(0; :::; 0) the evaluation at the origin.

Clearly, the shift operators Si are commuting and we have Sj
¡
ehfi;xi

�
= �i; j e

hfi;xi with �i; j =

ehfi;eii so that Ei = ehfi;xi is an eigenfunction of Sj for the eigenvalue �i; j =ehfi;eii. Moreover,
�0[S�(h)] =h(�) and �h(z) is the generating series (4) associated to h.

Notice that instead of the canonical basis, we can take any basis v1; :::; vn of Cn and consider
the shift operators Si:h(x) 7!h(x+ vi).

The linear functional � can also be replaced by any (non-zero) linear functional on C1(Cn),
for instance the integration over a compact domain 
: �[h] =

R


h(x) dx. This provides degrees

of freedom in the application of the reconstruction method, which can be interesting for solving
numerical issues. In particular, scaling variables can be used to reduce numerical over�ows.

We easily check that ai(x) e
hfi;xi are generalized eigenfunctions of the operators Si and if

h(x)=
P

i=1
r ai(x) e

hfi;xi, then its generating series are of the form �h(z)=
P

i=1
r bi(z) e�i(z) with

�i=(efi;1; :::; efi;n)2Cn and bi(z)2C[z] polynomial uniquely determined by ai.
To analyze the correspondance between the polynomials ai(x) and bi(z), we introduce the so-

called Macaulay basis of C[x]: 8� 2Nn,

b�(x) =
�
x1
�1

�
���
�
xn
�n

�
:

It has the following nice property:
P

�2Nn b�(�)e�(z)=z
� �¡�e

�
(z) where e

�
(z)=

P
�2Nn �

� z�

�!
.

Proposition 45. Let Bi � Nn; fi 2 Cn; !i;�i 2 C, for i=1,..,r, �i 2 Bi and h(x) =P
i=1
r P

�i2Bi wi;�i b�i(x) e
hfi;xi then its generating series are

�h(z)=
X
i=1

r X
�2Bi

wi;� z
� e�i(z)
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Sparse reconstruction of sum of Dirac measures. We want to decompose a signal h as a
weighted sum of Dirac measures, representing spikes: h=

P
i=1
r !i ��i. Consider the following space

and linear maps:
� The space F is the space of distributions on Cn.

� The operator Sj: F ! F is the operator of multiplication by e
2�i

Tj
xj
: Sj(h) = e

2�i

Tj
xj
h for

Tj 2 R+. Clearly, the operators S1; :::; Sn commute. Moreover, 8 � = (�1; :::; �n) 2 C;

Sj(��)=e
2�i

Tj
�j
�� and the Dirac measure �� is an eigenfunction of Sj for the eigenvalue e

2�i

Tj
�j
.

� The linear functional � is �: h2F 7!�[h] =
1Q

j=1
n Tj

R
T1
2

T1
2 :::

R
Tn
2

Tn
2 h (x)dx.

Then ��(h) :=�[S�(h)]=
1Q

j=1
n Tj

R
¡T1

2

T1
2 :::

R
¡Tn

2

Tn
2 e

2�i
P

j=1
n �jxj

Tj h(x)dx is the Fourier coe�cient

of index �2Nn of h. The problem of sparse recovery boils down to reconstruct the spikes at �1; :::;
�r 2Cn and their weighs w1; :::; wr from the �rst Fourier coe�cients of the signal. We apply the
approach described in Section 4 to the �rst term of the series �h(z)=

P
�2Nn

1

�!
��[h] z�.

Example. We consider the function h(u1; u2)=2+3 �2u1 2u2¡3u1. Its associate generating series
is �=

P
�2N2 h(�)

z�

�!
. Its (truncated) moment matrix is

H�
[1;x1;x2;x1

2;x1x2;x2
2]
=

266664
h(0; 0) h(1; 0) h(0; 1) ���
h(1; 0) h(2; 0) h(1; 1) ���
h(0; 1) h(1; 1) h(0; 2) ���
��� ��� ������ ��� ���

377775=
26666664

4 5 7 5 11 13
5 5 11 ¡1 17 23
7 11 13 17 23 25
5 ¡1 17 ¡31 23 41
11 17 23 23 41 47
13 23 25 41 47 49

37777775
We compute B0= f1g, B1= f1; x1¡ 5

4
; x2¡ 9

4
x1¡ 4g= fb0; b1; b2g.

We have modulo kerH�:

x1 b0 �
5
4
b0+ b1

x1 b1 �
X
i

hx1 b1; bii�
hbi; bii�

=¡ 5
16

b0¡ b1+
91
20

b2

x1 b2 �
X
i

hx1 b1; bii�
hbi; bii�

=
96
25

b1+
1
5
b2

The matrix of multiplication by x1 in B= fb0; b1; b2g is

M1=

2666664
5
4
¡ 5
16

0

1
91
20

96
25

0 ¡1 1
5

3777775
Its eigenvalues are [1; 2; 3] and the corresponding matrix of eigenvectors is

U :=

24 1/2 3/4 ¡1/4
2/5 ¡9/5 7/5
¡1/2 1 ¡1/2

35;
that is, the polynomials U(x) = [2¡ 1

2
x1¡ 1

2
x2;¡1+x2;

1

2
x1¡ 1

2
x2].

By computing the Hankel matrix

H�
[1;x1;x2];U =

24 2 3 ¡1
2� 1 3� 2 ¡1� 3
2� 1 3� 2 ¡1� 1

35
we deduce the weights 2; 3; ¡1 and the frequencies (1; 1); (2; 2); (3; 1), which corresponds to the
decomposition �= ez1+z2+3e2z1+2z2¡ e2z1+z2 and h(u1; u2) = 2+3�2u1+u2¡ 3u1.
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5 Applications

5.1 Vanishing ideal of points
We consider here the problem of computing the vanishing ideal of a given set of points �1; :::;
�r2Cn, that is, the ideal of polynomials that vanish at these points.

Let us take �(z)=
P

i=1
r

e
�i
(z)=

P
�2Nn

1

�!
��z

�. Its coe�cients are ��=
1

r

P
i=1
r

�i
� for �2Nn.

By Theorem 22, I� is the vanishing ideal of the points �1; :::; �r 2 Cn. By applying the method
described in Section 4, we obtain

� a basis B= fb1; :::; brg of orthogonal polynomials for the inner product h�; �i�,

� border polynomials bi; j : =xj bi ¡
P

k=1
r hxjbi; bki�

hbk; bki�
bk (1 6 i 6 r; 1 6 j 6 n) generating the

vanishing ideal I�.

