where is the Bernstein basis in degree
, on the interval
. The subdivision algorithm is also based on a criterion for detecting the regularity of the curve
, in the domain
.
void topology::assign(point_graph<C> & g, MPol<T>& p1, MPol<T>& p2, TopSbdCurve3d<C> mth, C x0, C x1, C y0, C y1, C z0, C,z1);
g
of type topology::point_graph<C>
, which is isotopic to the curve defined by the polynomial p1
, p2
, in the box g
are of type C
. The implementation is designed for C=double
.p
are of type T
. During the computation, they are rounded to double
number types. If the topology in the box can be certified from this approximation, a graph of points connecting the intersection of the curve with the boundary of TopSbdCurbe3d<C>
. The default value is synaps/topology/TopSbdCurve3d.h
#include <synaps/arithm/gmp.h> #include <synaps/topology/TopSbdCurve3d.h> #include <synaps/base/io/geomview.h> int main(int argc, char** argv) { MPol<double> p1("x^4+y^4+z^4-4*x^2-4*y^2*z^2-4*y^2-4*z^2*x^2-4*z^2-4*x^2*y^2+20.7846*x*y*z+1", Variables("x y z")), p2("4*x^3-8*x-8*x*z^2-8*x*y^2+20.7846*y*z", Variables("x y z")); topology::point_graph<double> g; topology::assign(g, p1,p2, TopSbdCurve3d<double>(), -2.1,2.,-2.15,2.1,-2.1,2.2); geomview::ostream os("tmp.off");os<<g;os.view(); }
Here is a picture of the corresponding result:
![]() |