Symbolic numeric methods for certifcated computation

B. Mourrain,

INRIA, BP 93, 06902 Sophia Antipolis mourrain@sophia.inria.fr

January 8, 2003

Long time ago

- \mathbb{Z} : Addition, substraction as geometric operations.
- Q : Ratio of numbers. Thalès and the pyramids (-620-546). The multiplication is commutative (Pappus theorem).
 - **!!** all is number (commensurable) for the Pythagore's school (-585-400).
- **??** No, dare to say Hippase de Métaponte, not $\sqrt{2}$.
- \mathbb{R} : It's not a problem, says Dedekind, the missing numbers are those which are inbetween.
- $\overline{\mathbb{Q}}$: Yes, but $\sqrt{2}$ is special, says Galois.

But today ?

Today, we are able to do 10¹⁰ floating point operations per second on a computer.

But dealing with algebraic numbers and solutions of polynomial equations is still critical in many situations.

In CAD



Constructions

 \Box Intersection points of curves, surfaces.

□ Approximation of intersection curves. Arrangements of patches.

 \Box Offsets, filets, drafts, medial axis.

 \Rightarrow fast solvers, control of the error, refinement procedures. Detections

□ Self-intersection, singularities, ray-tracing.

□ Geometric approximation with simpler objects. \Rightarrow fast questers, isolation/sudvision/exclusion tools.

Predicats

- \Box Sorting points on a curve.
- □ Connectivity. Topological coherence.

□ Geometric predicates on constructed points, curves, . . .

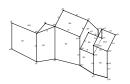
 \Rightarrow fast tests (μ s), filtering technics, datastructure for algebraic numbers.

Representations

- \Box Parametrised/implicit.
- \Box Approximation of shape.
- \Box Model reduction.

 \Rightarrow global resultant methods, semi-algebraic geometry, multilevel, multiscale bases.

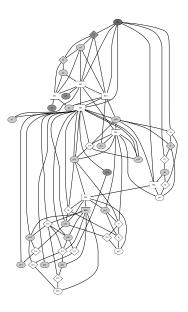
Modelisation from images



Extraction of points, lines, planes, . . .

Symbolic treatement of the geometric constraints.

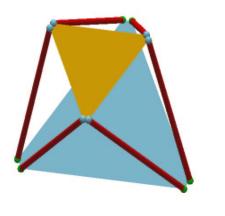
- **algebra**, rewritting, simplification.
- **proof**, **automatic** discovering of properties.

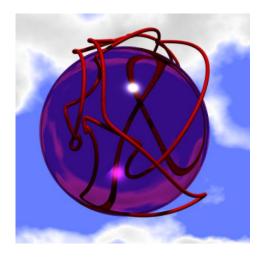


Numerical

ajustment of the 3D model.

A robotic problem





Equations:
$$||R Y_i + T - X_i||^2 - d_i^2 = 0, i = 1, ..., 6,$$

 $R = \frac{1}{a^2 + b^2 + c^2 + d^2} \begin{bmatrix} a^2 - b^2 - c^2 + d^2 & 2ab - 2cd & 2ac + 2bd \\ 2ab + 2cd & -a^2 + b^2 - c^2 + d^2 & 2bc - 2ad \\ 2ac - 2bd & 2ad + 2bc & -a^2 - b^2 + c^2 + d^2 \end{bmatrix}, T = \begin{bmatrix} u/z \\ v/z \\ w/z \end{bmatrix}$
Solutions: Generically 40 solutions: [RV93], [M94], [L93].
 $I_{\mathbb{P}^3 \times \mathbb{P}^3} = \mathbf{P}_2^1 \cap \mathbf{Q}_2^8 \cap Q_1^{20} \cap \mathbf{Q}_0^{40} \cap \underbrace{Q_{-1,1}^{2 \times 12} \cap Q_{1,-1}^{10} \cap Q_{-1}}_{\text{imbedded components}}$

Solvers: fast and accurate; used intensively for several values of d_i and same geometry of the plateform; avoid singularities.

 \Box We consider the **neighbourhood** of a given system.

 \Box Family of systems depending on parameters, of the same "shape".

 \Box Around a **regular** value of the parameters,

- **continuity** of the solution set.
- **continuity** of the algebraic structure.

 \Box At a singular value of the parameters, all sort of bad things may happen.

How to proceed ?

