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Long time ago

Z : Addition, substraction as geometric operations.

Q : Ratio of numbers. Thalès and the pyramids (-620-546).

The multiplication is commutative (Pappus theorem).

!! all is number (commensurable) for the Pythagore’s school (-585-400).

?? No, dare to say Hippase de Métaponte, not
√

2.

R : It’s not a problem, says Dedekind, the missing numbers are those which are
inbetween.

Q : Yes, but
√

2 is special, says Galois.
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But today ?
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Today, we are able to do 1010 floating point
operations per second on a computer.

But dealing with algebraic numbers and solutions
of polynomial equations is still critical in many

situations.
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In CAD

Constructions

2 Intersection points of curves, surfaces.

2 Approximation of intersection curves. Arrangements of patches.

2 Offsets, filets, drafts, medial axis.
⇒ fast solvers, control of the error, refinement procedures.

Detections

2 Self-intersection, singularities, ray-tracing.

2 Geometric approximation with simpler objects.
⇒ fast questers, isolation/sudvision/exclusion tools.
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Predicats

2 Sorting points on a curve.

2 Connectivity. Topological coherence.

2 Geometric predicates on constructed points, curves, . . .

⇒ fast tests (µs), filtering technics, datastructure for algebraic numbers.

Representations

2 Parametrised/implicit.

2 Approximation of shape.

2 Model reduction.

⇒ global resultant methods, semi-algebraic geometry, multilevel,
multiscale bases.
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Modelisation from images
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Numerical
ajustment of
the 3D model.

Extraction of points, lines,
planes, . . .

Symbolic treatement of
the geometric constraints.
• algebra, rewritting,
simplification.
• proof, automatic discovering
of properties.
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A robotic problem

Equations: ‖R Yi + T −Xi‖2 − d2
i = 0, i = 1, . . . , 6,

R = 1
a2+b2+c2+d2


a2 − b2 − c2 + d2 2 ab− 2 cd 2 ac + 2 bd

2 ab + 2 cd −a2 + b2 − c2 + d2 2 bc− 2 ad

2 ac− 2 bd 2 ad + 2 bc −a2 − b2 + c2 + d2

, T =

 u/z
v/z
w/z


Solutions: Generically 40 solutions: [RV93], [M94], [L93].

IP3×P3 = P1
2 ∩ Q8

2 ∩Q20
1 ∩ Q40

0 ∩Q
2×12
−1,1 ∩Q

10
1,−1 ∩Q−1︸ ︷︷ ︸

imbeddedcomponents

Solvers: fast and accurate; used intensively for several values of di and same
geometry of the plateform; avoid singularities.
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Solving
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Equations with approximate coefficients

2 We consider the neighbourhood of a given system.

2 Family of systems depending on parameters, of the same “shape”.

2 Around a regular value of the parameters,

• continuity of the solution set.
• continuity of the algebraic structure.

2 At a singular value of the parameters, all sort of bad things may happen.

How to proceed ?

• Analyse the class of systems that we have to solve.
• Apply tuned methods for generic systems of this class.
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Solvers

• Analytic solvers: exploit the value of f and its derivatives.

Newton like methods, Minimisation methods, Weierstrass method.

• Homotopic solvers: deform a system with known roots into the system
to solve.
Projective, toric, flat, deformation.

• Subdivision solvers: use an exclusion criterion to isolate the roots.

Taylor exclusion function, interval arithmetic, Descartes rule.

• Algebraic solvers: exploit the known relation between the unkowns.

Gröbner basis, normal form computations. Reduction to univariate or eigenvalue
problems.

• Geometric solvers: project the problem onto a smaller subspace.

Resultant-based methods. Reduction to univariate or eigenvalue problems.

B.Mourrain 10



Subdivision
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Subdvision solver

2 Bernstein basis: f(x) =
∑d

i=0 bi B
i
d(x), where Bi

d(x) =
(
d
i

)
xi(1− x)d−i.

b = [bi]i=0,...,d are called the control coefficients.

• f(0) = b0, f(1) = bd,

• f ′(x) =
∑d−1

i=0 ∆(b)i B
i
d−1(x) where ∆(b)i = bi+1 − bi.

2 Subdivision by De Casteljau algorithm:
b0
i = bi, i = 0, . . . , d,

br
i (t) = (1− t) br−1

i (t) + t br−1
i+1 (t), i = 0, . . . , d− r.