Example 46. Let consider the points f(0; 0); (0; 1); (0; ¡1);(0; 1); (0; ¡1)g. The �rst terms of
coe�cients ��=

1

5

P
i=1
5 �i

� for j�j6 6 gives the �rst terms of the series:

�(z)= 1+
2
5
z1
2

2!
+
2
5
z2
2

2!
+
2
5
z1
4

4!
+
2
5
z2
4

4!
+
2
5
z1
6

6!
+
2
5
z2
6

6!
+ ���

We detail the steps of the algorithm for constructing of an orthogonal basis of A� and generators
of the vanishing ideal I�:

¡ B0= f1g,
¡ B1=B0

+= f1; x1; x2g,
¡ B1

+=B1[ fx12; x1x2; x22g. As hx1x2 ; bi�=0 for all b 2B1+ and hx12; x12i�= hx22; x22i�=
2

5
and

hx12; 1i�= hx22; 1i�=
2

5
, the orthogonal basis computed at this step is

B2=

�
1; x1; x2; x1

2¡ 2
5
; x2

2¡ 2
5

�
¡ B2

+=B2[
�
x1
3¡ 1

5
x1; x1

2x2¡ 1

5
x2; x1x2; x1x2

2¡ 2

5
x1; x2

3¡ 2

5
x2
	
. The vector space orthogonal

to hB2i in hB2+i is generated by the polynomials b¡
P

i=1
5 hb; bki�

hbk; bki�
bk for fb1; :::; b5g=B2 and

for b2
�
x1
3¡ 1

5
x1; x1

2x2¡ 1

5
x2; x1x2; x1x2

2¡ 2

5
x1; x2

3¡ 2

5
x2
	
.

This yields the polynomials @B2 = fx13 ¡ x1; x1
2x2; x1x2; x1x2

2; x2
3 ¡ x2g. We check that

these polynomials are orthogonal to all B2
+, so that the algorithm stops and outputs the

basis B2=
�
1; x1; x2; x1

2¡ 2

5
; x2

2¡ 2

5

	
of A� and the border polynomials @B2, which give a

generating family of the vanishing ideal I� of the points: I�=(x1
3¡x1; x1x2; x23¡x2).

Remark 47. The method can be extended to the computation of vanishing ideals of points
with multiplicities. Instead of taking �(z) =

P
i=1
r

e
�i
(z), one can consider series of the form

�(z)=
P

i=1
r !i(z)e�i(z), where !i(z) is a polynomial in C[z], which prescribes the multiplicity of

the point �i2Cn. Notice that only multiple points with Gorenstein local rings can be prescribed
in this way.

5.2 Signal reconstruction
We present some examples where we applied the Generalized Prony algorithm. It is implemented
in MAPLE, and used in the following exemples with a precision of 16 digits. To give an idea of its
accuracy, we compute errors at di�erent steps. In order to compare with the results obtained in
[22] we use similar formulas. So we compute the relative error of the frequencies with the following
formula

err(�)=max

 
max

j=1;:::;n

 
maxi=1;:::;r jRe(�i; j)¡Re(�~i; j)j

maxi=1;:::;r jRe(�i; j)j

!
; max
j=1;:::;n

 
maxi=1;:::;r jIm(�i; j)¡ Im(�~i; j)j

maxi=1;:::;r jIm(�i; j)j

!!
;

where R e(�~i; j) and I m(�~i; j) are respectively the real and imaginary part of the j-th coordinate
of the computed frequency �~i. Analogously the relative errors of the coe�cients ai is given by
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err(a) =max
�
maxi=1;:::;r jRe(ai)¡Re(a~i)j

maxi=1;:::;r jRe(ai)j
;
maxi=1;:::;r jIm(ai)¡ Im(a~i)j

maxi=1;:::;r jIm(ai)j

�
;

where R e(a~i) and Im(a~i) are respectively the real and imaginary part of the computed coe�cients
a~i. Further we determine the relative of the evaluations by

err(f(k))=max

 
maxk2E jRe(f(k))¡Re(f~(k))j

maxi=1;:::;r jRe(f(k))j ;
maxi=1;:::;r jIm(f(k))¡ Im(f~(k))j

maxi=1;:::;r jIm(f(k))j

!
;

where E is a subset of Nn and R e(f~(k)) and I m(f~(k)) are respectively the real and imaginary
part of the computed evaluations f~(k).

5.2.1 Wave identi�cation

We consider the following function

f(x; t)= est+ip(x¡ct)
X

j=¡100

100
1

ajlj
eij (x¡ct);

with the following parameters a= 83, c=1, s=¡0.7460264, p= 0.81158387 and q= 0.62944737.
We apply our algorithm for exact sampled data. For this example we increase the number of

terms r.

r err(�) err(a) err(f(k))
5 5.1 e-2 1.1 e-4 1.4 e-4
7 1.4 e-2 2.3 e-8 4.3 e-8
9 2.0 e-1 1.3 e-4 4.1 e-4
11 4.1 e-2 5.9 e-4 3.2 e-3

Table 1. Results of Subsection 4

5.2.2 Random exponential sum with complex parameters

We consider the following bivariate exponential sum

f(x; y) =
X
i=1

r

ai e
bix+ciywith ai; bi; ci2C

with following parameters randomly generated

a=

0BBBB@
0.6297120613009013+ 0.9555907644952910 i
0.9051083390162390+ 0.9483566987256117 i
0.1344470799676359+ 0.5459438888208842 i
0.8976760983341069+ 0.2829282544897074 i
0.8084292126653153+ 0.1055895968994213 i

1CCCCA;

b=

0BBBB@
0.7942748595110241+ 0.9503025778650449 i
0.4856681357483844+ 0.7863631829683633 i
0.9480236092780866+ 0.9074208146852858 i
0.9611809261254034+ 0.4233260569737495 i
0.1644608200439973+ 0.1490486118546710 i

1CCCCA;

c=

0BBBB@
0.6751604517606180+ 0.1777629540553305 i
0.9253133828023995+ 0.6523683323740055 i
0.8421467197514015+ 0.3943824791434848 i
0.04499744500270576+ 0.7382698187624178 i
0.6526258851734551+ 0.7525853279667668 i

1CCCCA:
We apply our algorithm for exact sampled data and for noisy sampled data. The latter are obtained
by adding a term of noise f(k) + 10¡� ek where ek is uniformly distributed in [¡1; 1]. Exact data
are denoted by �=1. For this example we do not use a transformation basis as the relative error
of the evaluations is of order 10¡11.
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� err(�) err(a) err(f(k))
1 1.7 e-10 8.4 e-10 4.8 e-11
12 3.4 e-9 2.5 e-8 1.2 e-10
10 2.0 e-7 1.9 e-6 1.8 e-9
8 1.6 e-5 9.1 e-5 1.2 e-7
6 1.7 e-3 1.0 e-2 1.8 e-5