- Analyse the class of systems that we have to solve.
- Apply tuned methods for generic systems of this class.

Solvers

• Analytic solvers: exploit the value of f and its derivatives.

Newton like methods, Minimisation methods, Weierstrass method.

• Homotopic solvers: deform a system with known roots into the system to solve.

Projective, toric, flat, deformation.

• Subdivision solvers: use an exclusion criterion to isolate the roots.

Taylor exclusion function, interval arithmetic, Descartes rule.

• Algebraic solvers: exploit the known relation between the unkowns.

Gröbner basis, normal form computations. Reduction to univariate or eigenvalue problems.

• Geometric solvers: project the problem onto a smaller subspace.

Resultant-based methods. Reduction to univariate or eigenvalue problems.

Subdivision

Subdvision solver

 \square Bernstein basis: $f(x) = \sum_{i=0}^{d} b_i B_d^i(x)$, where $B_d^i(x) = {d \choose i} x^i (1-x)^{d-i}$.

 $\mathbf{b} = [b_i]_{i=0,...,d}$ are called the **control coefficients**.

• $f(0) = b_0, f(1) = b_d$,

•
$$f'(x) = \sum_{i=0}^{d-1} \Delta(\mathbf{b})_i B^i_{d-1}(x)$$
 where $\Delta(\mathbf{b})_i = b_{i+1} - b_i$.

□ Subdivision by De Casteljau algorithm: $b_i^0 = b_i, i = 0, ..., d,$ $b_i^r(t) = (1-t) b_i^{r-1}(t) + t b_{i+1}^{r-1}(t), i = 0, ..., d-r.$

- The control coefficients $\mathbf{b}^-(t) = (b_0^0(t), b_0^1(t), \dots, b_0^d(t))$ and $\mathbf{b}^+(t) = (b_0^d(t), b_1^{d-1}(t), \dots, b_d^0(t))$ describe f on [0, t] and [t, 1].
- For $t = \frac{1}{2}$, $b_i^r = \frac{1}{2}(b_i^{r-1} + b_{i+1}^{r-1})$.; use of adapted arithmetic.
- Number of arithmetic operations bounded by $\mathcal{O}(d^2)$, memory space $\mathcal{O}(d)$. Indeed, asymptotic complexity $\mathcal{O}(d\log(d))$.

□ Isolation of real roots

Proposition: (Descartes rule) $\#\{f(x) = 0; x \in [0,1]\} = V(\mathbf{b}) - 2p$, $p \in \mathbb{N}$.

Algorithm: isolation of the roots of f on the interval [a, b]

INPUT: A representation $(\mathbf{b}, [a, b])$ associate with f and ϵ . • If $V(\mathbf{b}) > 1$ and $|b - a| > \epsilon$, subdivide; • If $V(\mathbf{b}) = 0$, remove the interval. • If $V(\mathbf{b}) = 1$, output interval containing one and only one root. • If $|b - a| \le \epsilon$ and $V(\mathbf{b}) > 0$ output the interval and the multiplicity. OUTPUT: list of isolating intervals in [a, b] for the real roots of f or the ϵ -multiple root.

- Multiple roots (and their multiplicity) computed within a precision ϵ .
- x := t/(1-t) : Uspensky method.
- Complexity: $\mathcal{O}(\frac{1}{2}d(d+1)r\left(\lceil \log_2\left(\frac{1+\sqrt{3}}{2s}\right)\rceil \log_2(r) + 4\right))$ [MVY02+]
- Natural extension to B-splines.

Benchmarks

Pentium III 933Mhz.

The number of equations per s. (C++ with 64-bit floats; $\epsilon = 0.000001$):

degree	8	9	12	16	18	20
	25 000	20-22 000	12-13 000	7.5-8 000	5.9-6.2 000	5.4 000

Equations per s. (precision bits vs. degree; $\epsilon = 0.000001$) using GMP library:

	16	20	30	40	60	80	100
128-bit	96	62.5	25.4	12.5	_	_	_
192-bit	83.3	53.2	21.5	10.8	4.0	—	—
256-bit	73.5	47.2	18.9	9.5	3.6	1.8	—
384-bit	60.2	37.7	15.2	7.6	2.9	1.4	0.8
512-bit	51	31.2	12.2	6.1	2.3	1.2	0.7

Compare favorably with other efficient solvers (Aberth method, mpsolve).

