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Abstract

We revisit implicitization by interpolation in order to examine its properties in the context of sparse elimination theory. Based on
the computation of a superset of the implicit support, implicitization is reduced to computing the nullspace of a numeric matrix.
The approach is applicable to polynomial and rational parameterizations of curves and (hyper)surfaces of any dimension, including
the case of parameterizations with base points. Our support prediction is based on sparse (or toric) resultants, in order to exploit
the sparsity of the input and the output. Our method may yield a multiple of the implicit equation: we characterize and quantify
this situation by relating the nullspace dimension to the predicted support. In this case, we obtain more than one multiples of the
implicit equation; the latter can be obtained via polynomial gcd. All of the above techniques extend to the case of approximate
computation, thus yielding a method of sparse approximate implicitization, which is important in tackling larger problems. We
discuss our publicly available Maple implementation through several examples. For a novel application, we focus on computing
the discriminant of a multivariate polynomial, which characterizes the existence of multiple roots and generalizes the resultant of
a polynomial system. This yields an efficient, output-sensitive algorithm for computing the discriminant polynomial.
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1. Introduction

Implicitization is the process of changing the representa-
tion of a geometric object from parametric to algebraic, or
implicit. It is a fundamental operation with several applica-
tions in computer-aided design (CAD) and geometric mod-
eling. There have been numerous approaches for implicit-
ization, including resultants, Groebner bases, and moving
lines and surfaces. In this paper, we restrict attention to
hypersurfaces: Our approach is based on interpolating the
unknown coefficients of the implicit polynomial given a su-
perset of its monomials. The latter is computed by means
of sparse (or toric) resultant theory, so as to exploit the in-
put and output sparseness. Here is the main notion that
formalizes sparseness (see Fig. 1).

Definition 1 Given a polynomial f =
∑
a cat

a ∈
R[t1, . . . , tn], ta = ta1

1 · · · tann , a ∈ Nn, ca ∈ R, its support is
the set {a ∈ Nn : ca 6= 0}; its Newton polytope N(f) is the
convex hull of its support. All concepts extend to the case
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of Laurent polynomials, i.e. with integer exponent vectors
a ∈ Zn.

We call the support and the Newton polytope of the im-
plicit equation, implicit support and implicit polytope, re-
spectively. Its vertices are called implicit vertices. The im-
plicit polytope is computed from the Newton polytope of
the sparse (or toric) resultant, or resultant polytope, of poly-
nomials defined by the parametric equations. Under cer-
tain generically assumptions, the implicit polytope coin-
cides with a projection of the resultant polytope, see Sect. 2.
In general, the implicit polytope is contained in the pro-
jected resultant polytope, in other words, a superset of the
implicit support is given by the lattice points contained
in the projected resultant polytope. A superset of the im-
plicit support can also be obtained by other methods, see
Sect. 1.1; the rest of our approach does not depend on the
method used to compute this support.

The predicted support is used to build a numerical ma-
trix whose kernel is, ideally, 1-dimensional, thus yielding
(up to a nonzero scalar multiple) the coefficients corre-
sponding to the predicted implicit support. This is a stan-
dard case of sparse interpolation of the polynomial from
its values. When dealing with hypersurfaces of high dimen-
sion, or when the support contains a large number of lat-
tice points, then exact solving is expensive. Since the kernel
can be computed numerically, our approach also yields an



approximate sparse implicitization method.
Our method of sparse implicitization was sketched in [11],

where we presented an algorithm and some preliminary
results on its implementation. Its main drawback is that
the kernel of the matrix may be of high dimension. In this
paper, we address this situation by presenting techniques
that alleviate this phenomenon. More formally, we relate
it to the geometry of the predicted support, which is a
superset of the true implicit support. Another reason for
obtaining a high-dimensional kernel is that the numeric
evaluation of the support monomials may not be sufficiently
generic. We study a method to obtain the true implicit
polynomial by taking the greatest common divisor (gcd) of
the polynomials corresponding to at least two and at most
all of the kernel vectors, or via multivariate polynomial
factoring.

Furthermore, we present our publicly available Maple
implementation by offering several examples. We also ex-
plain how it depends on other software, most notably the
software computing the resultant polytope.

Our main motivation is in changing the representation
of geometric (hyper)surfaces given parametrically by poly-
nomial, rational, or trigonometric parameterizations. Our
method automatically handles the case of base points, so
the user does not need to examine whether the given pa-
rameterization induces base points or not. Here, we extend
our method to a more general geometric problem, namely
to computing the discriminant of a multivariate polyno-
mial, which is an important question with several geometric
applications. The vanishing of the discriminant character-
izes the existence of multiple roots in the given polynomial.
This can be hard since explicit formulas only exist for low-
degree univariate polynomials. In general, one can reduce
discriminant computation to computing the resultant of a
system comprised of the polynomial and its partial deriva-
tives, but this is inefficient. Instead, we reduce discrimi-
nant computation to sparse implicitization, thus obtaining
an output-sensitive algorithm, whose complexity depends
on the size of the discriminant’s Newton polytope. More-
over, this technique can be used to compute discriminants
of well-constrained systems we well as resultants because
they can be viewed as a special case of discriminants.

The paper is organized as follows: Sect. 1.1 overviews pre-
vious work and Sect. 2 describes our approach to predict-
ing the implicit support while exploiting sparseness. Sect. 3
presents our implicitization algorithm based on computing
a matrix kernel, either exactly or approximately, and fo-
cuses on the case of high dimensional kernels. Our Maple
implementation is described in Sect. 4, whereas Sect. 5
applies our method to computing discriminants. We con-
clude with future work. Appendix A contains omitted re-
sults from examples in Sect. 5, while further experimental
results are in Appendix B.

