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Abstract In this paper, we review various decoding methods of algebraic geometry
(or algebraic-geometric) codes (Goppa in Soviet Math. Dokl. 24(1):170–172, 1981;
Høholdt et al. in Handbook of coding theory, vols. I, II, North-Holland, Amsterdam,
pp. 871–961, 1998; Geil in Algebraic geometry codes from order domains, this vol-
ume, pp. 121–141, 2009) mainly based on the Gröbner basis theory (Buchberger
in Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal, Ph.D. thesis, Innsbruck, 1965; Aequa-
tiones Math. 4:374–383, 1970; Multidimensional systems theory, Reidel, Dordrecht,
pp. 184–232, 1985; London Math. Soc. LNS 251:535–545, 1998; J. Symb. Comput.
41(3–4):475–511, 2006; Mora in Gröbner technology, this volume, pp. 11–25,
2009b) as well as the BMS algorithm (Sakata in J. Symbolic Comput. 5(3):321–
337, 1988; Inform. and Comput. 84(2):207–239, 1990) and its variations (Sakata in
n-dimensional Berlekamp–Massey algorithm for multiple arrays and construction
of multivariate polynomials with preassigned zeros, LNCS, vol. 357, pp. 356–376,
1989; Finding a minimal polynomial vector set of a vector of nD arrays, LNCS,
vol. 539, pp. 414–425, 1991), where the BMS algorithm itself is reviewed in an-
other paper (Sakata in The BMS algorithm, this volume, pp. 143–163, 2009) in this
issue. The main subjects are:

(1) Syndrome decoding of dual codes up to the designed distance (Saints and
Heegard in IEEE Trans. Inform. Theory 41(6):1733–1751, 1995; Sakata et al. in
Finite Fields Appl. 1(1):83–101, 1995b; IEEE Trans. on Inf. Th. 41(6):1672–1677,
1995c; IEEE Trans. on Inf. Th. 41(6):1762–1768, 1995a) by using the BMS algo-
rithm. (There have been published several methods of decoding algebraic geom-
etry codes, e.g. Kötter in On decoding of algebraic-geometric and cyclic codes,
Ph.D. thesis, Linköping University, 1996; O’Sullivan in IEEE Trans. on Inf. Th.
41(6):1709–1719, 1995; Guerrini and Rimoldi in FGLM-like decoding: from Fitz-
patrick’s approach to recent developments, this volume, pp. 197–218, 2009, which
are described in some terminology rather from the perspective of algebraic geom-
etry, but are in principle equivalent to the BMS decoding method. We omit their
descriptions here.)

(2) List decoding of primal codes (Numakami et al. in IEICE Trans. Fundamen-
tals J83:1309–1317, 2000; Sakata in LNCS, vol. 2227, pp. 172–181, 2001; Proc. of
ISIT2003, pp. 363–363, 2003). (The original list decoding algorithms are given for
RS codes by Sudan in J. of Complexity 13:180–193, 1997, and for algebraic geome-
try codes by Shokrollahi and Wassermann in IEEE Trans. on Inf. Th. 45(2):432–437,
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1999, and their improved versions by Guruswami and Sudan in IEEE Trans. on Inf.
Th. 45:(6):1757–1767, 1999.)

(3) Other relevant decoding algorithms of primal and dual codes (Augot in Proc.
of ISIT2002, pp. 86–86, 2002; Justesen and Høholdt in A course in error-correcting
codes, EMS Textbooks in Mathematics, EMS, 2004; Fujisawa and Sakata in Proc. of
SITA2005, pp. 543–546, 2005; Sakata and Fujisawa in Proc. of SITA2006, pp. 93–
96, 2006; Fujisawa et al. in Proc. of SITA2006, pp. 101–104, 2006).

In discussing list decoding and usual bounded-distance decoding of primal/dual
codes we show that multi-variate interpolation problem is a key and that it can
be solved by using the BMS algorithm efficiently. The computational complexities
of our methods are less than the other decoding methods including the Feng–Rao
(IEEE Trans. on Inf. Th. 39(1):37–45, 1993) algorithm simply based on Gaussian
elimination. These reductions in computational complexity are based on the spe-
cial structures or properties of the given input data (syndrome arrays, etc.) which
originate in the definition of codes themselves and are used cleverly by the BMS al-
gorithm. In Leonard (A tutorial on AG code decoding from a Gröbner basis perspec-
tive, this volume, pp. 187–196, 2009b), Guerrini and Rimoldi (FGLM-like decod-
ing: from Fitzpatrick’s approach to recent developments, this volume, pp. 197–218,
2009) in this issue, several other efficient decoding methods of algebraic geometry
codes from Gröbner basis perspectives are reviewed. Additionally, we mention a
recent development of decoding algorithm based on higher-dimensional interpola-
tion (Parvaresh and Vardy in Proc. of IEEE FOCS2005, IEEE Computer Society,
pp. 285–294, 2005), which has error correction performance superior to the im-
proved list decoding by Guruswami and Sudan. As a general method of multivariate
interpolation the BMS algorithm is an alternative of the Buchberger–Möller (The
construction of multivariate polynomials with preassigned zeros, LNCS, vol. 144,
pp. 24–31, 1982), Mora (The FGLM problem and Möller’s algorithm on zero-
dimensional ideals, this volume, pp. 27–45, 2009a) algorithm and the Marinani–
Möller–Mora (AAECC 4:(2):103–145, 1993) algorithm, but any exact comparisons
of computational complexities of these methods remain to be investigated.

1 Introduction

In this paper, we review various decoding methods of algebraic geometry (or
algebraic-geometric) codes over finite fields, particularly one-point codes from al-
gebraic curves mainly based on the BMS algorithm (Sakata 1988, 1990), which we
review in another paper (Sakata 2009) in this issue, and we use almost the same
terminology as ibid. These algebraic geometry codes are the most important class
of error-correcting codes from both practical and theoretical viewpoints. They are
a subclass of so-called linear codes which are defined as linear subspaces of the
vector space Fn

q = (Fq)n over a finite field Fq . Since most of the basic concepts in
Coding Theory are introduced in another paper (Augot et al. 2009) in this issue,
we omit many of their detailed descriptions here and assume that the readers know
terminologies such as (n, k, d)-code C (⊂ Fn

q ) over Fq , codelength n, dimension k,
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minimum distance d , the number t = ⌊ d−1
2 ⌋ of correctable errors, etc. Decoding,

which is to recover or estimate the sent codeword c ∈ C from the given received
word r ∈ Fn

q , is a kind of algebraic computation procedure over the finite field Fq ,
and it is given basically in the form of an algorithm. If the received word r contains
more errors than t , the decoding algorithm might output a wrong codeword which is
different from the sent codeword. But, error events are probabilistic phenomena in
practical applications, and more errors can occur with less probability, which usu-
ally is negligibly smaller. Therefore, in decoding, we have only to find candidate
codewords which are as close to the received word r as possible.