Table 2. Results of bivariate case in Subsection 5.2.2

We consider the following trivariate exponential sum

f(x; y; z) =
X
i=1

r

ai e
bix+ciy+dizwith ai; bi; ci; di2C

with following parameters randomly generated

a=

0BBBBBB@
0.1047954252652496+ 0.4547217545523811 i
0.1568681336284075+ 0.5182230436603275 i
0.5212168456149980+ 0.6460116628581090 i
0.7179908005195055+ 0.6564131478501410 i
0.8111961502377006+ 0.7943239638453534 i
0.8117855827824322+ 0.9635150636685853 i

1CCCCCCA;

b=

0BBBBBB@
0.3931190462772609+ 0.4184634785721712 i
0.1799208408566254+ 0.5263383138981300 i
0.1405075874550185+ 0.4012726152013042 i

0.09180041856173574+ 0.06926175558649576 i
0.8188075194940048+ 0.7972971037703914 i
0.4337436737077925+ 0.8247521479822881 i

1CCCCCCA;

c=

0BBBBBB@
0.9743824498915707+ 0.3427035451229425 i
0.02517738312329857+ 0.4898938852557034 i
0.4330181468437458+ 0.2041560344921151 i
0.2961443983624806+ 0.3749615452544262 i
0.6254138920063022+ 0.1140920180300905 i
0.6537226931542330+ 0.1738250417163629 i

1CCCCCCA;

d=

0BBBBBB@
0.4243789027086317+ 0.6970767807829078 i
0.2737370378705848+ 0.3054258497378242
0.7331009336066566+ 0.9733914171404590 i
0.06162345772717674+ 0.4193892222303290 i
0.9119253990398325+ 0.9338822445913956 i
0.9425978554821725+ 0.5469134831905478 i

1CCCCCCA:

We apply our algorithm for exact sampled data and for noisy sampled data. The latter are obtained
by adding a term of noise f(k) + 10¡� ek where ek is uniformly distributed in [¡1; 1]. Exact data
are denoted by �=1. For this example we do not use a transformation basis as the relative error
of the evaluations is of order 10¡8.

� err(�) err(a) err(f(k))
1 1.1 e-8 5.4 e-7 2.3 e-8
12 4.9 e-7 1.4 e-6 1.3 e-8
10 1.1 e-5 2.4 e-5 4.2 e-9
8 9.4 e-3 1.4 e-2 4.8 e-7
6 1.0 e-1 4.7 e-1 3.0 e-5

Table 3. Results of the trivariate case in Subsection 5.2.2
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5.2.3 Recovering signal parameters.

We consider the following bivariate exponential sum taken from [22]

f(x; y)=
X
j=1

r

aj e
i(bjx+cjy)

with following parameters generated

a=

0BBBBBBBBBB@

1+ i
2+3 i
5¡ 6 i
0.2¡ i
1+ i
2+3 i
5¡ 6 i
0.2¡ i

1CCCCCCCCCCA
; b=

0BBBBBBBBBB@

0.1
0.19
0.3
0.35
¡0.1
¡0.19
¡0.3
¡0.3

1CCCCCCCCCCA
; c=

0BBBBBBBBBB@

1.2
1.3
1.5
0.3
1.2
0.35
¡1.5
0.3

1CCCCCCCCCCA
:

We apply our algorithm for exact sampled data and for noisy sampled data. The latter are obtained
by adding a term of noise f(k) + 10¡� ek where ek is uniformly distributed in [¡1; 1]. Exact data
are denoted by �=1. For this example we need transformation basis as coe�cients in c are equal.

� err(�) err(a) err(f(k))
1 7.9 e-6 1.3 e-4 1.6 e-5
12 1.1 e-5 1.8 e-4 6.3 e-5
10 3.7 e-4 6.5 e-4 1.4 e-5
8 5.9 e-2 8.4 e-2 7.8 e-5
6 4.0 e-1 1.7 e-1 5.0 e-5

Table 4. Results of Subsection 5.2.3

5.3 Sparse interpolation
The problem of sparse polynomial interpolation consists in recovering the monomials in the support
of the polynomial and their non-zero coe�cients, from the evaluation of the polynomial at some
points. From an algorithmic point of view, methods which are sensitive to the number of terms in
this decomposition are considered in this problem. We consider a sparse polynomial

p(x1; :::; xn)=
X
a2A

waxa (22)

with the support A�Zn of size r and !a 2C n f0g. We want to recover the number r of terms,
the support A and the coe�cients !a.

Reformulation. Several algorithms have been proposed to solve this sparse polynomial recon-
struction problem. In [2] or [27], the evaluations h(k) = p(!1

k; :::; !n
k) for conveniently chosen

!1; :::; !n2C and k=0; :::; 2 r¡ 1 are used to recover the exponents a2A and the coe�cients !a.
By solving a Hankel system or applying Prony's method, the roots !1

a1���!nan and the coe�cients
!a are recovered. In the case of exact arithmetic as in [2] or [27], by choosing co-prime numbers
!i 2Z, one can recover the exponents a1; :::; an from the value !1

a1���!nan. In the extension [12] of

this method to approximate arithmetic, the values !j are roots of unity of the form e
2� i

mj where the
orders mj 2N+ are coprime so that the exponents a1; :::; an can also be recovered from !1

a1���!nan.

We generalize this approach further, by transforming the sparse polynomial p into an exponen-
tial polynomial and by applying the method described in Section 4: We consider the exponential
function

h(x1; :::; xn) = p
¡
e1
f1x1+g1; :::; efnxn+gn

�
=
X
a2A

wa e
g1a1+���+gnan ef1a1x1+���+fnanxn;
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for conveniently chosen f1; :::;fn2C n f0g, g1; :::;gn2C. In particular, the values of g1; :::;gn2C
can be chosen (at random) so that h(0; :::; 0)=/ 0.

To recover the decomposition, we apply the method described in Section 4 to the �rst coe�-
cients ��=h(�1; :::; �n) = p

¡
e1
f1�1+g1; :::; efn�n+gn

�
with j�j6 d of the series

�h(z)=
X
�2Nn

��
z�

�!
=
X
a2A

wa e
g1a1+���+gn an e(f1a1;:::;fn an)(z):

This yields the points (f1 a1; :::; fn an) and the weights wa eg1a1+���+gn an for a2A, from which we
deduce the decomposition (22).

Example. The new method that we describe can be applied to this case. We illustrate it on the
following example

p(x; y; z) = (0.79+ 0.08 i)x y2 z+(0.51+ 0.93 i) x5 y10 z7+(¡0.25¡ 0.09 i)x30 y25 z12

+(0.26+ 0.99 i)x100 y40 z3+(¡0.7+ 0.31 i)x80 y60 z120:

We recover the �i; j with a relative error of order 10¡13, the ai with a relative error of 10¡12 and
the evaluations h(k) with a relative error of order 10¡12.