1.1. Previous work

If S is a superset of the implicit support, then the most
direct method to reduce implicitization to linear algebra

is to construct a |S| × |S| matrix M , indexed by monomi-
als with exponents in S (columns) and |S| different values
(rows) at which all monomials get evaluated. Then the vec-
tor p of coefficients of the implicit equation is in the ker-
nel of M . This idea was used in [11,13,19,23]; it is also the
starting point of this paper.

Our method of sparse implicitization was sketched in [11],
where the overall algorithm was presented together with
some results on its preliminary implementation, including
the case of approximate sparse implicitization. The empha-
sis of that work was on sampling and oversampling the para-
metric object so as to create a numerically stable matrix,
and examined evaluating the monomials on random inte-
gers, random complex numbers of modulus 1, and complex
roots of unity. That paper also proposed ways to obtain a
smaller implicit polytope by downscaling the original poly-
tope when the corresponding kernel dimension was higher
than one.

A similar approach was based on integrating matrixM =
SS>, over each parameter t1, . . . , tn [3]. Then p is in the
kernel ofM . In fact, the authors propose to consider succes-
sively larger supports in order to capture sparseness. This
method covers polynomial, rational, and trigonometric pa-
rameterizations, but the matrix entries take big values (e.g.
up to 1028), so it is difficult to control its numeric corank,
i.e. the dimension of its nullspace. Thus, the accuracy of the
approximate implicit polynomial is unsatisfactory. When it
is computed over floating-point numbers, the implicit poly-
nomial does not necessarily have integer coefficients. They
discuss post-processing to yield integer relations among the
coefficients, but only in small examples.

Approximate implicitization over floating-point numbers
was introduced in a series of papers. Today, there are direct
[7,25] and iterative techniques [1]. An idea used in approx-
imate implicitization is to use successively larger supports,
starting with a quite small set and extending it so as to
reach the exact implicit support. Existing approaches have
used upper bounds on the total implicit degree, thus ignor-
ing any sparseness structure. Our methods provide a formal
manner to examine different supports, in addition to ex-
ploiting sparseness, based on the implicit polytope. When
the kernel dimension is higher than one, one may downscale
the polytope so as to obtain a smaller implicit support.

Sparse interpolation is the problem of interpolating a
multivariate polynomial when information of its support is
given [27, ch.14]. This may simply be a bound σ = |S| on
support cardinality; then complexity isO(m3δn log n+σ3),
where δ bounds the output degree per variable, m is the
actual support cardinality, and n the number of variables.
A probabilistic approach inO(m2δn) requires as input only
δ.

2. Implicitization by support prediction

A parameterization of a geometric object of co-dimension
one, in a space of dimension n + 1, can be described by a
set of parametric functions:

x0 = f0(t1, . . . , tn), . . . , xn = fn(t1, . . . , tn),
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where t := (t1, t2, . . . , tn) is the vector of parameters and
f := (f0, . . . , fn) is a vector of continuous functions, in-
cluding polynomial, rational, and trigonometric functions,
also called coordinate functions. These are defined on some
product of intervals Ω := Ω1×· · ·×Ωn, Ωi ⊆ Rn, of values
of t1, . . . , tn. Implicitization of planar curves and surfaces
in three dimensional space corresponds to n = 1 and n = 2
respectively. We assume that, in the case of trigonometric
functions, they may be converted to rational functions by
the standard half-angle transformation

sin θ =
2 tan θ/2

1 + tan2 θ/2
, cos θ =

1− tan2 θ/2
1 + tan2 θ/2

,

where the parametric variable becomes t = tan θ/2. On pa-
rameterizations depending on both θ and its trigonomet-
ric function, we may approximate the latter by a constant
number of terms in their series expansion.

The implicitization problem asks for the smallest alge-
braic variety containing the closure of the image of the
parametric map f : Rn → Rn+1 : t 7→ f(t). This im-
age is contained in the variety defined by the ideal of all
polynomials p(x0, . . . , xn) such that p(f0(t), . . . , fn(t)) =
0, for all t in Ω. We restrict ourselves to the case when
this is a principal ideal, and we wish to compute its unique
defining polynomial

p(x0, . . . , xn) = 0, (1)

given its Newton polytope, or a polytope that contains it.
We can regard the variety in question as the projection of
the graph of map f to the last n + 1 coordinates. If f is
polynomial, implicitization is reduced to eliminating t from
the polynomial system

Fi := xi − fi(t) ∈ (R[xi])[t], i = 0, . . . , n,

seen as polynomials in t with coefficients which are func-
tions of the xi. This is also the case for rational parameter-
izations

xi = fi(t)/gi(t), i = 0, . . . , n, (2)
represented as polynomials in (R[x0, . . . , xn])[t, y]:

Fi := xigi(t)− fi(t), i = 0, . . . , n, (3)
Fn+1 := 1− yg0(t) · · · gn(t),

where y is a new variable and Fi+1 assures that all gi(t) 6=
0. If one omits Fn+1, the generator of the corresponding
(principal) ideal would be a multiple of the implicit equa-
tion. Then the extraneous factor corresponds to the gi.
Eliminating t, y may be done by taking the resultant of the
polynomials in (3).

Let Ai ⊂ Zn, i = 0, . . . , n + 1 be the supports of the
polynomials Fi and consider the generic polynomials

F ′0, . . . , F
′
n, F

′
n+1 (4)

with the same supports Ai and symbolic coefficients cij .