The algebraic geometry codes which we are going to discuss in this paper are de-
fined based on a triplet (K, L, C), where K is the set of symbols carrying information
with them and L is the set of locators (or labels) Pj denoting the position or index j

of each component symbol cj (∈ Fq ) of a codeword c = (cj )0≤j≤n−1. We call K and
L the information symbol set and the symbol locator set, respectively. The set C is a
linear space of functions defined on a domain including L, from which we have two
kinds of codes as follows. First, we have a code C which is the subspace of (Fq)n

composed of the vectors ev(f ) := (f (P0), . . . , f (Pn−1)) ∈ Fn
q corresponding to a

function f ∈ C . Second, we have another code which is the orthogonal complement
(null space) of the subspace C in Fn

q

C⊥ := {c = (cj ) ∈ Fn
q | c · ev(f ) = 0},

where c · ev(f ) := ∑
0≤j≤n−1 cjf (Pj )(∈ Fq) is the inner product of two vectors

c and ev(f ) (∈ Fn
q ). Sometimes we call C and C⊥ primal and dual codes, respec-

tively.1

For example, primal and dual Reed–Solomon codes C and C⊥, which are nowa-
days one of the most practically used algebraic error-correcting codes, are defined2

by taking K := Fq , n := q − 1, L := {Pj (:= αj ) | 0 ≤ j ≤ n − 1(= q − 2)}(=
Fq \ {0}), and C := {f ∈ Fq [x] | deg(f ) ≤ h − 1} for a certain integer h s.t.
0 < h < n. Their dimensions and minimum distances are

k(C) = h, k(C⊥) = n − h; d(C) = n − h + 1, d(C⊥) = h + 1.

RS codes are among the broader class of one-point codes from algebraic curves
which contains codes having better performance and greater potentialities in the
near future. One-point codes from an algebraic curve X over a finite field Fq are

1About the definition of these codes, see also another paper (Leonard 2009a) in this issue, where C

and C⊥ are called functionally encoded and functionally decoded codes, respectively. Furthermore,
about codes from order domains, which are a generalization of these codes and can be decoded by
our methods, see Geil (2009).
2This definition of the dual RS code C⊥ is equivalent to the conventional definition C⊥ := {c(x) =
a(x)g(x) | a(x) ∈ Fq [x], deg(a) ≤ n−h−1} s.t. each codeword c = (cj ) ∈ C⊥ is represented as a
polynomial c(x) = ∑

0≤j≤n−1 cj x
j , where g(x) := ∏

0≤i≤h−1(x−αi ) is the generator polynomial
of the code.
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defined by taking K := Fq , L := {Pj | 0 ≤ j ≤ n − 1}, which is a set of Fq -rational
points on the curve X , and C := L(mP∞), which is the set of algebraic functions
on the curve X having a single pole at the infinity point P∞ with pole order less
than or equal to m, where m is a given integer. Similarly, we have primal and dual
codes C and C⊥. As a special case, if we take as X the projective line over Fq

containing the infinity point P∞ as well, and let L be the set of all affine points on
X or equivalently the finite field Fq , then we have the extended RS code with length
n = q . By deleting 0 from L, we have the ordinary RS code of length n = q − 1.

Although we can take the defining curve X in the projective space of any dimen-
sion N , we restrict to a plane curve X (i.e. N = 2) or particularly the Hermitian
curve over Fq as follows, where q = q2

1 .

X : yq1 − xq1+1 + y = 0.

We take as L all the Fq -rational points on X excluding the infinity point P∞, where
we remember that the coordinate functions x and y have pole orders o(x) = q1
and o(y) = q1 + 1, respectively at the single pole P∞. For a = (a1, a2) ∈ N2. we
denote Xa := xa1ya2 , which has pole order o(Xa) = q1a1 + (q1 + 1)a2. Letting
Π := {a = (a1, a2) ∈ N2 | 0 ≤ a2 ≤ q1 − 1}, Π(m) := {a = (a1, a2) ∈ Π | o(Xa) =
q1a1 + (q1 + 1)a2 ≤ m}, and C = ⟨Xa = xa1ya2 | a = (a1, a2) ∈ Π(m)⟩Fq ⊂ Fq [Π]
(:= ⟨Xa | a ∈ Π⟩Fq ), we can have the primal code C = C(m) and the dual code
C⊥ = C⊥(m) with length n := q3

1 , whose dimensions and minimum distances are as
follows in case of 2g − 1 ≤ m < n, where g = q1(q1−1)

2 is the genus of the curve X :

k(C) = m − g + 1, d(C) ≥ n − m;
k(C⊥) = n − m + g − 1, d(C⊥) ≥ m − 2g + 2,

where dG := n − m and d⊥
G := m − 2g + 2 are called Goppa bounds of the primal

code C and the dual code C⊥, respectively. Actually, if m+m′ = q3
1 + q2

1 − q1 − 2,
the primal Hermitian code C(m) and the dual Hermitian code C⊥(m′) are equivalent
(Stichtenoth 1988).

2 Syndrome Decoding of Dual Codes

First we show that decoding of a dual RS code C⊥ with minimum distance
d = h + 1 is reduced to the problem of finding a polynomial in Fq [x] which is
valid for a certain one-dimensional (1-D) array derived from the received word. Let
c = (cj )0≤j≤n−1 ∈ C⊥ and e = (ej )0≤j≤n−1 ∈ Fn

q be a sent codeword and an er-
ror vector, respectively. Then, the received word is r = c + e = (rj )0≤j≤n−1 ∈ Fn

q ,
where rj = cj + ej , 0 ≤ j ≤ n− 1. We assume that the number of errors, or in other
words the size of the set E := {Pj | ej ≠ 0} (⊂ L) of error locators, is t ′ := #E ≤ t ,
where t (= ⌊h

2 ⌋) is the number of correctable errors. The receiver gets the received
word r = (rj ), but he has no knowledge of both c and e. How can he find either c or
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e from r? Since no error, i.e. the case of e = 0 is the most likely in actual channels,
he begins with checking whether the received word r contains any error or not. For
a dual RS code, it is very easy and he has only to check for some f ∈ C whether
the inner product r · ev(f ) = 0 or not. More precisely, he calculates the syndromes
si := r · ev(xi) corresponding to the basis functions xi , 0 ≤ i ≤ h−1 of the function
space C , and obtains the array s = (si)0≤i≤h−1. If s = 0, then he most probably can
suppose no error so that he does not need to go further. But, if s ≠ 0, then he enters
the procedure of decoding. A basic decoding method consists of two stages, finding
the error locators, i.e. the unknown ji or αji , 1 ≤ i ≤ t ′ for E = {αji | 1 ≤ i ≤ t ′}, and
calculating the error values eji , 1 ≤ i ≤ t ′. Provided the error locators E are found in
the first stage, the second stage is easier and reduced to finding the unique solution
eji , 1 ≤ i ≤ t ′ of the linear system of equations:

∑
1≤i≤t ′ eji α

jij = sj , 0 ≤ j ≤ h−1.
Now, our main concern is in the first stage. Assuming t ′ ≤ t for E = {αji |

1 ≤ i ≤ t ′}, where t ′ and ji , 1 ≤ i ≤ t ′ are unknown, we consider an infinite ar-
ray u = (uj ) defined by uj := e · ev(xj ) = ∑

1≤i≤t ′ eji α
jij , j ∈ N instead of s, and

further the ideal I = I(u) := {f ∈ Fq [x] | f ◦ u = 0}, which is called the charac-
teristic ideal of u, as well as the zero variety V (I) := {γ ∈ Fq | f (γ ) = 0, ∀f ∈ I}
defined by it, where for f = f (x) = ∑

0≤l≤d flx
l , v = f ◦u := (vj )j∈N is the array

defined by vj := ∑
0≤l≤d flul+j , j ∈ N (see Sakata 2009). Actually, we have

Lemma 1 E = V (I).