• The control coefficients b−(t) = (b0
0(t), b

1
0(t), . . . , b

d
0(t)) and b+(t) =

(bd
0(t), b

d−1
1 (t), . . . , b0

d(t)) describe f on [0, t] and [t, 1].

• For t = 1
2, br

i = 1
2(b

r−1
i + br−1

i+1 ).; use of adapted arithmetic.

• Number of arithmetic operations bounded by O(d2), memory space O(d).
Indeed, asymptotic complexity O(d log(d)).
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2 Isolation of real roots

Proposition: (Descartes rule) #{f(x) = 0; x ∈ [0, 1]}=V (b)−2p, p ∈ N.

Algorithm: isolation of the roots of f on the interval [a, b]

input: A representation (b, [a, b]) associate with f and ε.
• If V (b) > 1 and |b− a| > ε, subdivide;
• If V (b) = 0, remove the interval.
• If V (b) = 1, output interval containing one and only one root.
• If |b− a| ≤ ε and V (b) > 0 output the interval and the multiplicity.
output: list of isolating intervals in [a, b] for the real roots of f or the
ε-multiple root.

• Multiple roots (and their multiplicity) computed within a precision ε.
• x := t/(1− t) : Uspensky method.

• Complexity: O(1
2d(d + 1) r

(
dlog2

(
1+
√

3
2s

)
e − log2(r) + 4

)
) [MVY02+]

• Natural extension to B-splines.
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Benchmarks

Pentium III 933Mhz.

The number of equations per s. (C++ with 64-bit floats; ε = 0.000001):

degree 8 9 12 16 18 20
25 000 20-22 000 12-13 000 7.5-8 000 5.9-6.2 000 5.4 000

Equations per s. (precision bits vs. degree; ε = 0.000001) using GMP library:

16 20 30 40 60 80 100
128-bit 96 62.5 25.4 12.5 – – –
192-bit 83.3 53.2 21.5 10.8 4.0 – –
256-bit 73.5 47.2 18.9 9.5 3.6 1.8 –
384-bit 60.2 37.7 15.2 7.6 2.9 1.4 0.8
512-bit 51 31.2 12.2 6.1 2.3 1.2 0.7

Compare favorably with other efficient solvers (Aberth method, mpsolve).
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Algebraic method
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The quotient algebra A

• The polynomial ring R = K[x1, . . . , xn].

• The equations f1 = 0, . . . , fm = 0 to solve, with fi ∈ R.

• The ideal I = (f1, . . . , fm) = {
∑

i hi fi;hi ∈ R}.

• The quotient algebra A = R/I of polynomials modulo I: a ≡ a′ iff a− a′ ∈ I.

(cf. polynomial functions on the set of solutions.)

• How to represent and exploit effectively the structure of A ?

2 A basis for A.

2 The multiplicative tables.
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Multiplication operators

We assume that Z(I) = {ζ1, . . . , ζd} ⇔ A of finite dimension D over K.

Ma : A → A
u 7→ a u

Mt
a : Â → Â

Λ 7→ a · Λ = Λ ◦Ma

Theorem:

2 The eigenvalues of Ma are {a(ζ1), . . . , a(ζd)}.

2 The eigenvectors of all (Mt
a)a∈A are (up to a scalar) 1ζi

: p 7→ p(ζi).

Theorem: In a basis of A, all the matrices Ma (a ∈ A) are of the form

Ma =

 N1
a 0

. . .

0 Nd
a

 with Ni
a =

 a(ζi) ?
. . .

0 a(ζi)


Corollary: (Chow form)
∆(u) = det(u0 + u1 Mx1 + · · ·+ un Mxn) =

∏
ζ∈Z(I)(u0 + u1ζ1 + · · ·+ unζn)µζ .

B. Mourrain 17



Rational Univariate Representation of the roots

Algorithm: Rational Univariate Representation.

1. Compute a multiple of the Chow form ∆(u) and its square free part d(u).

2. Choose a generic t ∈ Kn+1 and compute the first coefficients of

d(t + u) = d0(u0) + u1 d1(u0) + · · ·+ un dn(u0) + · · ·

3. A non minimal rational univariate representation of the roots is given by ζ1 =
d1(u0)

d′0(u0)
, . . . ,

ζn =
dn(u0)

d′0(u0)
, d0(u0) = 0.

4. Factorize d0(u0) and keep the good factors for a minimal representation.

Remark: t is generic iff gcd(d0(u0), d′0(u0)) = 1.

B. Mourrain 18



Normal form computation

Compute the projection of K[x] onto a vector space B, modulo the ideal
I = (f1, . . . , fm).