Definition 2 Their sparse resultant Res(F ′0, . . . , F
′
n+1) is

a polynomial in the cij with integer coefficients, namely

R ∈ Z[cij : i = 0, . . . , n+ 1, j = 1, . . . , |Ai|],

which is unique up to sign and vanishes if and only if the
system F ′0 = F ′1 = · · · = F ′n+1 = 0 has a common root in

a specific variety. This variety is the projective variety Pn
over the algebraic closure of the coefficient field in the case
of projective (or classical) resultants, or the toric variety
defined by the Ai’s.
The resultant polytope is denoted by N(R).

The implicit equation of the parametric hypersurface de-
fined in (3) equals the resultant Res(F0, . . . , Fn+1), pro-
vided that the latter does not vanish identically. Thus, the
latter can be obtained from Res(F ′0, . . . , F

′
n+1) by special-

izing the symbolic coefficients of the F ′i ’s to the actual co-
efficients of the Fi’s, provided that this specialization is
generic enough. In this case, the implicit polytope equals
the resultant polytope projected to the space of the im-
plicit variables, i.e. the Newton polytope of the specialized
resultant, up to some translation. When this condition fails
for the given specialization of the cij ’s, the support of the
specialized resultant is a superset of the support of the ac-
tual implicit polynomial modulo a translation. This follows
from the fact that the method computes the same resul-
tant polytope as the tropical approach, where the latter is
specified in [22]. Note that there is no exception even in the
presence of base points.

Proposition 3 [22, Prop.5.3] Let f0, . . . , fn ∈ C[t±1
1 ,

. . . , t±1
n ] be any Laurent polynomials whose ideal I of alge-

braic relations is principal, say I = 〈p〉, and let Pi ⊂ Rn be
the Newton polytope of fi. Then the resultant polytope which
is constructed combinatorially from P0, . . . , Pn contains a
translate of the Newton polytope of p.

2.1. Support prediction - The software ResPol

Our method is based on the computation of the implicit
polytope, given the Newton polytopes of the polynomials
in (3). Then the implicit support is a subset of the set of
lattice points contained in the computed implicit polytope.

There are methods for the computation of the implicit
polytope based on tropical geometry [22,23], see also [5].
Our method relies on sparse elimination theory. In the case
of curves, the implicit support is directly determined in [12].
In general, the implicit polytope is obtained from the pro-
jection of the resultant polytope of the polynomials in (4)
defined by the specialization of their symbolic coefficients
to those of the polynomials in (3).

In [9], they develop an incremental algorithm to compute
the resultant polytope, or its orthogonal projection along
a given direction. It is implemented in package ResPol 4 .

The algorithm exactly computes vertex- and halfspace-
representations of the target polytope and it is output-
sensitive. It also computes a triangulation of the polytope,
which may be useful in enumerating the lattice points. It is
efficient for inputs relevant to implicitization: it computes
the polytope of surface equations within 1 second, assum-
ing there are less than 100 terms in the parametric poly-
nomials, which includes all common instances in geometric
modeling. This is the main tool for support prediction used
in this work, thus we illustrate its use in implicitization.

4 http://sourceforge.net/projects/respol
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ResPol takes as input three lines:
– The dimension n of the input supports (in our case, this

equals the number of parametric variables).
– The cardinality of each support | support points defining

the projection (in our case, these are the exponents of
monomials in t having coefficient xi).

– The supports of the polynomials defined by the paramet-
ric expressions.

Example 4 Consider the standard benchmark of bicubic
surface, and define the following in (R[xi])[t1, t2]:

F0 := x0 − 3t1(t1 − 1)2 − (t2 − 1)3 − 3t2,

F1 := x1 − 3t2(t2 − 1)2 − t31 − 3t1, (5)

F2 := x2 + 3t2(t22 − 5t2 + 5)t31 + 3(t32 + 6t22 − 9t2 + 1)t21−
t1(6t32 + 9t22 − 18t2 + 3) + 3t2(t2 − 1),

and prepare the input file for ResPol:
2
7 6 14
[[0, 0], [0, 1], [1, 0], [0, 2], [2, 0], [0, 3], [3, 0], [0, 0], [0, 1], [1, 0],
[2, 0], [0, 3], [3, 0], [0, 0], [0, 1], [1, 0], [0, 2], [1, 1], [2, 0], [1, 2],
[2, 1], [1, 3], [2, 2], [3, 1], [2, 3], [3, 2], [3, 3]]

Alternatively, in the second line we could explicitly spec-
ify the support points that define the projection of N(R),
by their order in the set of the third line: 7 6 14 | 0 7 13.
These are exponents of the terms of F0, F1, F2 whose co-
efficient contains the implicit variables x0, x1, x2. It takes
ResPol 0.1 second to output the implicit polytope’s vertices
(0, 0, 0), (18, 0, 0), (0, 18, 0), (0, 0, 9); this polytope contains
715 lattice points.

Example 5 Consider the rational parametric curve
known as folium of Descartes:

x0 =
3t2

t3 + 1
, x1 =

3t
t3 + 1

. (6)

It is represented by the following polynomials in (R[xi])[t]:

F0 := −x0 + 3t2 − x0t
3, F1 := −x1 + 3t− x1t

3

ResPol outputs seven 4-dimensional vertices: (0, 0, 2, 1),
(3, 0, 0, 3), (0, 3, 3, 0), (1, 2, 0, 0), (1, 0, 0, 1), (0, 2, 2, 0),
(0, 0, 2, 1). The first two coordinates of these vertices cor-
respond to input coefficients containing x0, whereas the
other two, to coefficients containing x1. The implicit ver-
tices are 2-dimensional: their coordinate corresponding to
x0 is the sum of the first two coordinates of the predicted
vertices, and their coordinate corresponding to x1 is the
sum of the last two: (0, 3), (3, 3), (3, 0), (1, 1), (2, 2). This is
used as input to our implicitization code.