Proof For f = f (x) = ∑
0≤l≤d flx

l , we have

f (αji ) = 0, 1 ≤ i ≤ t ′ ⇔
∑

0≤l≤d

flα
ji l = 0, 1 ≤ i ≤ t ′

⇔
∑

1≤i≤t ′

( ∑

0≤l≤d

flα
ji l

)
eji α

jij = 0, ∀j ∈ N

⇔
∑

0≤l≤d

fl

∑

1≤i≤t ′
eji α

ji (l+j) = 0, ∀j ∈ N,

where the last identity is equivalent to
∑

0≤l≤d flul+j = 0, ∀j ∈ N, i.e. f ◦ u = 0.
By the way, the equivalence between the second and third identities comes from
the fact that t ′ arrays u(i) := (u

(i)
j ), 1 ≤ i ≤ t ′ which are defined by u

(i)
j := αjij are

linearly independent of each other. !

Since we have that si = r · ev(xi) = (c + e) · ev(xi) = e · ev(xi), 0 ≤ i ≤ h − 1,
the subarray uh := (uj )0≤j≤h−1 of the above infinite array u coincides with the syn-
drome array s = (sj )0≤j≤h−1, although we cannot obtain the whole infinite array u.
Particularly, the values uj , j ≥ h sometimes are called unknown syndromes. How-
ever, if deg(f ) = t ′ ≤ t , in view of h − 1 − t ′ ≥ t ′ − 1, for 1 ≤ i ≤ t ′, we have t ′

finite arrays u
(i)
j := αjij , 0 ≤ j ≤ h − 1 − t ′, which also are linearly independent of
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each other. Consequently, we have for V (f ) := {γ ∈ Fq | f (γ ) = 0},

E = V (f ) ⇔
∑

0≤l≤t ′
flul+j = 0, 0 ≤ j ≤ h − 1 − t ′, (1)

which implies that we can find the error locators E as the roots of a polynomial
f which is valid for the known syndromes ui(= si), 0 ≤ i ≤ h − 1 obtained from
the received word r and has the minimum degree, provided the actual number t ′ of
errors contained in r does not exceed the number t of correctable errors.

As we have seen, the problem of decoding dual RS codes is reduced to find-
ing a valid polynomial for a certain finite (1-D) array. Naturally this fact can be
extended to the problem of decoding more general codes including codes from alge-
braic curves. Particularly, in the multidimensional case, it also implies that we must
find a Gröbner basis of the characteristic ideal of the array. Below we will show that
the decoding of a dual Hermitian code C⊥ is reduced to the problem of finding a
minimal polynomial set (in Fq [x, y]) of a certain 2-D array derived from a received
word.

Let c = (cj ) ∈ C⊥, e = (ej ) ∈ Fn
q , r = c + e = (vj ) ∈ Fn

q be the sent codeword,
the error vector, and the received word, respectively. We assume that the size of
the error locators E := {Pj | ej ≠ 0} = {Pli | 1 ≤ i ≤ t ′}(⊂ L) is t ′ := #E ≤ t⊥G :=
⌊ d⊥

G−1
2 ⌋. As each point of the curve can be represented as Pl = (αl ,βl ) ∈ (Fq)2, the

syndrome s = (sa), with a ∈ Π(m), obtained by sa := r · ev(Xa) from the received
word r is a finite subarray of the infinite 2-D array u = (ua), a ∈ N2, defined by

ua := e · ev(Xa) =
∑

1≤i≤t ′
eli α

a1
li

β
a2
li

, a = (a1, a2) ∈ N2,

which we call error locator array. About the characteristic ideal (submodule)
I = I(u) := {f ∈ Fq [Π] | f ◦ u = 0} of a 2-D array u = (ua), a ∈ N2 and its zero
variety V (I) := {P ∈ L | f (P ) = 0, ∀f ∈ I}, we have the following lemma simi-
lar to Lemma 1. Thus, we call I also the error locator ideal (or submodule), and
sometimes denote it as I(e) (or M(e)).

Lemma 2 E = V (I).

Proof For f = f (x, y) = f (X) = ∑
a∈supp(f ) c(f, a)Xa ∈ Fq [Π], we have

f (αli ,βli ) = 0, 1 ≤ i ≤ t ′ ⇔
∑

a=(a1,a2)∈supp(f )

c(f, a)α
a1
li

β
a2
li

= 0, 1 ≤ i ≤ t ′ ⇔

∑

1≤i≤t ′

( ∑

a∈supp(f )

c(f, a)α
a1
li

β
a2
li

)
eli α

b1
li

β
b2
li

= 0, (∗) ⇔

∑

a∈supp(f )

c(f, a)
∑

1≤i≤t ′
eli α

a1+b1
li

β
a2+b2
li

= 0, (∗)
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where (∗) implies “∀b = (b1, b2) ∈ N2”. The last identity is equivalent to∑
a∈supp(f ) c(f, a)ua+b = 0, ∀b ∈ N2, i.e. f ◦ u = 0. The equivalence between the

second and third identities comes from the fact that t ′ arrays u(l) := (u
(l)
a ), 1 ≤ l ≤ t ′

defined by u
(l)
a := α

a1
l β

a2
l , a ∈ N2, are linearly independent from each other. !

In the above, for the ring P := Fq [x, y], the function space Fq [Π] := ⟨Xa =
xa1ya2 | a = (a1, a2) ∈ Π⟩Fq is viewed as a P -submodule which coincides with the
whole set P (as a module) modulo the P -submodule MX := ⟨yq1 − xq1+1 + y⟩P .
The known syndromes sa = r · ev(Xa), a ∈ Π(m), which are obtained from the
received word, are identical with the subarray ua , a ∈ Π(m), but the part ua , a ∈
Π \Π(m) are unknown syndromes. On the other hand, among the functions defined
on the curve, since Xa , a ∈ N2 \ Π are linearly dependent on {Xb | b ∈ Π , o(Xb) ≤
o(Xa)}, the subarray ua , a ∈ 2Π(m) also is known, where 2Π(m) := {a +b | a, b ∈
Π(m), o(Xa+b) ≤ m}. In the linear recurrence f ◦ u = 0, i.e.