6 Tensor decomposition

In this section, we consider more speci�cally the problem of tensor decomposition and analyze the
decomposition method in this context.

6.1 Symmetric tensors
We consider an homogeneous polynomial T (x0; :::; xn)2 S =C[x0; :::; xn] =C[x�] of degree d2N.
Hereafter, the n+1 variables of homogeneous polynomials will be denoted x� = (x0; :::; xn) and the
ring of polynomials in these variables S =C[x0; :::; xn] =C[x�]. The vector space spanned by the
polynomials of degree d is denoted Sd: For a homogeneous ideal I�S, we denote by Id= I \Sd its
degree d component. The dual space of S is S�=C[[z0; :::; zn]] =C[[z�]].

The (symmetric) tensor decomposition problem consists, given T 2 Sd, in �nding the least
number r of linear forms l1; :::; lr and non-zero weights !1; :::; !r2C such that

T (x0; :::; xn) =
X
i=1

r

!i li(x0; :::; xn)
d: (23)

Such a decomposition of T is sometimes called a Waring decomposition of T , after the work of the
mathematician Edward Waring who studied a similar problem of decomposition of integers as a
sum of powers of prime numbers.

De�nition 48. The minimal number r of terms in such a decomposition of T 2 Sd is called the
rank of T.

By setting x0=1, this problem is equivalent to the decomposition of the polynomial T (1; x1; :::;
xn) of degree6d, as a sum of d-th power of polynomials of degree61 in the variables x=(x1; :::; xn).

We say that a Waring decomposition of T 2 Sd is an a�ne decomposition if for all the linear
forms li(x0; x1; :::; xn) = �i;0x0+ �i;1x1+ ���+ �i;nxn, we have �i;0=1 for i=1; :::; r.

By a generic change of variables and by scaling the linear forms li(x�), an a�ne decomposition
can always be constructed over C.

6.1.1 Sparse decomposition of tensors

The tensor decomposition problem can be transformed into an exponential polynomial decompo-
sition problem, using the following inner-product:
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De�nition 49. (Apolar product) For two polynomials f =
P
j�j=d f� x�

�, g=
P
j�j=d g�x�

�2Sd,
we de�ne

hf ; gid=
X
j�j=d

f� g�

�
d
�

�¡1
;

where
�
d
�

�
=

d!

�0!����n!
.

For any polynomial f =
P
j�j6d f�x

�2C[x]6d of degree 6d in the variables x= (x1; :::; xn),

let fh(x0; :::; xn) =
P
j�j6d f�x0d¡j�jx1

�1:::xn
�n2Sd be its homogenization in x0.

The apolar product de�ned on homogenous polynomials can be specialized for polynomials of
degree 6d: 8f =Pj�j6d f�x

�, g=
P
j�j6d g�x

�2C[x]6d,

hf ; gid= hfh; ghid=
X
j�j6d

f� g�
�
d
��

�¡1
;

where �� = (�0; �1; :::; �n)2Nn+1 for �=(�1; :::; �n)2Nn with j�j6 d .
We have the following invariance property:

Lemma 50. Let T ; T 02Sd and G2Sln+1 a change of coordinates of determinant 1. Then

hT ; T 0id= hG�T ;G �T 0id

where G�T is the tensor T after the change of coordinates by G.

Another interesting property of this apolar product is the following:

Lemma 51. For any linear form l(x�)= l0x0+ l1x1+ ���+ lnxn and any homogeneous polynomial
f(x)2C[x�]d, we have hf ; l(x�)did= f(l0;l1; :::; ln).

Proof. We check the property for the monomials x� with j�j = d and deduce the lemma by
linearity. �

Using the apolar product, we can associate to any T 2Sd the element of C[x]6d�

T �: f 2C[x]6d 7! hT ; fhid

Its associated element in the dual space C[[z]] is denoted T �(z). It is in fact a polynomial in z of
degree 6d.

We can also associate to T 2Sd the element of Sd�

T�
�
: f 2Sd 7! hT ; f id:

For 06 i6 d, let HT
i;d¡i:Si!Sd¡i

� be the truncated Hankel operator associated to T��: 8f 2Si

HT
i;d¡i(f): g 2Sd¡i 7! hT ; fgid2C:

Example 52. For T :=
�
d
�

�
x0
�0 ��� xn�n with �0+ ���+�n= d, we check that T �= 1

�1!����n!
z1
�1���zn�n,

T��=
1

�0!����n!
z0
�0���zn�n.

Lemma 53. T (x�)=
P
j�j6d T��

�
d
��

�
x��� i� T �(z)=

P
j�j6d T��

z�

�!
2C[z].

Proof. If T =
P
j�j=d T�

�
d
�

�
x��, then for �2Nn with j�j6 d, we have

T �(x�)=
D
T ; x0

d¡j�jx�
E
d
= hT ;x���id=T��;

which proves that T �(z)=
P
j�j6d T �(x�)

z�

�!
=
P
j�j6d T��

z�

�!
2C[z]. �
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This construction allows us to reformulate the problem of decomposition of T as a truncated
series problem:

Proposition 54. A tensor T (x�)=
P
j�j6d T��

�
d
��

�
x��� has an a�ne Waring decomposition

T (x�)=
X
i=1

r

!i (x0+ �i;1x1+ ���+ �i;nxn)
d (24)

with !1; :::; !r 2 C n f0g, �1; :::; �r 2 Cn i� T �(z) =
P
j�j6d T��

z�

�!
coincides with the seriesP

i=1
r

!i e�i(z) up to degree d.

Proof. By Lemma 53, if T (x�)=
P

i=1
r

!i (x0+ �i;1x1+ ���+ �i;nxn)
d=
P

i=1
r

!i
P
j�j6d

�
d
��

�
�i
�x���,

then

T �(z)=
X
i=1

r

!i
X
j�j6d

�i
� z

�

�!

which coincides with the series �(z)=
P

�2Nn ��
z�

�!
=
P

i=1
r !ie�i(z) up to degree d. The reverse

implication is also true, by Lemma 53. �

In other words, if T 2 Sd has an a�ne decomposition of the form (23), then T � coincides on
C[x]6d with the element of the dual space C[[z]] of C[x]:

�(z) =
X
i=1

r

!i e�i(z):

We will write it T �(z)=�(z) + ((z))d+1.
The method described in the previous section to recover a sparse decomposition of a truncated

series can therefore be applied here. If the number of terms r is small enough compared to the size
of the sequence moments, this yields directly a decomposition of the tensor T .