Algebraic method

The quotient algebra \mathcal{A}

- The polynomial ring $R = \mathbb{K}[x_1, \dots, x_n]$.
- The equations $f_1 = 0, \ldots, f_m = 0$ to solve, with $f_i \in R$.
- The ideal $I = (f_1, ..., f_m) = \{ \sum_i h_i f_i; h_i \in R \}.$
- The quotient algebra $\mathcal{A} = R/I$ of polynomials modulo $I: a \equiv a'$ iff $a a' \in I$.

(cf. polynomial functions on the set of solutions.)

• How to represent and exploit effectively the structure of \mathcal{A} ?

 \Box A basis for A.

□ The multiplicative tables.

Multiplication operators

We assume that $\mathcal{Z}(I) = \{\zeta_1, \ldots, \zeta_d\} \Leftrightarrow \mathcal{A}$ of finite dimension D over \mathbb{K} .

Theorem:

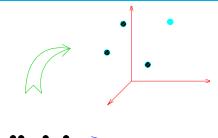
- \Box The eigenvalues of M_a are $\{a(\zeta_1), \ldots, a(\zeta_d)\}$.
- \Box The eigenvectors of all $(M_a^t)_{a \in \mathcal{A}}$ are (up to a scalar) $\mathbf{1}_{\zeta_i} : p \mapsto p(\zeta_i)$.

Theorem: In a basis of A, all the matrices M_a ($a \in A$) are of the form

$$\mathbf{M}_{a} = \begin{bmatrix} \mathbf{N}_{a}^{1} & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & & \mathbf{N}_{a}^{d} \end{bmatrix} \text{ with } \mathbf{N}_{a}^{i} = \begin{bmatrix} a(\zeta_{i}) & \star \\ & \ddots & \\ \mathbf{0} & & a(\zeta_{i}) \end{bmatrix}$$

Corollary: (Chow form) $\Delta(\mathbf{u}) = \det(u_0 + u_1 \, \mathbb{M}_{x_1} + \dots + u_n \, \mathbb{M}_{x_n}) = \prod_{\zeta \in \mathcal{Z}(I)} (u_0 + u_1 \zeta_1 + \dots + u_n \zeta_n)^{\mu_{\zeta}}.$

Rational Univariate Representation of the roots



Algorithm: Rational Univariate Representation.

- 1. Compute a multiple of the Chow form $\Delta(\mathbf{u})$ and its square free part $d(\mathbf{u})$.
- 2. Choose a generic $t \in \mathbb{K}^{n+1}$ and compute the first coefficients of

$$d(t+u) = d_0(u_0) + u_1 d_1(u_0) + \dots + u_n d_n(u_0) + \dots$$

3. A non minimal rational univariate representation of the roots is given by $\zeta_1 = \frac{d_1(u_0)}{d'_0(u_0)}, \ldots,$ $\zeta_n = \frac{d_n(u_0)}{d'_0(u_0)}, d_0(u_0) = 0.$

4. Factorize $d_0(u_0)$ and keep the good factors for a minimal representation.

Remark: t is generic iff $gcd(d_0(u_0), d'_0(u_0)) = 1$.

Compute the projection of $\mathbb{K}[\mathbf{x}]$ onto a vector space B, modulo the ideal $I = (f_1, \ldots, f_m)$.

⇒ Grobner basis [CLO92, F99].

Compatibility with a monomial ordering but numerical instability.

⇒ Generalisation [M99, MT00, MT02].

No monomial ordering required. Linear algebra *with column pivoting* ; better numerical behavior of the basis.

Linear algebra on sparse matrices. Generic Sparse LU decomposition.

Application in Geometry

Solving by subdivision methods

Rectangular patches: $f(x,y) = \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} b_{j,i} B_{d_1}^i(x) B_{d_2}^j(y)$ associated with the box $[0,1] \times [0,1]$.

• **Subdivision** by row or by column, similar to the univariate case.

• Arithmetic complexity of a subdivision bounded by $\mathcal{O}(d^3)$ $(d = max(d_1, d_2))$, memory space $\mathcal{O}(d^2)$.

Triangular patches: $f(x, y) = \sum_{i+j+k=d} b_{i,j,k} \frac{d!}{i!j!k!} x^i y^j (1-x-y)^k$ associated with the representation on the 2d simplex.