∑

a∈supp(f )

c(f, a)ua+b = 0, b ∈ Π,

not only the components ua , a ∈ Π(m) but also the components ua , a ∈ 2Π(m) \
Π(m) are concerned. Therefore, all the components ua , a ∈ 2Π(m) are necessary
for decoding by using the BMS algorithm. Furthermore, treating only the known
syndrome is not enough for decoding of this kind of codes up to half of the designed
distance, which we will discuss below.

There have been several investigations on designed distances or lower bounds for
minimum distances of codes from curves. We consider the Feng–Rao (1993) bound
of dual Hermitian codes, which is equal to the so-called order bound (Høholdt et al.
1998; Geil 2009) as well as to the Goppa bound d⊥

G in case of 2g − 1 ≤ m < n

for these codes. Although the Feng–Rao decoding algorithm based on Gaussian

elimination and majority logic can decode up to t⊥G = ⌊ d⊥
G−1

2 ⌋ errors, it will turn out
that the BMS algorithm with majority logic can do the same more efficiently (Sakata
et al. 1995a). By using the BMS algorithm w.r.t. the term ordering corresponding
to the pole order o(Xa) as mentioned in the next paragraph, we can determine the
unknown syndromes based on majority logic in its unique (basically, similar to the
Feng–Rao algorithm) fashion so that we can find a minimal polynomial set of the
array u which is a Gröbner basis of the error locator ideal I(e).

Let O be the set of pole orders o(f ) of functions f on the algebraic curve X
over the closed extension (closure) F̃q1 := ⋃

i≥1 Fqi
1

of Fq1 , and O(m) := {l ∈ O |
l ≤ m}. Particularly, we denote the pole order o(Xa) of the coordinate function
Xa simply as o(a), a ∈ N2, which determines the term ordering < together with a
certain lexicographic ordering <L. Then, via o(a), a ∈ N2, O and O(m) one-to-one
correspond to Π and Π(m), respectively. For l ∈ O,

ν(l) := #{(i, j) ∈ O2 | i + j = l}
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is introduced and the order bound of the code C⊥(m) is defined as

d(m) := min{ν(l) | l ≥ m + 1}.

On the other hand we sometimes have a couple of points r ∈ Π and r ′ = r ⊕ 1 (i.e.
the next point after r w.r.t. the term ordering <) ∈ 2Π \ Π s.t. o(r) = o(r ′), and
thus, Xr ′ − Xr = ∑

a:o(a)<o(r) caX
a mod MX and so it holds that the value ur ′ is

determined from ur via the values ua , a ∈ Π s.t. o(a) < o(r), and vice versa, where
r and r ′ are called conjugate to each other. We consider subsets &r := {a ≤P r |
a ∈ N2} and &r ′ := {a ≤P r ′ | a ∈ N2}. In our terminology, we have that if o(r) =
o(r ′) = l ∈ O,

ν(l) = #(&r ∪ &r ′) ∩ Π,

where if such a couple does not exist, &r ∪ &r ′ should be regarded simply as &r for
r s.t. o(r) = l.

As we show below, in case of t⊥G or less errors, we can find iteratively at each
a ∈ 2Π \ 2Π(m) the value of the unknown syndrome ua and update a pair of min-
imal polynomial set F and auxiliary polynomial set G by using the modified BMS
algorithm with majority voting among the candidate syndrome values, where a pair
of conjugate points are treated simultaneously at each BMS iteration, i.e. F and G
are updated at each pole order l s.t. o(r) = o(r ′) = l. Thus, we consider the syn-
drome subarray u(l) := ur ′

s.t. o(r ′) = o(r) = l, where r ′ = r ⊕ 1 ∈ 2Π \ Π (if it
exists), for each l > m. First we remark that ν(l) > 2tG, l ≥ m+ 1. From the known
syndromes ua , a ∈ Π(m), we can get a minimal polynomial set F of the subarray
u(m) = (ua), a ∈ 2Π(m). Now, assume that we have got already the syndrome sub-
array u(l) for some l ≥ m together with F and G of u(l), which is accompanied
with the stable subsets Σ(F ), ∆(F ), and ∆(G) (see Sakata 2009). We stipulate the
following as the total number of votes at l

v(l) := #((&r ∪ &r ′) ∩ Π ∩ Σ(F )) \ ((r − ∆(G)) ∪ (r ′ − ∆(G))),

where r − ∆(G) := {r − a ∈ Π | a ∈ ∆(G)}. Furthermore, for a subset F̄ ⊂ F at l,
we stipulate the following as the number of votes for F̄ or for the candidate values
of the unknown syndromes determined by using f ∈ F̄ at l

v(F̄ ) := #((&r ∪ &r ′) ∩ Π ∩ Σ(F̄ )) \ ((r − ∆(G)) ∪ (r ′ − ∆(G))).

From the nature of iteration of BMS algorithm, we have the following:

Lemma 3 If we have a minimal polynomial set F⊕ of u(l + 1) by updating F at
the iteration at l, the difference #∆(F⊕) − #∆(F ) is identical with the number of
votes for Ffail := {f ∈ F | f [u]r ≠ 0 ∨ f [u]r ′ ≠ 0} for the pair of conjugate points
r and r ′ at l.

Then, we have the following conclusion, which assures the validity of the BMS
algorithm with majority voting for finding the correct values of the unknown syn-
drome in case of correctable number of errors.
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Lemma 4 Provided the number of errors is t ′ ≤ t⊥G , the polynomials f in F which
give the correct syndrome values ur or ur ′ have the majority of votes among F .

Proof It is shown that #((r − ∆(G)) ∪ (r ′ − ∆(G))) ∩ Π = #∆(G), and thus if the
subset Ffail of f which does not give the correct syndrome values ur or ur ′ at l has
the majority of votes, in view of Lemma 3 and #∆(F )\∆ = #∆(G), we should have
#∆(F⊕)\∆ > #∆(F )\∆+ 1

2v(l) = #∆(F )\∆+ 1
2 (2t⊥G −#∆(F )\∆−#∆(G)) =

t⊥G , which contradicts the fact that for the eventual minimal polynomial set F and
auxiliary polynomial set G, we have #∆(F ) \ ∆(= #∆(G)) = t ′, where t ′ = #E for
the zero variety V (M(e)) = E of the error locator submodule M(e). !

Our syndrome decoding method for Hermitian codes of codelength n has
computational complexity O(n

7
3 ) compared with O(n3) of the method based on

Gaussian elimination. This method can be applied to not only any one-point codes
from algebraic curves but also codes from order domains (Høholdt et al. 1998;
Geil 2009) at lease when the transcendence degree is one.

3 Multivariate Polynomial Interpolation and List Decoding
of Primal Codes

A univariate polynomial interpolation is given by the well-known Lagrange interpo-
lating polynomial, i.e. given a set of M points {(x(l), y(l)) ∈ F2

q | 1 ≤ l ≤ M} in the
2-D space F2

q , where x(j) ≠ x(l), j ≠ l, 1 ≤ j, l ≤ M , a polynomial with minimum
degree satisfying the interpolation condition f (x(l)) = y(l), 1 ≤ l ≤ M is

f (x) =
M∑

l=1

yl

∏
j≠l (x − x(j))

∏
j≠l (x

(l) − x(j))
.