6.1.2 Examples

Example 55. Let T (x0;; x1)=x0
4+ 12x03 x1+6x0

2x1
2+ 12x0 x13+x1

4. Then we have

T �(z) = 1+3z1+
z1
2

2
+3

z1
3

3!
+
z1
4

4!
:

We apply Prony's method and compute the kernel of

H =

�
1 3 1
3 1 3

�
:

It contains (¡1;0;1) which corresponds to the polynomial x2¡1. The roots of this polynomial are
�1. Thus the decomposition is of the form T (x0; x1)=a (x0+x1)

4+ b (x0¡x1)4. By expansion and
identi�cation of the coe�cients, we �nd that a+ b=1; 4a¡ 4b= 12. This yields a=2; b=¡1 and
the decomposition is

T (x0;; x1)= 2 (x0+x1)
4¡ (x0¡x1)4:

Example 56. Let

T (x0; x1; x2) = 3 x0
4+ 16 x03 x1+ 24 x02 x12¡ 8 x0 x13¡ 32 x14+ 24 x03 x2+ 120 x02 x1 x2+ 192 x0 x12 x2+

88 x13x2+ 72 x02x22+ 264 x0x1x22+ 240 x12x22+ 96 x0x23+ 184 x1x23+ 48 x24:

The associated dual element is

T �(z) = 3 +4 z1 + 6 z2 + 4
z1
2

2!
+ 10 z1 z2 + 12

z2
2

2!
¡ 2

z1
3

3!
+ 16

z1
2 z2
2!

+ 22
z1 z2

2

2!
+ 24

z2
3

3!
¡ 32

z1
4

4!
+

22
z1
3 z2
3!

+ 40
z1
2 z2

2

2!2!
+ 46

z1 z2
3

3!
+ 48

z2
4

4!
:
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It coincides with the �rst terms of the generating series of example 47. The application of the
generalized Prony method yields the points (1; 1); (2; 2); (3; 1) and the weights 2, 3, -1. Therefore,
the decomposition of T is

T (x0; x1; x2)= 2 (x0+x1+x2)
4+3 (x0+2x1+2x2)

4¡
¡
x0+3x1+x2

�
4:

6.1.3 Apolar ideals

We have seen that if T 2Sd has a rank r, then after a generic of coordinates, it has an a�ne Waring
decomposition of the form (24). Using the apolarity property, Proposition 54, the polynomials p
of degree 6d which vanish at the points �1; :::; �r 2Cn satis�es the equation hT �j pi = 0. Their
homogenization ph in degree d satisfy hT ; phid= hT �j pi=0.

This naturally leads us to the study of ideals I � S which are the homogenization of the
vanishing ideal of a set of points and such that hT ; Idid=0. First we introduce the notion of apolar
ideal associated to a tensor:

De�nition 57. Let T 2Sd. We de�ne the apolar ideal of T as the homogeneous ideal of S generated
by Sd+1 and by the polynomials g 2 Si ( 0� i � d) such that hgh; T id= 0 for all h 2 Sd¡i. It is
denoted (T?) and called the ideal apolar to T.

Remark 58. By de�nition, (T?)i= kerHT
i;d¡i for 06 i6 d.

Example 59. For T := x0
�0 ��� xn�n with �0+ ���+�n= d, we check that (T?)= (x0

�0+1; :::; xn
�n+1).

This apolar ideal provides a simple characterization of the ideals which degree-d component is
apolar to T :

Lemma 60. For any ideal I �S, hId; T id=0 if and only if I � (T?).

Proof. Clearly, if I � (f?) then Id� (f?)d so that hT ; Idid=0.
Let us prove the reverse inclusion. By de�nition of the apolar ideal J := (f?), we have Ji:

Sk=Ji¡k;80� i� d; 0� k� i. We also have Id:Sk� Id¡k; 80� k� d. The hypothesis hT ; Idid=0
implies that Id� Jd. We deduce that Ii� Ji; 80� i� d. Since Jd+1=Sd+1, we have the inclusion
I � J =(f?). �

For any homogeneous ideal I �S, let hS/I:n2N 7!dimSn/In be the Hilbert function of S/I.
We have the following simple relation.

Lemma 61. If I � (T?), then for n2N, hS/I(n)>hS/(T?)(n):

The tensor decomposition problem can then be reformulated in terms of apolarity as follows
via the well known Apolarity Lemma (cf. [15, Lemma 1.15]).

Proposition 62. Let T 2Sd be a symmetric tensor. The following are equivalent:

� T has a decomposition of size 6r,
� there exits an ideal I �S such that I � (T?) with I is saturated, de�ning r simple points.

Proof. Suppose that T has a decomposition of size r: T (x�) =
P

i=1
r

!i (�i;0x0 + �i;1x1 + ��� +
�i;nxn)

d. Then consider the homogeneous ideal I of polynomials vanishing at the points ��i=[�i;0: ���:
�i;n]2Pn, i=1; :::; s. By apolarity, for all g 2 Id,

hT ; gid=
X
1

s

!i g(��i)= 0:

so that I is a saturated ideal, de�ning r simple points and with I � (T?).
Conversely, suppose that I is an ideal of S satisfying (a), (b), (c). By a change of variables,

we can assume that the simple points of Pn de�ned by I are of the form ��i= [1: �i;1: ���: �i;n]2Pn:
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The ideal I 0 of R obtained by substituting x0 = 1 in I is the vanishing ideal of the points
�i=(�i;1; :::; �i;n)2Cn: As hT ;Idid=0, we have hT �jI6d0 i=0 and by Lemma 10, T � is the truncation
in degree 6d of an element of (I 0)?.

As (I 0)? is the vector space spanned by e�1; :::; e�r, there exists !1; :::; !r 2C such that

T �(z)=
X
i=1

r

!ie�i+((z))
d+1:

By Proposition 54, this implies that

T (x�)=
X
i=1

r

!i (x0+ �i;1x1+ ���+ �i;nxn)
d

and T has a decomposition of size 6r. �

This proposition provides a characterization for the decomposition of a tensor, which is inde-
pendent of any choice of coordinates.

6.2 Generalized decomposition

De�nition 63. A generalized a�ne decomposition of size r of T 2Sd is a decomposition of the form

T �(z)=
X
i=1

m

!i(z)e�i(z)+ ((z))d+1 (25)

where �i 2Cn and !i(z) are polynomials in C[z], such that the sume of the dimension ri of the
vector spaces spanned by @z�(!i(z)e�i(z)) for �2Nn is r.

This decomposition generalizes the a�ne Waring decomposition of De�nition ?, since when
!i(z)=!i2C are constant polynomials, we have the decomposition

T �(z) =
X
i=1

m

!i e�i+((z))d+1 i� T (x�)=
X
i=1

r

!i (x0+ �i;1x1+ ���+ �i;nxn)
d:

De�nition 64. The minimal r such that T has a generalized decomposition of size r is called the
generalized rank of T. It is denoted rg(T ).

Notice that the size of a generalized a�ne decomposition does not depend on the coordinate
system and is invariant by a generic a�ne transformation.

