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7, Addition, substraction as geometric operations.

© : Ratio of numbers. Thalés and the pyramids (-620-546).

The multiplication is commutative (Pappus theorem).

11 all is number (commensurable) for the Pythagore's school (-585-400).

?? No, dare to say Hippase de Métaponte, not V2.

R 2 It's not a problem, says Dedekind, the missing numbers are those which are
inbetween.

. Yes, but /2 is special, says Galois.

=]



But today ?



Today, we are able to do 10!V floating point
operations per second on a computer.

But dealing with algebraic numbers and solutions
of polynomial equations is still critical in many
situations.

B. Mourrain



Constructions

O Intersection points of curves, surfaces.
O Approximation of intersection curves. Arrangements of patches.

O Offsets, filets, drafts, medial axis.

= fast solvers, control of the error, refinement procedures.
Detections

O Self-intersection, singularities, ray-tracing.

O Geometric approximation with simpler objects.
= fast questers, isolation/sudvision/exclusion tools.
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Predicats
O Sorting points on a curve.
O Connectivity. Topological coherence.

0 Geometric predicates on constructed points, curves, . . .

= fast tests (us), filtering technics, datastructure for algebraic numbers.

Representations
O Parametrised /implicit.
OO0 Approximation of shape.

O Model reduction.

= global resultant methods, semi-algebraic geometry, multilevel,
multiscale bases.
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Modelisation from images

Extraction of points, lines,
planes, . ..

Symbolic  treatement of
the geometric constraints.
o algebra, rewritting,
simplification.
e proof, automatic discovering
of properties.

Numerical

ajustment of
the 3D model.
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A robotic problem

Equations: |[RY; +T - X,||*—-d?=0,i=1,...,6,
a2—b2—02+d2 2ab— 2cd 2ac+ 2bd
2ab+ 2cd —a2—|—b2—c2—|—d2 2bc — 2ad ,I' =

) u/z
R = v/z
a2+b24-c2+d? w//z

2ac — 2bd 2ad + 2 be —a? = b2+ +d?
Solutions: Generically 40 solutions: [RV93], [M94], [L93].
Ips,ps = P, N Q3N QENQYNQY T NQ_, NQy
) imbeddedcomponents .
Solvers: fast and accurate; used intensively for several values of d; and same
geometry of the plateform; avoid singularities.
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Solving



Equations with approximate coefficients

O We consider the neighbourhood of a given system.
O Family of systems depending on parameters, of the same “shape”.

O Around a regular value of the parameters,

e continuity of the solution set.
e continuity of the algebraic structure.

O At a singular value of the parameters, all sort of bad things may happen.

How to proceed ?

e Analyse the class of systems that we have to solve.
e Apply tuned methods for generic systems of this class.

B.Mourrain



e [Analytic solvers:| exploit the value of f and its derivatives.

Newton like methods, Minimisation methods, Weierstrass method.

e Homotopic solvers: deform a system with known roots into the system
to solve.

Projective, toric, flat, deformation.

e [Subdivision solvers: use an exclusion criterion to isolate the roots.

Taylor exclusion function, interval arithmetic, Descartes rule.

e [Algebraic solvers:| exploit the known relation between the unkowns.

Grobner basis, normal form computations. Reduction to univariate or eigenvalue
problems.

e (Geometric solvers:| project the problem onto a smaller subspace.

Resultant-based methods. Reduction to univariate or eigenvalue problems.
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Subdivision



Subdvision solver

" Bernstein basis: f(z) = Y0, b Bi(z), where Bi(z) = (4) z(1 — )4~

1

b = [b;]i=0.....a are called the control coefficients.
¢ f(O) — bOaf(l) — bd:
( ) Ed . A( ) B&_l(a:) where A(b)z = bz‘_|_1 — bz

O Subdivision by De Casteljau algorithm:
0 =0b;, 1=0,...,d,

br(t) = (L—t) b " (t) + bl 1 (t), i=0,...,d—r.

e The control coefficients b= (t) = (b9(t),b}(t),...,b%(t)) and bt (t) =
(bd(t), b5 1(t), ..., b%(t)) describe f on [0,t] and [t,1].