We can consider any field, provided exact computation without numerical errors is
done. However, we restrict to finite fields Fq with sufficiently large q to concern
ourselves with decoding of algebraic geometry codes and to make our discussions
simpler.

In the general case of multivariate interpolation, we cannot always have such an
explicit interpolating polynomial as above. This is the following problem. Given a
set of M points {(X(l), y(l)) ∈ (Fq)N+1 | 1 ≤ l ≤ M} in the (N + 1)-dimensional
space FN+1

q over Fq , where X(l) = (x
(l)
1 , . . . , x

(l)
N ) ∈ FN

q , y(l) ∈ Fq , 1 ≤ l ≤ M and
we assume X(j) ≠ X(l), j ≠ l, 1 ≤ j, l ≤ M , we want to find a N -variate polyno-
mial f , which is simplest in some sense, satisfying the following condition:

f (X(l)) = y(l), 1 ≤ l ≤ M. (2)

Since this is a system of linear equations for the unknown coefficients of f , its
solution is not always unique (if it exists), which is given as a sum of a (special)



174 S. Sakata

solution of (2) and a general solution f of the following homogeneous system which
is derived from (2) by putting y(l) = 0, 1 ≤ l ≤ M :

f (X(l)) = 0, X(l) ∈ V, (3)

where V := {X(l) | 1 ≤ l ≤ M} ⊂ FN
q . The set of solutions f of (3)

I(V ) := {f ∈ P | f (X(l)) = 0, X(l) ∈ V }

is an ideal of the ring P = Fq [x1, . . . , xN ]. Thus, provided ‘simplicity’ is interpreted
as ‘minimality’ as in Gröbner basis theory, the interpolation problem (2) can be
divided into two subproblems, i.e. finding a Gröbner basis of the ideal corresponding
to the homogeneous system (3) and obtaining a special (minimal) solution of the
non-homogeneous system (2).

Now, for the arrays u(l) = (u
(l)
a ), v(l) = (v

(l)
a ), a ∈ NN , 1 ≤ l ≤ M and u = (ua),

v = (va), a ∈ NN defined by

u(l)
a := (X(l))a, v(l)

a := y(l)(X(l))a, a ∈ NN, 1 ≤ l ≤ M;

ua :=
∑

1≤l≤M

u(l)
a , va :=

∑

1≤l≤M

v(l)
a , a ∈ NN,

it holds that

Lemma 5 A polynomial f = ∑
a∈supp(f ) c(f, a)Xa satisfies the interpolation con-

dition (2) iff f ◦ u = v, i.e.

f ⟨u⟩b =:
∑

a∈supp(f )

c(f, a)ua+b = vb, b ∈ NN. (4)

Proof

∑

a∈supp(f )

c(f, a)(X(l))a = y(l), 1 ≤ l ≤ M ⇔

∑

a∈supp(f )

c(f, a)(X(l))a+b = y(l)(X(l))b, b ∈ NN, 1 ≤ l ≤ M ⇔

∑

a∈supp(f )

c(f, a)u
(l)
a+b = v

(l)
b , b ∈ NN, 1 ≤ l ≤ M ⇔

∑

a∈supp(f )

c(f, a)ua+b = vb, b ∈ NN,

where the equivalence between the third and fourth conditions comes from the linear
independence of the arrays u(l), 1 ≤ l ≤ M (Remark: we assume that q is sufficiently
large). !



The BMS Algorithm and Decoding of AG Codes 175

The linear recurrence corresponding to the homogeneous system (3) is just the
homogeneous linear recurrence which is derived from (4) by letting the right-hand
array v := 0, and it is easy to see that the characteristic ideal I(u) of the left-hand
array u is identical with I(V ).

Such a multivariate interpolation problem as above appears in the context of list
decoding (Sudan 1997; Shokrollahi and Wasserman 1999; Guruswami and Sudan
1999), which is a generalization of conventional bounded-distance decoding (in-
cluding syndrome decoding) of algebraic geometry codes. First, we give a simple
sketch of list decoding of (primal) RS codes. We take a primal (n = q − 1, k, d =
q − k) RS code C = {c = (f (αi ))0≤i≤n−1 | f ∈ Fq [x], deg(f ) ≤ k − 1} and an
integer τ (< n) which is more than the number of correctable errors t = ⌊n−k

2 ⌋.
Given a received word r = (rj )0≤j≤n−1 ∈ Fn

q , we want to find all the codewords
c = (cj )0≤j≤n−1 ∈ C whose components differ from r by at most τ components,
i.e. for r = c + e with e = (ej )0≤j≤n−1 ∈ Fn

q , we assume that the size t ′ := #E of the
error locators E = {αj | ej ≠ 0, 0 ≤ j ≤ n − 1} is less than or equal to τ . Then, it
is shown below that list decoding is reduced to an interpolation problem, where the
leading exponent le(Q)(∈ N2) of a bivariate polynomial Q = Q(x,y) is introduced
according to the term ordering < defined by the weight w = (1, k − 1) (and the
lexicographic ordering <L s.t. x <L y).

Lemma 6 Assume that a nonzero bivariate polynomial Q(x,y) in Fq [x, y],
Q(x,y) = ∑

(i,j)∈supp(Q) Qij x
iyi , satisfies the condition

Q(αj , rj ) = 0, 0 ≤ j ≤ n − 1 (5)

and that its leading exponent le(Q) < (n − τ,0). Then, the polynomial f corre-
sponding to a codeword c within the radius τ from the received word r satisfies
y − f (x) | Q(x,y).

Proof By the condition le(Q) < (n − τ,0), the univariate polynomial Q(x,f (x))

has degree at most n − τ − 1. On the other hand, since the identities rl = f (αl )

hold except for at most τ integers l, 1 ≤ l ≤ n, we have that Q(αl , f (αl )) = 0 for al
least n − τ integers l, from which it follows that Q(x,f (x)) = 0 identically. Thus,
y − f (x) | Q(x,y) as univariate polynomials over the polynomial ring Fq [x]. !

Therefore, by finding Q(x,y) satisfying the interpolation condition (5) and fur-
thermore finding its factors in the form of y − f (x), we can obtain f which gives
a candidate codeword. The 2-D linear recurrence derived from (5) is a special case
of the homogeneous linear recurrence (4), where the right-hand side is 0. As a con-
clusion, we can obtain Q among a Gröbner basis of the characteristic ideal of the
2-D array u = (ua) defined by ua := ∑

0≤j≤n−1(X
(j))a , a ∈ N2 for X(j) = (αj , rj ),

0 ≤ j ≤ n− 1. Our method of finding the interpolation polynomial for list decoding
of RS codes of codelength n and coding rate k

n = R has computational complexity

O(R− 1
2 n2), which is O(n2) if the coding rate R is fixed as a constant when both
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values n and k become asymptotically larger, compared with O(n3) of the method
based simply on Gaussian elimination.