This allows us to check that the generalized rank is sub-additive:

Lemma 65. For any T ; T 02Sd, rg(T +T 0)6 rg(T )+ rg(T
0).

Proof. If after a generic change of variables, each dual element T � and T 0� has a decomposition
of the form (25) of size respectively rg(T ) and rg(T 0), then there is a (generic) change of variables
for which, both have such a decomposition. The sum of these decompositions yields a generalized
decomposition of size 6rg(T ) + rg(T 0) for the tensor T + T 0, which proves that rg(T + T 0) 6
rg(T )+ rg(T

0). �

Example 66. Let T (x0; x1) = x0x1
d¡12C[x0; x1]. After the change of variables x00= x1, x10 = x0,

we obtain the tensor T~(x0; x1) =x0
d¡1x1 such that

T~
�
(z)= z1= z1e0(z)+ ((z))d+1:

Thus the generalized rank of x0x1
d¡1 is 2 (since it cannot be 1). Notice that

T = lim
"!0

1
"d
((x1+ "x0)

d¡x1d)
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that is a limit of tensors T"=
1

"d
((x1+ "x0)

d¡x1d) of rank 2.

Example 67. The polynomial T =x0
3 x1+x0

3 x2 is a sum of two tensors T1=x0
3 x1 and T2=x0

3 x2.
From the Example 66, we have rg(T1) = rg(T2) = 2. The sub-additivity of the rank implies that
rg(T )6 4. Moreover, we are in a case of a polynomial of border rank 4 and rank 7 (as described
in [4, Theorem 44]). In this case rg(f)= 4= r�(f)<r(f)= 7.

Example 68. For a monomial T =x0
�0 ��� xn�n with �0+ ���+�n= d, we have

T �=
1
d!
z1
�1 ��� zn�n:

The inverse system spanned by z1
�1 ��� zn�n is of dimension (�1+1)� ��� � (�n+1). Assuming that

�0=maxi�i, the previous decomposition is a generalized decomposition of minimal size (according
to Corollary ? and Example ?). Therefore we have

rg (x0
�0 ��� xn�n)=

Q
i=0
n (�i+1)

maxi (�i+1)
:

In order to relate the generalized rank to a usual rank, we introduce the following de�nition:

De�nition 69. A tensor T 2Sd has a �at extension of rank r if there exists u2S1 and T~ 2Sm+m0

with m=max
n
r; dd

2
e
o
;m0=max

n
r¡ 1; bd

2
c
o

such that

� rankH
T~
m;m0= r,

� um+m0¡d ?T~ =T.

This de�nition says that by a change of variables such that u=x0, T � is the truncation in degree
6d of T~�2 (K[x]6m+m0)� and rankH

T~
m;m0= r.

Lemma 70. Let d� r and E �Sd such that Sd/E is of dimension r. Then for a generic change
of coordinates g 2 PGL (n+ 1), Sd/g �E has a monomial basis of the form x0B with B � Sd¡1.
Moreover, B is connected to 1.

Proof. Let � be the lexicographic ordering such that x0���� �xn. By [10][Theorem 15.20, p. 351],
after a generic change of coordinates, the initial J of the ideal I = (E) for � is Borel �xed. That
is, if xix�2J then xjx�2 J for j > i.

To prove that there exists a subset B of monomials of degree d¡ 1 such that x0 B is a basis of
Sd/Id, we show that Jd+x0 Sd¡1=Sd. Let Jd0=(Jd+x0 Sd¡1)/x0 Sd¡1, Sd0=Sd/x0 Sd¡1=K[x1; :::;
; xn]d and L=(J :x0). Then we have the exact sequence

0!Sd¡1/Ld¡1¡!
�x0 Sd/Jd!Sd

0/Jd
0 ;

where �x0 is the multiplication by x0. Let us denote by sk = dim Sk and q(k) = sk ¡ r for k 2N.
Suppose that dimSd

0/Jd
0>0, then dimLd¡1>sd¡1¡ r= q (d¡ 1). As d� r and r is the Gotzmann

regularity of q, by [14, (2.10), p. 66] we have dimS1 Ld¡1> q(d). As J is Borel �xed, i.e. x0 p2J
implies xi p2J for i� 0, we have S1 Ld¡1�J , so that dim Jd�dimS1 Ld¡1> q(d)= sd¡ r. This
implies that dimSd/Jd= dimSd/Id= dimSd/E <r, which contradicts the hypothesis on E. Thus
Jd+x0Sd¡1=Sd.

Let B 0 be the complement of Jd in the set of monomials of degree d. The sum Sd=Jd+x0 Sd¡1
shows that B 0=x0B for some subset B of monomials of degree d¡ 1.

As Jd is Borel �xed and di�erent from Sd, its complement B 0 contains x0d. Similarly we check
that if x0

�0 ��� xn�n2B 0 with �1= ���=�k¡1=0 and �k=/ 0 then x0
�0+1 xk

�k¡1 xk+1
�k+1 ��� xn�n2B 0. This

shows that B 0=B is connected to 1. �

A generalized decomposition can be characterized algebraically in a way similar to the classical
decomposition and by this �at extension property:
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Proposition 71. Let T 2Sd be a symmetric tensor. The following points are equivalent:

1. T has a generalized decomposition of size 6r,
2. There exits an ideal I�S such that I�(T?) and I is saturated, zero dimensional, of degree r,

3. T has a �at extension of rank 6r.

Proof. 2 ) 1: Supposed that I is an ideal of S such that I � (T?) with I is saturated, zero
dimensional, of degree r. By a change of variables, we can assume that the points of Pn de�ned
by I are of the form ��i= [1: �i;1: ���: �i;n]2Pn:

By dehomogenization (setting x0=1), we obtained an ideal I 0 such thatA=R/I 0 is of dimension
r. It is de�ning the points �i=(�i;1; :::; �i;n)2Cn with multiplicity ri.

As hT ; Idid=0, we have hT �j I6d0 i=0 and by Lemma 10, T � is the truncation in degree 6d of
an element of (I 0)?. By Theorem 14, T � is the truncation in degree 6d of an element of (I 0)?=A�
of the form

�(z)=
X
i=1

r 0

!i (z)e�i(z)

for some points �i2Cn and some polynomials !i(z)2C[z], i=1:::r 0.
Moreover the inverse system spanned by � is included in (I 0)? = A� and its dimension is

6r = dim (A). This shows that the sum of the dimensions ri of the vector spaces spanned by
@z
�(!i(z)e�i(z)) for �2Nn is 6r and T has a generalized decomposition of size 6r.
1) 3. If T 2Sd has a generalized decomposition of size 6r, then after a change of coordinates,

we have T �(z)=
P

i=1
m

!i(z)e�i(z) + ((z))d+1 with �i2Cn and !i(z)2C[z] such that the sum of
the dimensions ri of the vector spaces spanned by @z�(!i(z)e�i(z)) for �2Nn is r.