In practice, ResPol proves to be inefficient when the di-
mension of the projection space exceeds 8. For polynomial
parameterizations, this dimension is equal to the number of
parametric equations, but for rational parameterizations,
is equal to the number of monomials in the denominators of
the parametric equations. We can overcome this difficulty
by introducing as many additional variables as the num-
ber of different denominators that appear in the parametric
equations. This raises the input dimension which has lesser
effect to ResPol’s efficiency. This is demonstrated below.

Example 6 (Cont’d from Example 5) We introduce a
new variable w expressing the common denominator t3 + 1
and rewrite the system:

F0 := −x0w + 3t2, F1 := −x1w + 3t, F2 := 1− w + t3.

The Newton polygons of the Fi’s are shown in Fig. 1.
ResPol gives implicit vertices (0, 3), (3, 0), (3, 3), (1, 1) in

(x0, x1)-space which are directly used in our implicitization
routine.

3. Kernel of Higher Dimension

This section describes our implicitization algorithm 1,
then focuses on the case of high-dimensional kernels.

Algorithm 1: Sparse Implicitization
Input : Polynomial or rational parameterization

xi = fi(t), i = 0, . . . , n,
Predicted implicit polytope Q, if n ≥ 2

Output: Implicit polynomial p(x0, . . . , xn) in its
monomial basis.

Nn+1 ⊇ S ← lattice points in Q
foreach si ∈ S do mi ← xsi // x := (x0, . . . , xn)
m← (m1, . . . ,m|S|) // vector of monomials in x
Initialize µ× |S| matrix M , µ ≥ |S|:
for i← 1 to µ do

select τi ∈ Cn+1

for j ← 1 to |S| do
Mij ← mj |t=τi

{v1, . . . ,vk} ← Basis of Nullspace(M)
if k = 1 then p← g1
else

for i← 1 to k do gi ← primpart(vi ·m)// inn.prod.

p← gcd(g1, . . . , gk)
return p

Let us describe in more detail the construction of matrix
M . Let S := {s1, . . . , s|S|}; each sj = (sj0, . . . , sjn) is an ex-
ponent of a (potential) monomial mj := xsj = x

sj0
0 . . . x

sjn
n

of the implicit polynomial, where xi is given in (2) . We eval-
uate mj at some τk, k = 1, . . . , µ, µ ≥ |S|. Let mj |t=τk :=∏
i

(
fi(τk)
gi(τk)

)sji
denote the evaluated j-th monomial mj at

τk. Thus, we construct an µ ×m matrix M with rows in-
dexed by τ1, . . . , τµ and columns by m1, . . . ,m|S|:

M =


m1|t=τ1 · · · m|S||t=τ1

... · · ·
...

m1|t=τµ · · · m|S||t=τµ


By the construction of matrix M using values τ that

correspond to points on the parametric surface, we have
the following:

Lemma 7 Any polynomial in the basis of monomials in-
dexing M , with coefficient vector in the kernel of M , is a
multiple of the implicit polynomial p.
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Fig. 1. Newton polytopes of F0, F1, F2 in Example 6.

As in [11], one of the main difficulties is to buildM whose
corank, or kernel dimension, equals 1, i.e. its rank is 1 less
than its column dimension. Of course we have to avoid val-
ues that make the denominators of the parametric expres-
sions close to 0. To cope with numerical issues, especially
when computation is approximate, we construct a rectan-
gular matrix M by choosing µ ≥ |S| values of τ ; this over-
constrained system increases numerical stability. For some
inputs we obtain a matrix of corank > 1 when the predicted
polytope Q is significantly larger than the actual one. We
formalize this concept in Thm. 10 and its corollaries. It can
be explained by the nature of our method: we rely on a
generic resultant to express the implicit equation, whose
symbolic coefficients are then specialized to the actual co-
efficients of the parametric equations. If this specialization
is not generic, then the resulting implicit equation divides
the specialized resultant.

We address such cases by computing the gcd of two or
more polynomials gi obtained from kernel vectors. There
exist many algorithms for the exact [20,21] or approximate
gcd of multivariate polynomials. The first approximate ap-
proach, given polynomials f, g and error tolerance ε > 0,
computes the maximum degree gcd of polynomials f̂ , ĝ
where |f − f̂ |, |g− ĝ| < ε [10]. The second minimizes ε such
that f̂ , ĝ have gcd of at least a given degree r [17]. There ex-
ist similar techniques for several univariate polynomials [8].
Our software uses Maple’s command gcd for exact, and
package ApaTools [26] for approximate gcd computations.

Example 8 (Cont’d from Example 5) The method
in [12] yields the implicit vertices: (1, 1), (0, 3), (3, 0).
This polygon contains five lattice points which yield the
potential implicit monomials y3, xy, xy2, x2y, x3 indexing
the columns of matrix M in this order. The kernel of M is
spanned by vector [1,−3, 0, 0, 1]; the implicit equation is
x3 − 3xy + y3.