We do not discuss the existence condition of such an interpolation polynomial as
above, although it is related with a practically important problem of how much list
decoding can contribute to improvement of reliability in transmission. If it exists, it
is the most convenient to have an interpolation polynomial Q with minimal leading
exponent le(Q).

List decoding of codes from curves also is reduced to an interpolation problem.
For simplicity, we consider only primal Hermitian codes C := {c =
(f (Pj ))0≤j≤n−1 | f ∈ L(mP∞)(= Fq [Π(m)])}. In this case, the leading exponent
of a tri-variate polynomial Q(x,y, z) with support supp(Q) (⊂ Π(m) × N) is in-
troduced over Π(m) × N according to the term ordering < defined by the weight
w = (q1, q1 + 1,m) (and the lexicographic ordering <L s.t. x <L y <L z). Then,
we have:

Lemma 7 We assume that a nonzero polynomial (or rather function) Q(P, z) =
Q(x,y, z) = ∑

(a,l)∈supp(Q) qa,lP
azl (∈ Fq [Π(m)][z]) satisfies the condition

Q(Pj , rj ) = 0, 0 ≤ j ≤ n − 1 (6)

and has leading exponent le(Q) < (⌊n−τ
q1

⌋,0,0), where the components of P =
(x, y) are viewed not only as the coordinates of P but also as functions on the curve
X . Then, the function f (x, y) ∈ Π(m) corresponding to a codeword c within the
radius τ from the received word r satisfies z − f (x, y) | Q(x,y, z).

Proof Since le(Q) < (⌊n−τ
q1

⌋,0,0), the algebraic function Q(x,y,f (x, y)) has
pole order less than n− τ (at the pole P∞). On the other hand, since rj = f (Pj ) ex-
cept for at most τ integers j , we have that Q(Pj ,f (Pj )) = 0 for at least n − τ
integers j , from which it follows that Q(P,f (P )) has the total zero order of
n − τ or more. Since it does not have any other pole except for P∞, we have
that Q(P,f (P )) = 0 identically, which implies that z − f (x, y) | Q(x,y, z) when
Q(x,y, z) = Q(P, z) is viewed as a univariate polynomial w.r.t. the main variable z
over the ring Fq [Π]. !

Also in this situation, the interpolation condition (6) is reduced to a homogeneous
linear recurrence. Consequently, we can obtain Q among a Gröbner basis of the
characteristic ideal of the 3-D array u = (ua) defined by ua := ∑

0≤j≤n−1(X
(j))a ,

a ∈ N3 for X(j) = (Pj , rj ), 0 ≤ j ≤ n − 1.
From the viewpoint of linear algebra, the linear recurrence (4) is nothing but

a system of linear equations for unknowns c(f, a), a ∈ supp(f ). Particularly, in
the 2-D case, it is just a 2-D block-Hankel or 2-D block-Toeplitz system of linear
equations, where the extent supp(f ) of a solution f is also unknown in our situation,
distinctly from solving the ordinary system of linear equations. For the purpose of
multivariate interpolation or decoding of codes, our method is unique and distinct
from the known fast methods of solving block-Hankel systems or other interpolation
methods.
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Soon after Sudan (1997) proposed his list decoding method, Guruswami and Su-
dan (1999) gave an improvement called the GS list decoding method, which can be
effective even for higher coding rate, while the original Sudan list decoding works
only for coding rate ≤ 1

3 . It is based on the notion of zeros with multiplicity de-
fined as follows. Here we consider RS codes as in Lemma 6 for simplicity. A point
X(l) = (x(l), y(l)) ∈ (Fq)2 is called a zero with multiplicity s or more of a polyno-
mial Q(x,y) = ∑

(i,j)∈supp(Q) Qij x
iyi = ∑

a∈supp(Q) c(Q,a)Xa ∈ Fq [x, y] iff in
the expansion

Q(l)(x, y) =
∑

a∈N2

c(Q(l), a)Xa (7)

of the polynomial Q(l)(x, y) := Q(x + x(l), y + y(l)), all the terms c(Q(l), a)Xa

vanish, i.e. c(Q(l), a) = 0, for ∀a = (a1, a2) ∈ N2 s.t. a1 + a2 < s. Then, we have a
modification of Lemma 6:

Lemma 8 Assume that a nonzero bivariate polynomial Q(x,y) = ∑
(i,j)∈supp(Q)

Qij x
iyi (∈ Fq [x, y]) has zeros (αj , rj ), 0 ≤ j ≤ n − 1, each with multiplicity s or

more and that it has deg(Q) <T (s(n − τ ),0). Then, the polynomial f correspond-
ing to a codeword within the radius τ from r satisfies y − f (x) | Q(x,y).

Neglecting discussions on the error correction performance of GS list decoding,
we will show that one can apply the BMS algorithm to find such an interpolation
polynomial with minimal degree. First we remark the following facts.

Lemma 9 For a finite subset V = {X(l) = (x(l), y(l)) | 0 ≤ l ≤ n − 1} ⊂ F2
q , any

integer s, and any point c ∈ N2, each of the following sets is an ideal of Fq [x, y],
the former of which we call the ideal of the zero variety V with multiplicity s.

I(V ; s) := {Q(x,y) ∈ Fq [x, y] | c(Q(l), a) = 0, a = (a1.a2) ∈ N2,

a1 + a2 < s,0 ≤ l ≤ n − 1},
I(V ; c) := {Q(x,y) ∈ Fq [x, y] | c(Q(l), a) = 0, a = (a1.a2) ∈ N2,

a ≤P c,0 ≤ l ≤ n − 1}.

Next, for two points a = (a1, a2), b = (b1, b2) ∈ N2, we introduce the 2-D bino-
mial coefficients

(
b

a

)
:=

(
b1

a1

)(
b2

a2

)
,

where if it does not hold that a ≤P b,
(b
a

)
= 0. Then, the coefficients c(Q(l), a) of

the expansion of (7) are written as

c(Q(l), a) =
∑

b∈supp(Q):b≥P a

(
b

a

)
c(Q,b)(X(l))b−a.
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Therefore,

Lemma 10 Q = ∑
a∈supp(Q) c(Q,a)Xa ∈ I(V , c) ⇔

∑

b∈supp(Q):b≥P a

(
b

a

)
c(Q,b)(X(l))b−a = 0, a ∈ &c, 0 ≤ l ≤ n − 1.

For a point c ∈ N2, we introduce a 2-D array u = (ub) as follows:

ub :=
∑

0≤l≤n−1

(
b

c

)
(X(l))b−c, b ∈ N2.

Then,

Lemma 11 Q = ∑
a∈supp(Q) c(Q,a)Xa ∈ I(V , c) ⇔ Q ◦ u = 0, i.e.

∑

a∈supp(Q)

c(Q,a)ua+b = 0, b ∈ N2.