Let �=
P

i=1
m !i(z)e�i and let I�0 =kerH� be the associated ideal in R=C[x]. By Theorem 22,

A�=R/I�
0 is artinian of dimension r. Let m=max

n
r; dd

2
e
o
;m0=max

n
r¡1;bd

2
c
o
and T~ 2Sm+m0

be the unique element such that T~
�
=
P

i=1
m

!i(z) e�i(z) + ((z))
m+m0+1. Then

rankH
T~
m;m0= rankH�

R6m;R6m06 rankH�6 r

and T~
�
truncated in degree 6d coincides is � truncated in degree 6d, that is, T . Thus T~ is a �at

extension of rank 6r of T . This proves point 1.
3 ) 2: Suppose that T~ is a �at extension of rank 6r of T . Let E := ker(H

T~
m;m0) and

F := Ker(H
T~
m0;m) and k � r the rank of H

T~
i;d¡i. As H

T~
m0;m = (H

T~
m;m0)t, the quotients Sm/E and

Sm0/F are of dimension k. By Lemma 70, after a generic change of coordinates we may assume
that there exists a family B (resp. B 0) of k monomials of Sm (resp. Sm0) such that x0 B (resp.
x0 B

0) is a basis of Sm/E (resp. Sm0/F ) and that

B�R6m¡1 (resp. B0�R6m0¡1)

are connected to 1. Notice then that

H
T~
�

B;B 0=H
T~
x0B;x0B 0

is an invertible matrix of size k�k. As the monomials of B (resp. B 0) are inR6m¡1 (resp. R6m0¡1),
the sets of B+ (resp. B0+) is a subset of R6m (resp. R6m0) and

k= rankH
T~
�
B0;B= rankH

T~
�

R6m;R6m0= rankH
T~
m;m0:

By Theorem 40, there exists a linear form �2R� which extends T~
�
such that dim (R/I�)=k where

I�= kerH�. By Theorem 22, there exists �i2Cn and !i(z)2C[z] such that

T~
�
(z) =

X
i=1

m

!i(z)e�i(z) + ((z))
d+1

with the sum of the dimensions ri of the vector spaces spanned by @z�(!i(z)e�i(z)) for �2Nn 6r.
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This shows that T~ has a generalized rank 6r. As T is the truncation of T~� in degree 6d, it
also has a generalized rank 6r. This proves point 2. �

Remark 72. The generalized rank of a tensor is related to the additive decomposition of binary
forms and coincides with the scheme length introduced in [15]. It coincides also with the cactus
rank used in [7].

6.3 Decomposition of tensors
The �at extension property leads to the following algorithm to compute the decomposition.

Algorithm 4

Input: T 2Sd.
¡ Make a generic change of variables and substitute x0=1;

¡ Apply the Generalized Prony Algorithm 3 to the sequence T �;

¡ If success then stop and output the a�ne decomposition of T ;

¡ Otherwise set r: =r0+1 where r0 is the maximal size of an orthogonal basis in Algorithm 3;

¡ While not success do

¡ Choose a monomial set B of size r+1, connected to 1;

¡ Solve the commutation relations for the matrices associated to B;

¡ Apply Generalized Prony method to reconstruct the decomposition;

¡ If the roots are simple then stop with success := true else set r := r+1;

Output: The decomposition T =
P

i=1
r !i (x0+ �i;1x1+ ���+ �i;nxn)

d

Example 73. We consider the following ternary cubic:

T (x0; x1; x2) := x0
2x1+x0x2

2:

We set x0=1. The matrix of the truncated Hankel operator in degree 63 is26666666666666666666664

0
1
3

0 0 0
1
3

0 0 0 0

1
3

0 0 0 0 0 h4;0;0 h3;1;0 h2;2;0 h1;3;0

0 0
1
3

0 0 0 h3;1;0 h2;2;0 h1;3;0 h0;4;0

0 0 0 h4;0;0 h3;1;0 h2;2;0 h5;0;0 h4;1;0 h3;2;0 h2;3;0
0 0 0 h3;1;0 h2;2;0 h1;3;0 h4;1;0 h3;2;0 h2;3;0 h1;4;0
1
3

0 0 h2;2;0 h1;3;0 h0;4;0 h3;2;0 h2;3;0 h1;4;0 h0;5;0

0 h4;0;0 h3;1;0 h5;0;0 h4;1;0 h3;2;0 h6;0;0 h5;1;0 h4;2;0 h3;3;0
0 h3;1;0 h2;2;0 h4;1;0 h3;2;0 h2;3;0 h5;1;0 h4;2;0 h3;3;0 h2;4;0
0 h2;2;0 h1;3;0 h3;2;0 h2;3;0 h1;4;0 h4;2;0 h3;3;0 h2;4;0 h1;5;0
0 h1;3;0 h0;4;0 h2;3;0 h1;4;0 h0;5;0 h3;3;0 h2;4;0 h1;5;0 h0;6;0

37777777777777777777775

;

where the hi; j;k are the unknown moments .
Starting with the rank 3, we compute the commutation relations and solve them using algebraic

solvers. The rank is increased until a solution is found. This happens for r=5 and B= h1; x1; x2;
x1
2; x2

2i. We compute the matrices H0, H1 and H2 corresponding to B; x1B; x2B:2666664
0 1/3 0 0 0
1/3 0 0 0 0
0 0 1/3 0 0
0 0 0 h4;0;0 h3;1;0
0 0 0 h3;1;0 h2;2;0

3777775;
2666664
1/3 0 0 0 0
0 0 0 h4;0;0 h3;1;0
0 0 0 h3;1;0 h2;2;0
0 h4;0;0 h3;1;0 h5;0;0 h4;1;0
0 h3;1;0 h2;2;0 h4;1;0 h3;2;0

3777775;
2666664

0 0 1/3 0 0
0 0 0 h3;1;0 h2;2;0
1/3 0 0 h2;2;0 h1;3;0
0 h3;1;0 h2;2;0 h4;1;0 h3;2;0
0 h2;2;0 h1;3;0 h3;2;0 h2;3;0

3777775:
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If we form the matrix equation

MiMj ¡MjMi=H0
¡1H 1H0

¡1H2¡H0
¡1H 2H0

¡1H1=0;

then we have a system of 8 non-trivial equations in 8 unknowns. The unknowns are

fh4;0;0; h3;1;0; h2;2;0; h1;3;0; h5;0;0; h4;1;0; h3;2;0; h2;3;0g:

It turns out that the system is not zero dimensional, and that we can choose (randomly) the values
of �ve of these variables. We take h4;0;0 = 0; h3;1;0 = 2; h2;2;0 = 2; h1;3;0= 0; h5;0;0= 0; h4;1;0= 1;
h3;2;0=1; h2;3;0=1. The matrices of multplication by x1, x2 are repectively:

M1=

266664
0 0 0 0 6
1 0 0 0 0
0 0 0 6 6
0 1 0 1/2 0
0 0 1 0 1/2

377775;M2=

266664
0 0 0 6 6
0 0 1 0 0
1 0 0 6 6
0 0 0 0 1
0 1 1 1/2 1/2

377775:
The eigenvectors of M1

t are
[ 1.0; 3.013881550; 3.805799635; 9.083481997; 11.47022931];
[1.0; 0.8835710415+ 1.470912711 i;¡0.7256326469¡ 0.1728474157 i;¡1.382886418+ 2.599311752 i;¡0.3869045326¡ 1.220065254 i];
[1.0; 0.8835710415¡ 1.470912711 i;¡0.7256326469+ 0.1728474157 i;¡1.382886418¡ 2.599311752 i;¡0.3869045326+ 1.220065254 i];
[1.0;¡1.890511816+ 0.6949025162 i;¡0.9272671689+ 1.404829646 i; 3.091145419¡ 2.627442836 i; 0.7767898835¡ 3.300207334 i];
[1.0;¡1.890511816¡ 0.6949025162 i;¡0.9272671689¡ 1.404829646 i; 3.091145419+ 2.627442836 i; 0.7767898835+ 3.300207334 i]

The second and third coordinates of these eigenvectors are the coordinates of the points �i of
the exponentials. We recover the weights by solving a linear system. This yields the decomposition:

T := 0.008034037278 (x0+ 3.013881550 x1+ 3.805799635 x2)3

+(0.03600262077¡ 0.03860608482 i) (x0+(0.8835710415+ 1.470912711 i)x1¡ (0.7256326469+ 0.1728474157 i)x2)3

+(0.03600262077+ 0.03860608482 i) (x0+(0.8835710415¡ 1.470912711 i)x1¡ (0.7256326469¡ 0.1728474157 i)x2)3

¡(0.04001963941¡ 0.01395131919 i) (x0¡ (1.890511816¡ 0.6949025162 i)x1¡ (0.9272671689¡ 1.404829646 i) x2)3

¡(0.04001963941+ 0.01395131919 i) (x0¡ (1.890511816+ 0.6949025162 i)x1¡ (0.9272671689+ 1.404829646 i) x2)3

This shows that the rank of T is 5, which is the maximal rank of a ternary cubic.

6.4 Geometry of tensor decomposition
The set Hilbr(Pn) of zero-dimensional saturated ideals of S of degree r is known as the Hilbert
scheme of r points. It has a structure of Scheme and can be de�ned by quadratic equations of
degree 2 in the Plücker coordinates of the Grassmannian Grr(Sr�)�P(^rSr�).

Tensor decomposition is related to the following incidence variety:

Wr= f(T ; I)2P(Sd)�Hilbr(Pn)j hT ; Idid=0g:

By Proposition 71, its projection on the �rst component P(Sd) is the set Gr = �1(Wr) of tensors
with a generalized rank 6r. Let Kr= Gr be the closure of Gr in P(Sd).

The following example from W. Buczy«ska and J. Buczy«ski [26] shows that Gr is not neces-
sarily closed.

Example 74. The following polynomial

T =x0
2x2+6 x1

2x3¡ 3 (x0+x1)
2x4:

is the limit of tensors of rank 65:

T�=(x0+ � x2)
3+6 (x1+ � x3)

3¡ 3 (x0+x1+ � x4)
3+3 (x0+2 x1)

3¡ (x0+3x1)
3

We easily check that lim�!0
1

3 �
T�=T . But its generalized rank is not 65.

An explicit computation of (T?) yields the following Hilbert function for hR/(T?)= [1; 5; 5; 1;

0; :::]. Let us prove, by contradiction, that there is no saturated ideal I � (T?) of degree �5.
Suppose on the contrary that I is such an ideal. Then hR/I(n)� hR/(T?)(n) for all n2N. As

hR/I(n) is an increasing function of n2N with hR/(T?)(n)�hR/I(n)�5, we deduce that hR/I=[1;
5; 5; 5; :::].
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This shows that I1= f0g and I2= (T?)2. As I is saturated, (I2: (x0; :::; x4))1= I1= f0g since
hR/(T?)(1)= 5. But an explicit computation of ((T?)2: (x0; :::; x4)) gives hx2; x3; x4i. We obtain a
contradiction, so that there is no saturated ideal of degree �5 such that I� (T?). We deduce that
rg(T )> 6.

The Hilbert Scheme Hilbr(Pn) contains the open set Hilbrred(Pn) of ideals I de�ning r simple
points. Its closure, denoted Hilbrsmooth(Pn), is the set of smoothable ideals of Hilbr(Pn), that is
the schemes which are the limit of simple points.

The set of tensors of rank 6r is the projection Rr=�1(Wr\P(Sd)�Hilbrred(Pn)). Its closure
�r=Rr is the set of tensors of border rank 6r.

The projection Sr=�1(Wr\P(Sd)�Hilbrsmooth(Pn)) is the set of tensors of smoothable rank 6r.
We the following inclusions

Rr��r�Sr�Gr�Kr:

These inclusions can be strict. However for r small compared to d, these varieties behave nicely:

Theorem 75. For integers r, d, m, m0 such that d> r, we have

�r=Sr; Gr=Kr:

Proof. For d> r, Hilbr(Pn) can be de�ned by the intersection of quadrics with the Grassmannian
Gr(Sd

�) in P(^rSd�). The corresponding elements in Gr(Sd) are the linear space Id?. The condition
hT ; Idid = 0 is equivalent to T�� 2 Id?, or to the equation T�� ^ Id? = 0. This shows that Wr is a
projective variety and its projection Gr=�1(Wr) is closed. We deduce that Kr= Gr= Gr.

As Wr\P(Sd)�Hilbrsmooth(Pn) is also a projective variety, we have

Sr=�1(Wr\P(Sd)�Hilbrsmooth(Pn))=�1(Wr\P(Sd)�Hilbrred(Pn)) =Rr=�r: �

Theorem 76. For integers r, d, m, m0 such that d� 2 r, m= dd
2
e;m0= bd

2
c, we have

Gr=Kr= Cr
where Cr=

�
T 2Sd; rankHT

m;m06 r
	
:

Proof. When d>2 r, m=max
n
r; dd

2
e
o
=dd

2
e;m0=max

n
r¡1; bd

2
c
o
= bd

2
c, m+m0=d and T 2Sd

has a �at extension of size 6r i� rankHT
m;m06 r. By Proposition 71, this implies Gr= Cr, which

is closed. Thus Gr=Kr= Cr. �
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