If we change the parameterization, substituting t by t2,
we obtain

x0 =
3t4

t6 + 1
, x1 =

3t2

t6 + 1
,

then the algorithm in [12] predicts an implicit polytope
with vertices: (2, 2), (0, 6), (6, 0), containing twelve lattice
points. We build a matrix M of size µ × 12 (µ ≥ 12) of
corank 5. The polynomials corresponding to its kernel vec-
tors are: g1 = x2y(y3−3yx+x3), g2 = (y3−3yx+x3)(x3 +
3yx−y3), g3 = xy2(y3−3yx+x3), g4 = yx(y3−3yx+x3),
g5 = y3(y3 − 3yx+ x3). Their gcd is the implicit equation.

Example 9 (Unit Sphere) Consider its parameteriza-
tion:

x0 =
2s

1 + t2 + s2
, y =

2st
1 + t2 + s2

, x2 =
−1− t2 + s2

1 + t2 + s2
.

ResPol predicts an implicit polytope with vertices: (0, 0, 0),
(0, 0, 2), (0, 0, 4), (0, 2, 0), (0, 4, 0), (4, 0, 0). It contains 35
lattice points. We build M of size µ×35 (µ ≥ 35) of corank
10. The polynomials corresponding to the kernel vectors
are: g1 = y2(−1 + z2 + x2 + y2), g2 = z2(−1 + z2 + x2 + y2), g3 =

−1 + z2 + x2 + y2, g4 = x(−1 + z2 + x2 + y2), g5 = yz(−1 + z2 +

x2 + y2), g6 = y(−1 + z2 + x2 + y2), g7 = xz(−1 + z2 + x2 + y2),

g8 = z(−1 + z2 + x2 + y2), g9 = xy(−1 + z2 + x2 + y2), g10 =

(x2 +1−y2−z2)(−1+z2 +x2 +y2). Computing the gcd of two
randomly chosen polynomials we obtain either the actual
implicit equation p = −1 + z2 + x2 + y2, or a multiple of p
of degree 3.

Computing the kernel of M approximately yields poly-
nomials with real coefficients. The approximate gcd of
the first two is: −0.9999998548199414 + 0.9999999857259533x2 +

1.000000000052092y2 + 1.000000000000000z2, which is accurate
to seven decimal digits.

The following theorem establishes the relation between
the dimension of the kernel of M and the accuracy of the
predicted support. It remains valid even in the presence of
base points. In fact, it also accounts for them since then P
is expected to be much smaller of Q.
Theorem 10 Let P = N(p) be the Newton polytope of the
implicit equation, and Q the predicted polytope. Assuming
M has been built using sufficiently generic evaluation points,
the dimension of its kernel equals #{m ∈ Zn : m + P ⊆
Q} = #{m ∈ Zn : N(xm · p) ⊆ Q}.

PROOF. By Lem. 7, the kernel of M consists of the co-
efficient vectors c of all polynomials of the form fp, where
N(fp) ⊂ Q, or, equivalently, N(f) +N(p) ⊂ Q.

Now, assume that there are r elements a1, . . . , ar ∈ Zn
such that N(xai · p) ⊆ Q and let gi = xaip, i = 1, . . . , r.
Then the coefficient vector ci of gi lies in the kernel of M
because gi vanishes on all evaluation points mi(τi), i =
1, . . . , k used for constructing M , since p vanishes on these
points. Moreover, the vectors ci in the set {c1, . . . , cr} are
linearly independent. Obviously, every coefficient vector c
of a polynomial of the form fp, where N(fp) ⊂ Q, can
be written as a linear combination of the vectors ci, hence
corank(M) = r.

Let the P,Q be as in Thm. 10 and assume Q ⊇ P + R,
where R contains r lattice points and is maximal wrt the
previous inclusion, i.e. if R′ ) R, then Q ( P +R′; R can
be a point.
Corollary 11 Consider the set of polynomials as an R-
vector space in the monomial basis and let I be the R-
vector space generated by all polynomials of the form pf ∈
R[x0, . . . , xn], such that NP (f) ⊆ R. Assuming generic
values for τ ’s, then corank(M) = dimR(I).
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PROOF. I is generated, as an R-vector space, by polyno-
mials xmip, i = 1, . . . , r, where mi ∈ Zn are lattice points
in R and dimR(I) = #{m ∈ Zn : NP (xm ·p) ⊆ Q}. There-
fore, corank(M) = dimR(I).

Corollary 12 Let M be the matrix from Alg. 1, built
with sufficiently generic evaluation points, and suppose the
specialization of the polynomials in (4) to the parametric
equations is sufficiently generic. Let v1, . . . , vk be a basis of
the kernel of M and g1, . . . , gk be the corresponding polyno-
mials (Step 4 of Alg. 1). Then the gcd of g1, . . . , gk equals
the implicit equation.

Some examples where M is of corank > 1 are shown in
the Appendix; Table B.1, contains parametric and implicit
representations. Table B.2 shows: the vertices of the actual
implicit polytope, the number of its lattice points, the de-
gree and the number of monomials in the implicit equation,
the vertices of the predicted implicit polytope, the number
of its lattice points, the corank of matrix M , and the num-
ber of polynomials gi of a certain degree (in parenthesis)
obtained from the kernel vectors. It is obvious, that as the
degree and the number of polynomials gi of that degree,
grows large, then more gcd operations are required to ob-
tain the implicit equation or its multiple of lower degree.