- Subdivision at a new point. Arithmetic complexity $\mathcal{O}(d^3)$, memory space $\mathcal{O}(d^2)$.
- Combined with **Delaunay triangulations**.
- Extension to A-patches.

Algorithm: Representation of the implicit curve f(x, y) = 0

INPUT: A triangular representation of $f L := ((A, B, C), \mathbf{b})$ and a precision ϵ . • If at least one of the triangle edges is bigger that ϵ , split the triangle and insert the new triangles in L:

- when the number of sign changes of some row (column or diagonal) is ≥ 2 ,

- or when the coefficients of f'_x (or f'_y , f'_z) have not the same sign.
- Remove the triangle from L if the coefficients of f have the same sign.

• Save it

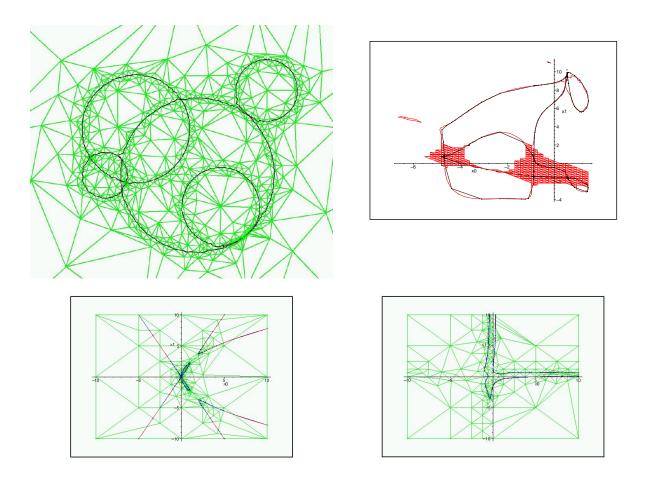
- when all the edges of the triangle are smaller than ϵ ,

- or when the total number of sign changes on the border sides is 2 and f'_x or f'_y , f'_z , has a constant sign. Isolate the roots.

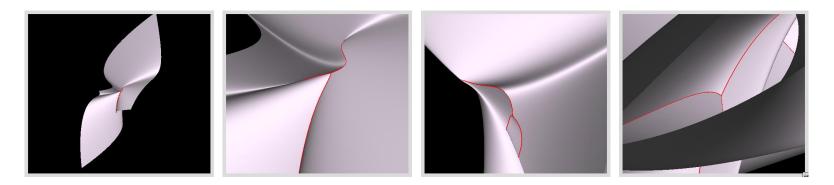
OUTPUT: A list of segments approximating the curve f(x, y) = 0.

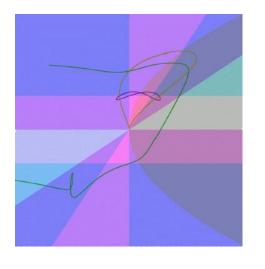
- Insertion of the circumcenter (barycenter), in order to break the bad triangle.
- No specific directions/axes used.
- New edges are constructed, no tangency problem.
- Number of triangles related to the complexe local feature size.
- Application to the intersection of curves, surfaces.

Examples



Self-intersection points

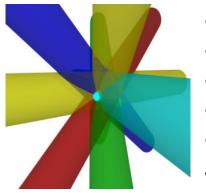




- Sample the surface.
- Segment it according to diff. information.
- Bound the regions with the same coding.
- Intersection the image of these regions by subdivision.

(3,3)	Sampling	Segmentation	Intersections
1000×1000	0.15 s	0.02s	0.5 s

Cylinders throught 4 and 5 points

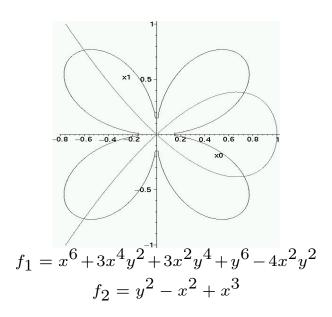


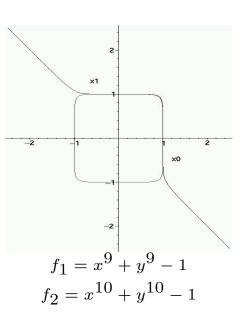
- Cylinders throught 4 points: curve of degree 3.
- Cylinders through 5 points: $6 = 3 \times 3 3$.
- Cylinders through 4 points and fixed radius: $12 = 3 \times 4$.
- Line tangent to 4 unit balls: 12.
- Cylinders through 4 points and extremal radius: $18 = 3 \times 10 3 \times 4$.