For the ideal I(V , s), we introduce s 2-D arrays u(i) = (u
(i)
b ), 1 ≤ i ≤ s as fol-

lows:

u
(i)
b :=

∑

0≤l≤n−1

(
b

c(i)

)
(X(l))b−c(i)

, b ∈ N2, (8)

where c(i) := (i − 1, s − i) ∈ N2, 1 ≤ i ≤ s. Then, in view of {a = (a1, a2) ∈ N2 |
a1 + a2 < s} = ∪1≤i≤s&c(i) , we have

Corollary 1 Q ∈ I(V , s) ⇔ Q ◦ u(i) = 0, 1 ≤ i ≤ s, i.e.

∑

a∈supp(Q)

c(Q,a)u
(i)
a+b = 0, b ∈ N2, 1 ≤ i ≤ s.

Consequently, it turns out that GS list decoding of primal RS codes can be solved
by the multiple-array BMS algorithm (Sakata 1989), which is a modification of the
BMS algorithm for finding a minimal polynomial set of a finite set of 2-D arrays
u(i), 1 ≤ i ≤ s as in (8) with X(l) = (αl , rl) ∈ F2

q , 0 ≤ l ≤ n − 1.
Compared with O(n3s6) of the method based simply on Gaussian elimination,

our method (Numakami et al. 2000) of finding the interpolation function for GS list
decoding with multiplicity s of RS codes of codelength n and coding rate R has
the same computational complexity O(R− 1

2 n2s4) as other efficient algorithms, e.g.
Koetter–Vardy (2003), O’Kieffe–Fitzpatrick (2002), Lee–O’Sullivan (2006), but our
method is unique in the sense that it uses (syndrome-like) arrays which contain in
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the condensed form all the information necessary for decoding. For GS list decod-
ing of algebraic geometry codes, there have been several approaches (Sakata 2001;
O’Keeffe and Fitzpatrick 2007; Lee and O’Sullivan 2008), etc., which we do not
treat here because we need more involved discussions for that purpose. For general
multivariate interpolation the Buchberger–Möller (1982, 2009a) and the Marinani–
Möller–Mora (1993) algorithm are alternatives, in comparison with which the BMS
algorithm is conjectured to have less computational complexity, depending on the
situations, although the exact estimations remain to be investigated.

4 Other Relevant Decoding Methods of Primal/Dual Codes

In this section, we consider a special case of Sudan list decoding, i.e. the case of
list size 1. In this case, we treat nothing but polynomials of degree 1 w.r.t. the main
variable and bounded-distance decoding of primal codes up to half the correction
bound.3

Again we take a primal (n = q − 1, k, d = q − k) RS code, and we assume that
the number τ of errors is less than d

2 as in Sect. 2. As a corollary of Lemma 6, we
have

Lemma 12 4 If a bivariate polynomial of the form

Q(x,y) = Q0(x) − yQ1(x) (≠ 0) (∈ Fq [x, y])

satisfies the conditions

(1) deg(Q0(x)) < n − τ, deg(Q1(x)) < n − τ − (k − 1);
(2) Q(αj , rj ) = 0, 0 ≤ j ≤ n − 1,

(9)

then Q1(x) is an error locator polynomial which has E as its zeros, i.e. Q1(α
j ) = 0

for αj ∈ E , and Q1(x) | Q0(x) so that the quotient f (x) = Q0(x)
Q1(x) is the message

polynomial corresponding to the sent codeword c = (cj ), i.e. cj = f (αj ).

In fact, such a polynomial Q(x,y) exists as shown in the following lemma so that
we can obtain it by applying the BMS algorithm to the 2-D array u = (ua) defined
by ua := ∑

0≤j≤n−1(X
(j))a , a ∈ N2 for X(j) = (αj , rj ), 0 ≤ j ≤ n − 1 similarly to

list decoding, where in this case we do not need to be worried about factorization of
Q(x,y).

3Of course, a primal code can be decoded as a dual code of its dual by using syndrome decoding.
But, sometimes from both the practical and theoretical points of view it is required to have some
direct decoding method as a primal code itself.
4This lemma is given in Justesen and Høholdt (2004).
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Lemma 13 There exists at least one nonzero polynomial Q(x,y) as in Lemma 12.

Sine we assume that τ is less than or equal to the number of correctable errors
t = ⌊ d−1

2 ⌋, there exists only a single codeword c s.t. dis(c, r) ≤ τ and thus the above
method gives us the ordinary bounded-distance decoding of primal RS codes. By
the way, the above method based on the 2-D BMS algorithm can be replaced by the
vectorial BM algorithm, which is the 1-D vectorial BMS algorithm. First, we take n

pairs of 1-D arrays v(j) = (v
(j)
i ), w(j) = (w

(j)
i ), i ∈ N, 0 ≤ j ≤ n − 1 defined by

v
(j)
i := (αj )i , w

(j)
i := −rj (α

j )i , i ∈ N,

from which we have a pair of 1-D arrays v = (vi), w = (wi) defined by

vi :=
n∑

j=1

v
(j)
i , wi :=

n∑

j=1

w
(j)
i , i ∈ N.

Then, we have

Lemma 14 The condition (9) is equivalent to the compound linear recurrence

d0∑

i=0

c(Q0, i)vi+j +
d1∑

i=0

c(Q1, i)wi+j = 0, j ∈ N. (10)

Thus, we can apply the vectorial BM algorithm (Sakata 1991, 2009) to the pair
(v,w) of 1-D arrays so that we can have a Gröbner basis of the module defined by
the pair of arrays as a minimal polynomial vector set, in which the desired solution
(Q0,Q1) is contained. Thus, we have another method of the ordinary bounded-
distance decoding of primal RS codes.5 In form, this method is similar to the de-
coding method (Sakata 2006) based on the vectorial BM algorithm which we gave
as an alternative to the Welch–Berlekamp (1986) decoding algorithm of the dual RS
code, where we have instead of the condition (9)

Q

(
αj ,

rj

pjαj

)
= 0, 0 ≤ j ≤ d − 2, (11)

where pj , 0 ≤ j ≤ d − 2 are defined by

p(x) =
d−2∏

i=1

(x − αi ) =
d−2∑

j=0

pjx
j . (12)

5The vectorial BMS algorithm (Sakata 1991, 2009) for any dimension N is given in 1991. Fitz-
patrick (1995) gave a similar method, which may be considered to be equivalent to a version of the
vectorial BM algorithm according to Blackburn–Chambers’ (1996) explanation, where the swap-
ping based on the special term ordering <r used in the Fitzpatrick algorithm corresponds to the
degree change in the (vectorial) BM algorithm.
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For the primal Hermitian code C(m) we have a corollary of Lemma 7.