2
e Number of arithmetic operations bounded by O(d?), memory space O(d).
Indeed, asymptotic complexity O(dlog(d)).

o Fort=1 bl (br LS sz) - use of adapted arithmetic.
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O Isolation of real roots

Proposition: (Descartes rule) #{ f(x) =0;20 ¢ 0,1} =V(b) —2p, p € N.

Algorithm: isolation of the roots of f on the interval |a, b]

INPUT: A representation (b, |a, b]) associate with f and .

e [fV(b) > 1 and |b— a| > €, subdivide;

e /fV(b) =0, remove the interval.

e IfV(b) =1, output interval containing one and only one root.

o If|b—a| <eandV(b)> 0 output the interval and the multiplicity.

e-multiple root.

OUTPUT: list of isolating intervals in |a,b] for the real roots of f or the

e Multiple roots (and their multiplicity) computed within a precision e.
e z:=1t/(1—1t): Uspensky method.

o Complexity: O(3d(d+1)r ([log2 (‘Hé—;/g)} — log, (1) + 4)) [MVY02+]

e Natural extension to B-splines.

B. Mourrain
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Pentium |1l 933Mhz.
The number of equations per s. (C+-+ with 64-bit floats; e = 0.000001):

degree 8 9 12 16 18 20
25 000 20-22 000 12-13000 7.5-8 000 5.9-6.2 000 5.4 000

Equations per s. (precision bits vs. degree; e = 0.000001) using GMP library:

16 20 30 40 60 80 100
128-bit 96 625 254 125 -
192-bit | 83.3 53.2 215 10.8 4.0 -
256-bit | 735 472 189 95 36 1.8 -
384-bit | 60.2 377 152 76 29 14 038
512-bit 51 312 122 6.1 23 12 0.7

Compare favorably with other efficient solvers (Aberth method, mpsolve).
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Algebraic method



The quotient algebra A

e The polynomial ring R = K[x1,...,x,].

e The equations f; =0,..., f,, =0 to solve, with f; € R.

e Theideal I = (f1,...,fm) =1{D_; hi fi; hi € R}.

e The quotient algebra A = R/I of polynomials modulo I: a =a’ iff a —a’ € 1.
(cf. polynomial functions on the set of solutions.)

e How to represent and exploit effectively the structure of A ?

O A basis for A.

O The multiplicative tables.
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Multiplication operators
We assume that Z(I) = {(3,...,(qs} < A of finite dimension D over K.

M, : A A Mt A
u A

— -~ A
= au — a-AN=AoM,
Theorem:

O The eigenvalues of M, are {a((1),...,a((q)}-

O The eigenvectors of all (M ),c4 are (up to a scalar) 1., : p — p((;).

Theorem: In a basis of 4, all the matrices M, (a € A) are of the form

Ncll 0 ‘ CL(C@) *
M, = with N =
0 N;l 0 a(¢:)

Corollary: (Chow form)
A(u) =det(uo+uy Mg, + - +up My, ) = HCEZ(I)(U’O + w11+ -+ upn ).
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Rational Univariate Representation of the roots

Algorithm: Rational Univariate Representation.

1. Compute a multiple of the Chow form A(u) and its square free part d(u).
2. Choose a generic t € K"! and compute the first coefficients of

d(t + u) — do(uo) + U1 dl(uO) + -t up dn(UO) + -

dq (up)
Tolug)

3. A non minimal rational univariate representation of the roots is given by (1 =

__ dn(ug) _
Cn == dé(uo)’ do(UO) = 0.

4. Factorize dy(ug) and keep the good factors for a minimal representation.

Remark: t is generic iff ged(do(ug), dj(ug)) = 1.

B. Mourrain
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Normal form computation

Compute the projection of K[x| onto a vector space B, modulo the ideal

I=(f1,. -, fm)
[ Grobner basis [CLO92, F99].

Compatibility with a monomial ordering but numerical instability.

[J Generalisation [M99, MT00, MTQ02].

No monomial ordering required. Linear algebra with column pivoting ; better
numerical behavior of the basis.

Linear algebra on sparse matrices. Generic Sparse LU decomposition.
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Application in Geometry



Solving by subdivision methods

dy 952:0 bj,chill(x)Bg2(y) associated with

Rectangular patches: f(z,y) =) 1>

the box |0,1] x [0, 1].
e Subdivision by row or by column, similar to the univariate case.

e Arithmetic complexity of a subdivision bounded by O(d?) (d = maz(dy, ds)),
memory space O(d?).