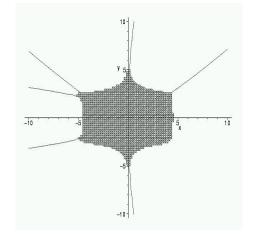
Problem	time	$\max(f_i)$
Cylinders through 5 points	0.03s	$5 \cdot 10^{-9}$
Parallel cylinders through 2×4 points	0.03s	$5 \cdot 10^{-9}$
Cylinders through 4 points, extremal radius	2.9s	10^{-6}

Computations performed on an Intel PII 400 128 Mo of Ram

Comparison







$$f = y^{2} - 2y(x^{10} + 0.5x^{9}y^{2} - \frac{1}{8}x^{8}y^{4} + \frac{1}{16}x^{7}y^{6} - \frac{5}{128}x^{6}y^{8} + \frac{7}{256}x^{5}y^{10} - \frac{21}{1024}x^{4}y^{12} + \frac{23}{2048}x^{3}y^{14} - \frac{429}{32768}x^{2}y^{16} + \frac{715}{65536}xy^{18} - \frac{2431}{262144}y^{20}) + x^{20} + x^{19}y^{2}$$

• Resultant in x_1

Example	Degree of the variables			Evaluation	Time	Number
	Function	x_0	x_1			of real roots
10	f_1, f_2	6,3	6,2	10^{-9}	0.07	5
11	f_1, f_2	9,10	9,10	10^{-2}	0.63	2
15	f_1, f_2	6,4	6,4			4

• Resultant + Univariate solving

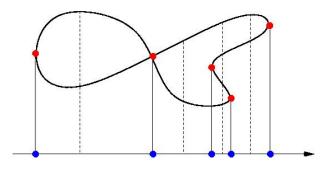
• Subdvision

Example	Evaluation	Time	Number of real roots
10	10^{-16}	0.084	5
11	10^{-15}	3.489	2
15	10^{-9}	0.151	4

Example	ε	Evaluation	Number of intervals	Time	Number of real roots
10	10^{-5}	10^{-5}	5	0.030	5
11	10^{-5}	10^{-4}	770	79.188	2
15	10^{-5}	10^{-4}	4	0.016	4

• Normal form

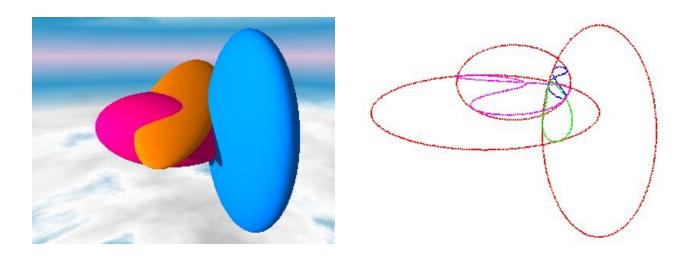
Example	Time / γ		Evaluation	Number
	dinvlex	mac		of real roots
10	0.01	0.01	10^{-6}	5
11	0.03	0.05	10^{-2}	2
15	0.02	0.01	10^{-6}	4



Algorithm: Topology of an implicit curve

- Compute the critical value for the projection along the y-abcisses.
- Above each point, compute the *y*-value, with their multiplicity.
- Between two critical points, compute the number of branches.
- Connect the points between two consecutive levels by *y*-order, the multibranches beeing at **the** multiple point.
- \Rightarrow Rationnal representation of the singular y in terms of the x.
- Descartes rule to detect the multiple point among the regular ones.

Surfaces



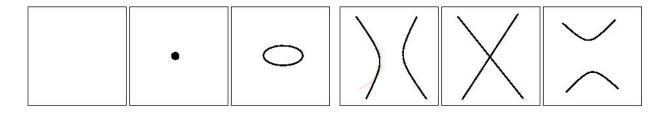
Algorithm: Topology of an implicit surface

- Project onto the plane.
- Compute the arrangement of the contour, singularity curves in the plane.
- Take a point inside each cell and compute the number of sheets above.
- Connect the regular sheets along the border of the contour, singular curves.
- ➡ Tangent curves in the projection.