➱ Grobner basis [CLO92, F99].

Compatibility with a monomial ordering but numerical instability.

➱ Generalisation [M99, MT00, MT02].

No monomial ordering required. Linear algebra with column pivoting ; better
numerical behavior of the basis.

Linear algebra on sparse matrices. Generic Sparse LU decomposition.

B. Mourrain 19



Application in Geometry
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Solving by subdivision methods

Rectangular patches: f(x, y) =
∑d1

i=0

∑d2
j=0 bj,iB

i
d1

(x)Bj
d2

(y) associated with
the box [0, 1]× [0, 1].

• Subdivision by row or by column, similar to the univariate case.

• Arithmetic complexity of a subdivision bounded by O(d3) (d = max(d1, d2)),
memory space O(d2).

Triangular patches: f(x, y) =
∑

i+j+k=d bi,j,k
d!

i!j!k! x
i yj (1−x−y)k associated

with the representation on the 2d simplex.

• Subdivision at a new point. Arithmetic complexity O(d3), memory space
O(d2).

• Combined with Delaunay triangulations.

• Extension to A-patches.
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Approximating an implicit curve

Algorithm: Representation of the implicit curve f(x, y) = 0

input: A triangular representation of f L := ((A,B, C),b) and a precision ε.
• If at least one of the triangle edges is bigger that ε, split the triangle and
insert the new triangles in L:
- when the number of sign changes of some row (column or diagonal) is ≥ 2,
- or when the coefficients of f ′x (or f ′y, f ′z) have not the same sign.

• Remove the triangle from L if the coefficients of f have the same sign.

• Save it
- when all the edges of the triangle are smaller than ε,
- or when the total number of sign changes on the border sides is 2 and f ′x or
f ′y, f ′z, has a constant sign. Isolate the roots.
output: A list of segments approximating the curve f(x, y) = 0.
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• Insertion of the circumcenter (barycenter), in order to break the bad triangle.

• No specific directions/axes used.

• New edges are constructed, no tangency problem.

• Number of triangles related to the complexe local feature size.

• Application to the intersection of curves, surfaces.
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Examples
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Self-intersection points

• Sample the surface.
• Segment it according to diff. information.
• Bound the regions with the same coding.
• Intersection the image of these regions
by subdivision.

(3, 3) Sampling Segmentation Intersections
1000 × 1000 0.15 s 0.02s 0.5 s

By J.P. Pavone 25



Cylinders throught 4 and 5 points

• Cylinders throught 4 points: curve of degree 3.
• Cylinders throught 5 points: 6 = 3× 3− 3.
• Cylinders throught 4 points and fixed radius: 12 = 3× 4.
• Line tangent to 4 unit balls: 12.
• Cylinders throught 4 points and extremal radius: 18 =
3× 10− 3× 4.

Problem time max(|fi|)
Cylinders through 5 points 0.03s 5 · 10−9

Parallel cylinders through 2×4 points 0.03s 5 · 10−9

Cylinders through 4 points, extremal radius 2.9s 10−6

Computations performed on an Intel PII 400 128 Mo of Ram

joint work with O.Devillers, F. Preparata, Ph. Trebuchet 26



Comparison

f1 = x6+3x4y2+3x2y4+y6−4x2y2

f2 = y2 − x2 + x3

f1 = x9 + y9 − 1

f2 = x10 + y10 − 1

f = y2−2y(x10 +0.5x9y2− 1
8x8y4 +

1
16x7y6 − 5

128x6y8 + 7
256x5y10 −

21
1024x4y12 + 23

2048x3y14−
429

32768x2y16 + 715
65536xy18 −

2431
262144y20) + x20 + x19y2

27



• Resultant in x1

Example Degree of the variables Evaluation Time Number
Function x0 x1 of real roots

10 f1, f2 6,3 6,2 10−9 0.07 5

11 f1, f2 9,10 9,10 10−2 0.63 2
15 f1, f2 6,4 6,4 4

• Resultant + Univariate solving

Example Evaluation Time Number
of real roots

10 10−16 0.084 5

11 10−15 3.489 2

15 10−9 0.151 4

• Subdvision

Example ε Evaluation Number Time Number
of intervals of real roots

10 10−5 10−5 5 0.030 5

11 10−5 10−4 770 79.188 2

15 10−5 10−4 4 0.016 4

• Normal form

Example Time / γ Evaluation Number
dinvlex mac of real roots

10 0.01 0.01 10−6 5

11 0.03 0.05 10−2 2

15 0.02 0.01 10−6 4

B. Mourrain 28



Curves

Algorithm: Topology of an implicit curve

• Compute the critical value for the projection along the y-abcisses.
• Above each point, compute the y-value, with their multiplicity.
• Between two critical points, compute the number of branches.
• Connect the points between two consecutive levels by y-order, the multi-
branches beeing at the multiple point.