Triangular patches: f(z,y) =3, . ;4 bi,j,k#!!k! ztyl (1 —x —y)" associated

with the representation on the 2d simplex.

e Subdivision at a new point. Arithmetic complexity O(d?), memory space
O(d?).

e Combined with Delaunay triangulations.

e Extension to A-patches.
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Approximating an implicit curve

Algorithm: Representation of the implicit curve f(z,y) =0

INPUT: A triangular representation of f L := ((A, B,C),b) and a precision e.
e [f at least one of the triangle edges is bigger that €, split the triangle and
insert the new triangles in L:

- when the number of sign changes of some row (column or diagonal) is > 2,
- or when the coefficients of f. (or f!, fl) have not the same sign.

e Remove the triangle from L if the coefficients of f have the same sign.

e Save it

- when all the edges of the triangle are smaller than e,

- or when the total number of sign changes on the border sides is 2 and f!. or
g;, !, has a constant sign. Isolate the roots.

OUTPUT: A list of segments approximating the curve f(x,y) = 0.
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e Insertion of the circumcenter (barycenter), in order to break the bad triangle.
e No specific directions/axes used.

e New edges are constructed, no tangency problem.

e Number of triangles related to the complexe local feature size.

e Application to the intersection of curves, surfaces.

B. Mourrain
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Self-intersection points

e Sample the surface.

e Segment it according to diff. information.
e Bound the regions with the same coding.
e [ntersection the image of these regions
by subdivision.

(3,3) Sampling Segmentation Intersections
1000 x 1000 0.15s 0.02s 0.5s

By J.P. Pavone 25



Cylinders throught 4 and 5 points

e Cylinders throught 4 points: curve of degree 3.

e Cylinders throught 5 points: 6 =3 x 3 — 3.

e Cylinders throught 4 points and fixed radius: 12 = 3 x 4.
e Line tangent to 4 unit balls: 12.

e Cylinders throught 4 points and extremal radius: 18 =
3 x 10— 3 x 4.

Problem time | max(|f;|)

Cylinders through 5 points 0.03s| 5-107"

Parallel cylinders through 2x4 points 0.03s | 5-107°
Cylinders through 4 points, extremal radius | 2.9s 10~°

Computations performed on an Intel Pll 400 128 Mo of Ram

joint work with O.Devillers, F. Preparata, Ph. Trebuchet 26



Comparison

f1 = x6+3x4y2—|—3x2y4—|—y6—4x2y2

fo=vy

2

—x2—|—x3

2

LpTyb 5 6,8 | T 45,10
3572 v 2 + hageiy e -
59903y + ghigey'C -
J2431 20y | ;20 4 19,2
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e Resultant in x

Example Degree of the variables Evaluation Time Number
Function | zg | =7 of real roots
10 f1.f2 | 63 | 62 10~ 0.07 5
11 f1.fo | 910 | 9,10 10~ 4 0.63 2
15 1. fo 64 | 64 4
e Resultant 4+ Univariate solving e Subdvision
Example Evaluation Time Number Example € Evaluation Number Time Number
of real roots of intervals of real roots
10 10— 16 0.084 5 10 1072 1072 5 0.030 5
11 10~ 19 3.489 2 11 10~ ° 10~ % 770 79.188 2
15 10~ 0.151 4 15 107° 104 4 0.016 4
e Normal form
Example Time / ~ Evaluation Number
dinvlex | mac of real roots
10 0.01 0.01 10~ 9 5
11 0.03 0.05 10— 2 2
15 0.02 0.01 10~ ° 4

B. Mourrain
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Curves

4

Algorithm: Topology of an implicit curve

e Compute the critical value for the projection along the y-abcisses.

e Above each point, compute the y-value, with their multiplicity.

e Between two critical points, compute the number of branches.

e Connect the points between two consecutive levels by y-order, the multi-
branches beeing at the multiple point.

[J Rationnal representation of the singular ¢ in terms of the x.