Lemma 15 If a trivariate polynomial

Q(x,y, z) = Q0(x, y) − zQ1(x, y) ∈ Fq [Π(m)][z]

satisfies the conditions

(1) o(Q0) ≤ m + τ + g, o(Q1) ≤ τ + g;
(2) Q(xl, yl, rl) = 0, 0 ≤ l ≤ n − 1,

(13)

then Q1(x, y) is an error locator function which has E as its zeros, i.e. Q1(Pj ) = 0
for Pj ∈ E , and Q1(x, y) | Q0(x, y) so that the quotient f (x, y) := Q0(x,y)

Q1(x,y) is the
message function corresponding to the sent codeword c, i.e. cj = f (Pj ), 0 ≤ j ≤
n − 1.

In fact, such a function Q(x,y, z) exists as shown in the following lemma so
that we can obtain it by applying the 3-D BMS algorithm to the 3-D array u = (ua)

defined by ua := ∑
0≤j≤n−1(X

(j))a , a ∈ N3 for X(j) = (Pj , rj ), 0 ≤ j ≤ n − 1
similarly to the list decoding, where in this case we do not need to be worried about
factorization of Q(x,y, z).

Lemma 16 There exists at least one nonzero function Q(x,y, z) as in
Lemma 15.

If τ is less than or equal to t̂ = ⌊ dG−g−1
2 ⌋ (< tG), then there exists only a single

codeword c s.t. dis(c, r) ≤ τ and thus this method (Fujisawa and Sakata 2005) gives
us the ordinary bounded-distance decoding of primal Hermitian codes up to t̂ . By the
way, the method based on the 3-D BMS algorithm can be replaced by the vectorial
2-D BMS algorithm. Instead of the 3D array u as above, we take a pair of 2D arrays
v = (va), w = (wa), a = (a1, a2) ∈ Π defined by

va :=
∑

0≤l≤n−1

P a
l =

∑

0≤l≤n−1

(αl )
a1(βl )

a2 , (14)

wa := −
∑

0≤l≤n−1

rlP
a
l = −

∑

0≤l≤n−1

rl(αl )
a1(βl )

a2 , (15)

for which the following compound linear recurrence must hold:
∑

a∈supp(g)

c(g, a)va+b +
∑

a∈supp(h)

c(h, a)wa+b = 0, b ∈ Π, (16)

where g(:= Q0) = ∑
a∈supp(g) c(g, a)Xa and h(:= Q1) = ∑

a∈supp(h) c(h, a)Xa .
Thus, we can apply the vectorial BMS algorithm to the pair (v,w) of 2-D arrays
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so that we can have a Gröbner basis of the module defined by the pair of arrays as
a minimal polynomial vector set, in which the desired solution (g,h) = (Q0,Q1) is
contained. Thus, we have another method of the ordinary bounded-distance decod-
ing of primal Hermitian codes up to t̂ . Furthermore, it is shown in Fujisawa et al.
(2006) that most of errors up to half the Goppa bound dG of the code C(m) over a
large finite field Fq can be corrected by the decoding method, i.e. for t := ⌊ dG−1

2 ⌋,
1 − 1

q of t or less errors can be corrected.
We should not ignore the fact that the interpolation problems (9), (13) can be

solved either by Buchberger–Möller (1982) algorithm or Mariani–Möller–Mora
(1993) algorithm, both of which are a general method of multi-variate interpola-
tion problem although our method based on the BMS algorithm discussed above
also is a general method of multi-variate interpolation problem, or by the Farr–Gao
(2005) algorithm which is explained as a generalization of Newton’s interpolation
for univariate polynomial. Our method seems to have less computational complexity
than them, but the exact comparison remains to be investigated.

Recently a novel decoding algorithm of primal RS codes which is based
on higher-dimensional interpolation has been published by Parvaresh and Vardy
(2005). Its error correction performance is superior to GS list decoding, where the
ratios of the number of correctable errors per the codelength are τPV

n = 1 − R
N

N+1 ,
if (N + 1)-variate polynomial interpolation is used, for the Parvaresh–Vardy (PV)
method and τGS

n = 1 − R
1
2 for GS method, respectively. In fact, GS list decoding is

a special case of N = 1 of the PV method. In case of N = 2, in encoding, the PV
method gives not only the codeword of c = (cj ) = ev(f ) ∈ C for a message poly-
nomial f (x) = ∑k−1

i=0 fix
i ∈ K[x] of the actual RS code C (⊂ Kn) but also another

codeword c′ := ev(g) ∈ C for g(x) = (f (x))a mod h(x), and then sends the pair
of codewords c, c′ ∈ C, where h(x) ∈ K[x] is an irreducible polynomial over K of
degree k, and a is any integer satisfying a special condition. In decoding, given a
pair of received words y = (yj ), z = (zj ) ∈ Kn, one tries to find a Gröbner basis of
the ideal

I(y, z) := {Q(x,y, z) ∈ K[x, y, z] | Q(αj , yj , zj ) = 0,0 ≤ j ≤ n − 1}

w.r.t. the term order defined by the weight (1, k−1, k−1). Then, from the minimum
element Qm(x, y, z) of I(y, z) one computes P(y, z) = Qm(x, y, z) mod h(x), in-
terpreted as an element of K̃[y, z], where K̃ ≃ K[x]/⟨h(x)⟩ is the extension field
of K, and obtains the univariate polynomial P̃ (y) := P(y, ya) ∈ K̃[y], whose roots
∈ K̃ can be candidates of the message polynomial f (x) ∈ K[x]. Thus, the multivari-
ate interpolation, which is a key step of the PV decoding method, can be solved by
the BMS algorithm efficiently.

5 Conclusion

We have discussed how the BMS algorithm and its variations (Sakata 1988, 1989,
1990, 1991, 2009) are applied to various decoding methods of algebraic geometry



The BMS Algorithm and Decoding of AG Codes 183

codes and multivariate interpolation related to list decoding, and how these decoding
methods are connected with Gröbner bases via multidimensional arrays and linear
recurrences. Although we have explained our decoding methods mainly as regards
Reed–Solomon codes and Hermitian codes, our methods work for one-point codes
from any algebraic curves and codes from order domains. For example, primal and
dual one-point codes which have an Fq(fρ)-module basis (see Sect. 7 of Leonard
2009a) can be decoded by the vectorial BMS algorithm. In the sequel, we have
clarified that these problems are reduced to finding a set of minimal polynomials,
which corresponds to a Gröbner basis, of a given (set of) multidimensional array(s).6

We have given a basic set of algorithms for solving these problems, which consti-
tute a unified system of unique methods in comparison with other various relevant
methods related to Gröbner bases. In fact, there have been many other pioneer-
ing investigations (Justesen et al. 1989, 1992; Pellikaan 1989, 1993; Skorobogatov
and Vlăduţ 1990; Porter et al. 1992; Shen 1992; Duursma 1993; Ehrhard 1993;
Feng et al. 1994), etc.7 on decoding algebraic geometry codes, but those are less ef-
ficient than our methods based on the Gröbner basis theory (Buchberger 1965, 1970,
1985, 1998, 2006) and the BMS algorithm (Sakata 1988, 1990). In Leonard (2009b),
Guerrini and Rimoldi (2009) in this issue, other decoding methods from Gröbner
basis perspectives are discussed. For encoding of AG codes, see Little (2009).
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