➱ Rationnal representation of the singular y in terms of the x.

➱ Descartes rule to detect the multiple point among the regular ones.
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Surfaces

Algorithm: Topology of an implicit surface

• Project onto the plane.
• Compute the arrangement of the contour, singularity curves in the plane.
• Take a point inside each cell and compute the number of sheets above.
• Connect the regular sheets along the border of the contour, singular curves.

➱ Tangent curves in the projection.

➱ Degree, numeric problems inflated by projection.

See [Col75], [GHS01] 30



Arrangement of quadrics Q1, . . . , Qn

Analyse the changes of topology of a section moving in the z-direction.
(a) Qi1 = 0, ∂x(Qi1) = 0, ∂y(Qi1

) = 0.

(b) Qi1 = 0, Qi2 = 0, (∇Qi1

∧
∇Qi2)z = 0.

(c) Qi1 = 0, Qi2 = 0, Qi3 = 0.

Joint work with J.P. Tecourt, M. Teillaud 31



Arrangement = collection of cells of dimension 0,1,2,3 determined by sign
conditions and adjacency relations.

Example: For a circle of equation p(x, y) = x2 + y2 − 1,
(E, p ≥ 0), (C, p = 0), (I, p ≤ 0) & C ≺ I, C ≺ E.

Algorithm: Arrangement of quadrics

• Compute the intersection points corresponding to the events (a), (b), (c).
• Sort them according to the z-abcissae, by increasing order.
• Compute the lowest arrangement of the conics.
• For each event, determine the cell to which the new critical point belongs
and modify the arrangement of the neighbour cells accordingly.
• Connect in the different levels, the cells with the same sign conditions.

➱ Evaluation of sign conditions of rationnal quantities of z.

Joint work with J.P. Tecourt, M. Teillaud 32



Example

272x
2

+ 96xy + 192xz + 32y
2

+ 64yz + 64z
2 − 571.2x− 142.4y − 252.8z + 323.64 = 0

128x
2

+ 1152y
2 − 1024yz + 256z

2 − 144x− 886.4y + 358.4z + 220.12 = 0

64x
2

+ 256y
2

+ 128z
2 − 64x− 288y − 160z + 143 = 0

(a) 3× 2 real solutions (0.01s):

(b) 3× 8 = 24 complex solutions; 3× 2 real (0.06s):
(c) 8 complex solutions; 2 real (0.02s):
(a) [0.825000,0.700000,0.287500] C1
(a) [0.562500,0.544649,0.359835] C1, C2
(a) [0.500000,0.562500,0.448223] C1, C2, C3
(b) [0.498552,0.561349,0.448234] C1, C2, C3, C23
(b) [0.687835,0.570199,0.508852] C1, C2, C3, C23, C13
(b) [0.677133,0.617014,0.519616] C1, C2, C3, C23, C13, C12
(c) [0.676862,0.612181,0.521687] C1, C2, C3, C23, C13, C12, C123
(c) [0.638126,0.657542,0.685372] C1, C2, C3, C23, C13, C12
(b) [0.534420,0.666721,0.719519] C1, C2, C3, C13, C12
(b) [0.662072,0.686211,0.723158] C1, C2, C3, C13
(b) [0.627783,0.558545,0.776837] C1, C2, C3
(a) [0.500000,0.562500,0.801777] C1, C2
(a) [0.562500,0.780351,0.890165] C1
(a) [0.675000,0.300000,0.912500]

Joint work with J.P. Tecourt, M. Teillaud 33



Dealing with algebraic numbers

represented

• by an equation and an isolation interval,

• reccursively, by equations with algebraic coefficients, and signs of polynomials
at roots,

• by a numerical approximation and a way to raffine it

(evaluation of arithmetic DAG [LEDA, CORE], numerical procedure, . . . ).

➱ inequality test is certified.

➱ equality requires separation bound.

B. Mourrain 34



Predicates on geometric objects

2 Resultant formulations, in terms of a
translation parameter.

2 Sign of polynomials, of degree atmost 12.

2 Filtering technics.

[DFMT00] 35