[1 Descartes rule to detect the multiple point among the regular ones.
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Surfaces
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Algorithm: Topology of an implicit surface

e Project onto the plane.

e Compute the arrangement of the contour, singularity curves in the plane.

e Take a point inside each cell and compute the number of sheets above.

e Connect the regular sheets along the border of the contour, singular curves.

[J Tangent curves in the projection.

[J Degree, numeric problems inflated by projection.

See [Col75], [GHSO01] 30



Arrangement of quadrics ()1, ...

Analyse the changes of topology of a section moving in the z-direction.

() Qi, = 0,0.(Qi;) = 0,9,(Q, ) = 0.

, @n

G

)

X

(b) Qil — 07 Qig — 07 (szl /\ VQQ)Z« = 0.

!
r
L
[
r
L3
LY
*
L]
L]

(C) Qil — 07 Q’iz — 07 Qz’3 = 0.

Joint work with J.P. Tecourt, M. Teillaud
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Arrangement = collection of cells of dimension 0,1,2,3 determined by sign
conditions and adjacency relations.

Example: For a circle of equation p(z,y) = 22 + y* — 1,
(&,p>0),(C,p=0),3,p<0) & C=<7,C<E€.

Algorithm: Arrangement of quadrics

e Compute the intersection points corresponding to the events (a), (b), (c).

e Sort them according to the z-abcissae, by increasing order.

e Compute the lowest arrangement of the conics.

e for each event, determine the cell to which the new critical point belongs
and modify the arrangement of the neighbour cells accordingly.

e Connect in the different levels, the cells with the same sign conditions.

[1 Evaluation of sign conditions of rationnal quantities of z.

Joint work with J.P. Tecourt, M. Teillaud 32



2722° + 96xy + 19222 + 32y° + 64yz + 6422 — 571.2x — 142.4y — 252.82 + 323.64 = 0

2 1024y + 25622 — 144z — 886.4y + 358.42 + 220.12 = 0

2

12822 + 1152y

6422 + 256y° + 12822 — 64z — 288y — 160z + 143 = 0

(a) 3 x 2 real solutions (0.01s):
(b) 3 x 8 = 24 complex solutions; 3 x 2 real (0.06s):
(c) 8 complex solutions; 2 real (0.02s):

(a) [0.825000,0.700000,0.287500] C1

(a) [0.562500,0.544649,0.359835] C1, C2

(a) [0.500000,0.562500,0.448223] C1, C2, C3

(b) [0.498552,0.561349,0.448234] C1, C2, C3, C23

(b) [0.687835,0.570199,0.508852] C1, C2, C3, C23, C13

(b) [0.677133,0.617014,0.519616] C1, C2, C3, C23, C13, C12
(c) [0.676862,0.612181,0.521687] C1, C2, C3, C23, C13, C12, C123
(c) [0.638126,0.657542,0.685372] C1, C2, C3, C23, C13, C12
(b) [0.534420,0.666721,0.719519] C1, C2, C3, C13, C12
(b) [0.662072,0.686211,0.723168] C1, C2, C3, C13

(b) [0.627783,0.5568545,0.776837] C1, C2, C3

(a) [0.500000,0.562500,0.801777] C1, C2

(a) [0.562500,0.780351,0.890165] C1

(a) [0.675000,0.300000,0.912500]

Joint work with J.P. Tecourt, M. Teillaud 33



Dealing with algebraic numbers

represented
e by an equation and an isolation interval,

e reccursively, by equations with algebraic coefficients, and signs of polynomials
at roots,

e by a numerical approximation and a way to raffine it
(evaluation of arithmetic DAG [LEDA, CORE], numerical procedure, . . . ).
[1 inequality test is certified.

[] equality requires separation bound.
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Predicates on geometric objects

/‘%secﬂon test

O Resultant formulations,
translation parameter.

in terms of a

O Sign of polynomials, of degree atmost 12.

~ O Filtering technics.
circle arcs
polynomial : polynomial
. first _ _
— §|Eglélr(t:"|i—5ta1:it: 5tglélrtrz"li—statit:
I US - IH_T_EWBI +Interval | +Interv. first |
—_ | real | TGMP +GMP
Cv g™ 2.48 0.36 0.36
left P
24 :
taht (o 67 3 6.8
3 170 129 128

[DFMTO0]
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