4. Maple implementation

We have implemented our method in Maple 13. A
beta-version is publicly available. 5 Our release’s main
functions are imcurve and imgen. Both functions operate
similarly: first they construct a square or rectangular M
by evaluating the implicit monomials to random integers,
random complex numbers of modulus one, or complex
roots of unity evaluated as floating point numbers. To
compute the nullspace of M we use Maple’s commands
LinearSolve and Nullspace; approximate results are
obtained by numerical methods, in particular SVD, us-
ing SingularValues. The user can choose the method
of solving as well as the way of evaluating the potential
monomials. To compute all lattice points contained in the
predicted implicit polytope Q, we rely on the external
Maple package convex 6 . More specialized software for
this task, e.g. Normaliz 7 , may improve the performance.

Function imcurve concerns planar curves only and com-
putes the implicit polygon following [12].Function imgen
is more general since it can compute the implicit equa-
tion of parametric curves, surfaces or hypersurfaces in 4-
dimensional space. It is not self-contained as it reads the
implicit polytope from an external method, such as ResPol.
These functions take as arguments:
– The list of parametric expressions
– (imgen only) The set of the predicted implicit vertices,
– The solving method parameter: “n” stands for Nullspace,

“l” LinearSolve, and “s” for SingularValues.

5 http://ergawiki.di.uoa.gr/index.php/Implicitization
6 http://www.math.uwo.ca/∼mfranz/convex
7 http://www.mathematik.uni-osnabrueck.de/normaliz/

– The evaluation parameter: “int” stands for integers,
“unc” for random complex numbers of modulus 1, and
“ruf” for roots of unity evaluated as floating point num-
bers. Note that the latter can only be used with SVD.

– The ratio between number of rows and columns of the
matrix, which is at least 1.
Compared to the preliminary release in [11], our software

has many improvements, among which are:
– Improved handling of cases when corank(M) > 1: rect-

angular matrices are allowed and gcd of two randomly
chosen polynomials (corresponding to kernel vectors) is
employed.

– New function writeRespolInput for creating input files
for ResPol.

– New functions for generating complex τ ’s.
In the sequel all experiments, unless otherwise stated,

were performed on a Celeron 1.6 GHz linux machine with
2 GB of memory.

Example 13 We demonstrate the use of our two implici-
tization functions with the curve of Example 5. Let f1 :=
3t2/(t3 +1) and f2 := 3t/(t3 +1) and call function imcurve
as imcurve([f1, f2], “l”, “int”, 1). In 0.012 seconds we ob-
tain the implicit equation y3 − 3xy + x3.

The same curve can be implicitized using function imgen:
imgen([f1, f2], {[1, 1], [0, 3], [3, 0]},“l”,“int”,1) which yields
the same implicit equation in 0.044 seconds.

Example 14 Consider the polynomial parametric surface

x0 =
1
2
t2 − 1

2
s2 − 1

4
t4 +

3
2
t2s2 − 1

4
s4,

x1 = −ts− t3s+ ts3,

x2 =
2
3
t3 − 2ts2.

We define the polynomials f1 := 1/2t2−1/2s2−1/4t4 +
3/2t2s2−1/4s4, f2 := −ts−t3s+ts3, and f3 := 2/3t3−2ts2.
ResPol predicts implicit vertices (3, 2, 2), (9, 0, 4),

(0, 12, 0),(0, 0, 16),(4, 4, 0),(0, 0, 6),(8, 4, 0),(0, 8, 0), (3, 0, 4),
(0, 2, 4),(3, 2, 2). This polytope contains 400 lattice points.

Let S denote the set of predicted implicit vertices. Issuing
the following command in Maple imgen([f1, f2, f3], S, ”l”,
”int”, 1), we obtain the implicit equation of the surface in
9.4 seconds.

Example 15 (Cont’d from Example 4) The implicit
equation of the bicubic surface is computed in 42 seconds;
it is a polynomial of degree 18 containing 715 terms which
correspond exactly to the predicted implicit support.

5. Discriminant computation

This section computes the discriminant of a multivariate
polynomial, which characterizes the existence of multiple
roots. It subsumes the discriminant of a well-constrained
n×n system as well as the resultant of an overconstrained
system.

Discriminants are fundamental tools in several geomet-
ric applications, since they characterize the locus of dis-
crete changes of a system. The vanishing of the discrimi-
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nant partitions coefficient space to cells of values for which
the underlying polynomial has a fixed number of real roots.
For mechanical, robotics, molecular or vision systems ex-
pressed by polynomials, the discriminant variety partitions
configuration space to instances that are connected by con-
tinuous movement without singularities, e.g. [15].

It is well known that the condition for a univariate
quadratic polynomial f = at2 + bt + c to have a double
root is that its discriminant D(f) = b2 − 4ac vanishes. A
univariate cubic polynomial has a double root if and only
if its discriminant vanishes:

D(c0+c1t+c2t2+c3t3) = c21c22−4c31c3−4c0c32−27c20c23+18c0c1c2c3.

More generally, consider a polynomial f(t1, . . . , tn) in n
variables.

Definition 16 A multiple root of f is a point where f van-
ishes together with all its first derivatives ∂f/∂ti. The dis-
criminant D(f) is a polynomial in the coefficients of f ,
which vanishes whenever f has a multiple root.

It can be shown that D(f) exists and is unique (up to
sign) if we require it to be irreducible and to have relatively
prime integer coefficients.