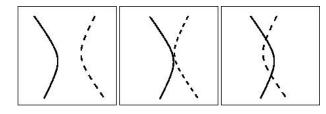
⇒ Degree, numeric problems inflated by projection.

Arrangement of quadrics Q_1, \ldots, Q_n

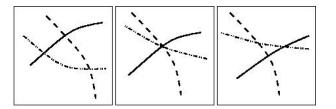
Analyse the changes of topology of a section moving in the z-direction. (a) $Q_{i_1} = 0, \partial_x(Q_{i_1}) = 0, \partial_y(Q_{i_1}) = 0.$



(b) $Q_{i_1} = 0, Q_{i_2} = 0, (\nabla Q_{i_1} \wedge \nabla Q_{i_2})_z = 0.$



(c)
$$Q_{i_1} = 0, Q_{i_2} = 0, Q_{i_3} = 0.$$



Arrangement = collection of cells of dimension 0,1,2,3 determined by sign conditions and adjacency relations.

 $\begin{array}{ll} \mbox{Example: For a circle of equation } p(x,y) = x^2 + y^2 - 1 \mbox{,} \\ (\mathfrak{E},p \geq 0), (C,p=0), (\mathfrak{I},p \leq 0) & \& \ C \prec \mathfrak{I}, C \prec \mathfrak{E}. \end{array}$

Algorithm: Arrangement of quadrics

- Compute the intersection points corresponding to the events (a), (b), (c).
- Sort them according to the *z*-abcissae, by increasing order.
- Compute the lowest arrangement of the conics.
- For each event, determine the cell to which the new critical point belongs and modify the arrangement of the neighbour cells accordingly.
- Connect in the different levels, the cells with the same sign conditions.

 \Rightarrow Evaluation of sign conditions of rationnal quantities of z.

Example

$$272x^{2} + 96xy + 192xz + 32y^{2} + 64yz + 64z^{2} - 571.2x - 142.4y - 252.8z + 323.64 = 0$$
$$128x^{2} + 1152y^{2} - 1024yz + 256z^{2} - 144x - 886.4y + 358.4z + 220.12 = 0$$
$$64x^{2} + 256y^{2} + 128z^{2} - 64x - 288y - 160z + 143 = 0$$

(a) 3×2 real solutions (0.01s): (b) $3 \times 8 = 24$ complex solutions; 3×2 real (0.06s): (c) 8 complex solutions; 2 real (0.02s): (a) [0.825000,0.700000,0.287500] C1 (a) [0.562500,0.544649,0.359835] C1, C2 (a) [0.500000,0.562500,0.448223] C1, C2, C3 (b) [0.498552,0.561349,0.448234] C1, C2, C3, C23 C1, C2, C3, C23, C13 (b) [0.687835,0.570199,0.508852] C1, C2, C3, C23, C13, C12 (b) [0.677133,0.617014,0.519616] (c) [0.676862,0.612181,0.521687] C1, C2, C3, C23, C13, C12, C123 (c) [0.638126,0.657542,0.685372] C1, C2, C3, C23, C13, C12 (b) [0.534420,0.666721,0.719519] C1, C2, C3,C13, C12 (b) [0.662072,0.686211,0.723158] C1, C2, C3, C13 (b) [0.627783,0.558545,0.776837] C1, C2, C3 (a) [0.500000,0.562500,0.801777] C1, C2 (a) [0.562500,0.780351,0.890165] C1 (a) [0.675000,0.300000,0.912500]

Dealing with algebraic numbers

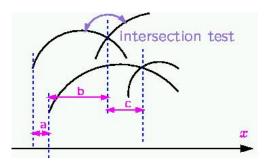
represented

- by an equation and an isolation interval,
- reccursively, by equations with algebraic coefficients, and signs of polynomials at roots,
- by a **numerical approximation** and a way to **raffine** it

(evaluation of arithmetic DAG [LEDA, CORE], numerical procedure, ...).

- \Rightarrow inequality test is certified.
- ⇒ equality requires **separation bound**.

Predicates on geometric objects



 \Box Resultant formulations, in terms of a translation parameter.

 \Box Sign of polynomials, of degree atmost 12.

 \Box Filtering technics.

cir	cle arcs			
			polynomial	polynomial
		first	static	static
μs		Interval + L_real	+semi-static +Interval +GMP	+semi-static +Interv. first +GMP
left right	00	2.48	0.36	0.36
	3	67	24.3	6.8
	d.	2170	129	128