We are interested in discriminants of (Laurent) polyno-
mials with fixed support: given a set ofm lattice pointsA ⊂
Zn, let FA =

∑
a∈A cat

a denote the generic polynomial in
variables t1, . . . , tn with exponents in A. It is shown in [16]
that there exists an irreducible polynomial DA = DA(c)
with integer coefficients in the vector of coefficients c =
(ca : a ∈ A), defined up to sign, called the A-discriminant,
which vanishes for each choice of c for which FA and all
∂FA/∂ti have a common root in (C\{0})n. Here, we con-
sider roots with nonzero coordinates so as to be able to
ignore trivial multiple roots. A-discriminants describe the
singularities of a class of functions, calledA-hypergeometric
functions, which are solutions of certain linear PDE’s. The
A-discriminant is an affine invariant, in the sense that any
configuration of points affinely isomorphic to A has the
same discriminant.
A-discriminants include as special cases several funda-

mental algebraic objects, such as the resultant and the de-
terminant. If, for instance, A = {(0, 0), (1, 0), . . . , (m, 0),
(0, 1), (1, 1), . . . , (n, 1)} ⊂ Z2, then we can write FA as
f(t1) + t2g(t1). Its A-discriminant is the resultant of f
and g: It vanishes whenever f and g have a common root.
More generally, the resultant of polynomials f0, . . . , fk in
k variables is the A-discriminant of an auxiliary polyno-
mial f0(t1, . . . , tk) +

∑k
i=1 yifi(t1, . . . , tk). Another impor-

tant example occurs when FA consists of n2 monomials
xiyj , i, j = 1, . . . , n, i.e. a bilinear form FA =

∑
cijxiyj .

Then its A-discriminant is the determinant of the matrix
(cij). Moreover, DA is a factor of the resultant of FA and
∂FA/∂ti, i = 1, . . . , n. The extraneous factors in this resul-
tant are powers of discriminants associated to certain sub-
sets of A.

Computing A-discriminants may be reduced to implici-
tization. Given the set of m points A ⊂ Zn, we form the
(n + 1) × m,m > n + 1 integer matrix (also called A by
abuse of notation) whose first row consists of ones, and

whose columns are given by the points (1, a) for all a ∈ A.
Let B = (bij) ∈ Zm×(m−n−1) be a matrix whose column
vectors are a basis of the integer kernel of matrix A. Then
B is of full rank. We assume that its maximal minors have
unit gcd (i.e. the rows generate Zm−n−1). Since the first
row of A equals (1, . . . , 1), the entries of each column vector
of B add up to 0.

Set d = m − n − 1. The, so called, Horn-Kapranov pa-
rameterization [16,18], is defined as:

xj =
m∏
i=1

(bi1y1 + · · ·+ bidyd)bij , j = 1, 2, . . . , d, (7)

where yi, i = 1, . . . , d are homogeneous parameters. In the
examples, we shall set y1 = 1 in order to dehomogenize the
parameterization. We denote by li, i = 1, . . . ,m the inner
product of the i-th row of B and the parameter vector
(1, y2, . . . , yd), hence

xj =
m∏
i=1

l
bij
i , j = 1, 2, . . . , d. (8)

The li correspond bijectively to the coefficients ci of poly-
nomial FA and are thus the discriminant variables.

The implicit equation of the image of parameteriza-
tion (8) is a polynomial ∆B in x := (x1, . . . , xd) which in
fact is the dehomogenized version of the A-discriminant
DA(c) of FA. In particular, ∆B and DA have the same
number of monomials and the same coefficients.

To obtain DA(c) (up to a monomial) from ∆B(x) we
use relation (8) and substitute each xi in ∆B by the corre-
sponding power product of linear forms li(≡ ci):

DA(c) = ∆B(
m∏
i=1

cbi1i , . . . ,

m∏
i=1

cbidi ).

This reduces the computation of DA to implicitizing the
parametric hypersurface (7). Thanks to our support pre-
diction approach, the complexity of our method depends
on the number of lattice points in the predicted polytope.
The latter equals the Newton polytope of the discriminant
or a superset, which seems to be not much larger than the
Newton polytope itself, in practice. Hence, our method is
output sensitive since it depends on the size of the target
polynomial.

To illustrate our method, we focus on discriminants with
d = 2 or d = 3, i.e. m = n + 3 or m = n + 4 [2,4,6],
although our algorithm may compute discriminants for any
d. In particular, we implicitize the parametric curve and
surface given, after dehomogenization, respectively by

xj =
m∏
i=1

(bi1 + bi2s)bij , j = 1, 2,

and

xj =
m∏
i=1

(bi1 + bi2s+ bi3t)bij , j = 1, 2, 3.

In the following, we denote by li, i = 1, . . . ,m the inner
product of the i-th row ofB and the parameter vector (1, s)
or (1, s, t), i.e. li := bi1 + bi2s or li := bi1 + bi2s+ bi3t.

7



Example 17 Let A = {(1, 0), (0, 1), (1, 1), (2, 0), (3, 0)} ⊂
Z2, and consider the generic polynomial in t1, t2 with this
support FA(t1, t2) = c1t1 +c2t2 +c3t1t2 +c4t

2
1 +c5t

3
1. Then

A =

 1 1 1 1 1

1 0 1 2 3

0 1 1 0 0

 , B =


−1 −1

1 2

−1 −2

1 0

0 1

 .

Here l1 = −1− s, l2 = 1 + 2s, l3 = −1− 2s, l4 = 1, l5 = s.
We have the parameterization

x1 =
l2l4

l1l3
=

1 + 2s

(−1− 2s)(−1− s)
, x2 =

l22l5

l1l23
=

(1 + 2s)2s

(−1− s)(−1− 2s)2
.

The predicted implicit polygon has vertices (0, 0), (2, 0), (3, 0),
(3, 2) and contains seven lattice points. Applying imcurve,
we obtain the implicit equation x2

1(x1 − x2 − 1), so
∆B(x1, x2) = x1 − x2 − 1 because x2

1 is always nonzero. 8

Then

DA(c1, c2, c3, c4, c5) = ∆B(
c2c4
c1c3

,
c22c5
c1c23

),

so the A-discriminant is DA = c2c3c4 − c22c5 − c1c23.
Example 18 Let A = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (2, 0, 0),
(0, 3, 0), (0, 0, 3)} ⊂ Z3, and FA(t1, t2) = c1t1t2 + c2t1t3 +
c3t2t3 + c4t

2
1 + c5t

3
2 + c6t

3
3. Then

A =


1 1 1 1 1 1

1 1 0 2 0 0

1 0 1 0 3 0

0 1 1 0 0 3

 , B =


3 −1

−3 −1

0 1

0 1

−1 0

1 0

 .

Here l1 = 3− s, l2 = −3− s, l3 = s, l4 = s, l5 = −1, l6 = 1,
and we have the parameterization

x1 =
l31l6
l32l5

=
(3− s)3

(3 + s)3
, x2 =

l3l4
l1l2

=
s2

(3− s)(3 + s)
.

The predicted polygon contains twelve lattice points and
yields a matrix M of corank 1. The implicit equation is

∆B(x1, x2) = 1− 2x1 − 36x1x2 − 96x1x
2
2 − 64x1x

3
2 + x2

1

and the A-discriminant is DA = ∆B( c
3
1c6
c32c5

, c3c4c1c2
) = c62c

2
5 −

2c31c6c
3
2c5−36c21c6c3c4c

2
2c5−96c1c6c23c

2
4c2c5−64c6c5c33c

3
4 +

c61c
2
6.

Using approximate computation, namely complex eval-
uation points and applying SVD for computing the kernel,
we obtain:

1 − 2x1 − 36.0001x1x2 − 96.0001x1x2
2 − 64x1x3

2 + x2
1 + 1.3921 ·

10−21I + (−2.1482 · 10−16 + 3.2297 · 10−15I)x2 + (2.3068 · 10−16 −
2.8561 · 10−15I)x2

2 + (−4.8344 · 10−17 + 1.9862 · 10−15I)x3
2− 5.3777 ·

10−19Ix1 − 6.4659 · 10−15Ix1x2 + −1.1053 · 10−13Ix1x2
2 − 2.1119 ·

10−13Ix1x3
2 + 1.6829 · 10−19Ix2

1 + (−2.1857 · 10−16 + 3.2281 ·
10−15I)x2

1x2 + (2.0665 · 10−16 − 2.8528 · 10−15I)x2
1x2

2 + (−1.7033 ·
10−16 + 1.8923 · 10−15I)x2

1x3
2.

If we filter out coefficients whose absolute value is smaller
than 10−13, we obtain the approximate implicit polynomial

1− 2x1 − 36.0001x1x2 − 96.0001x1x2
2 − 64x1x3

2 + x2
1

8 ck: why?

and the approximate A-discriminant:
c62c25 − 2c31c6c32c5 − 36.0001c21c6c3c4c22c5 − 96.0001c1c6c23c24c2c5 −
64c6c5c33c34 + c61c26, which has the correct support and whose
coefficients are accurate up to three decimal digits.
Example 19 [4] Consider the discriminant computation
with matrix

B =


1 −1 0

1 −1 1

1 −1 0

−1 2 0

−1 1 −2

−1 0 1


It gives the parameterization

x1 =
(1− s)2(1− s + t)

(−1 + 2s)(−1 + s− 2t)(−1 + t)
,

x2 =
(−1 + 2s)2(−1 + s− 2t)

(1− s)2(1− s + t)
,

x3 =
(1− s + t)(−1 + t)

(−1 + s− 2t)2
.

As in Example 6, we employ the following use-
ful technique: we introduce three new variables u :=
(−1 + 2s)(−1 + t), v := (1− s)2(1− s+ t), w := −1 + s−2t
and define polynomials F0 = 1+s+ t−s2 +2st−s3 +s2t−xuw,

F1 = −1+5s−2t−8s2+8st+4s3−8s2t−yv, F2 = −1+s−st+t2−zw2.

ResPol yields an implicit polytope with vertices (0, 6, 7),
(6, 0, 0), (0, 6, 0), (0, 0, 7), (0, 0, 0), (6, 6, 4), (6, 0, 4), (6, 6, 0)
containing 308 lattice points. The interpolation matrix has
corank 8. The gcd of the polynomials corresponding to two
randomly chosen kernel vectors equals the actual implicit
equation:
∆B(x1, x2, x3) = 16x5

1x5
2x3

3 + 80x4
1x4

2x3
3 − 8x4

1x4
2x2

3 + 500x4
1x3

2x2
3 +

3125x4
1x2

2x2
3 + 160x3

1x3
2x3

3 − 32x3
1x3

2x2
3 + x3

1x3
2x3 + 1000x3

1x2
2x2

3 −
225x3

1x2
2x3 + 160x2

1x2
2x3

3 − 48x2
1x2

2x2
3 + 3x2

1x2
2x3 + 500x2

1x2x2
3 −

225x2
1x2x3 + 27x2

1x2 + 80x1x2x3
3 − 32x1x2x2

3 + 3x1x2x3 + 16x3
3 −

8x2
3 + x3.

Let l1 = 1 − s, l2 = 1 − s + t, l3 = 1 − s, l4 = −1 +
2s, l5 = −1 + s− 2t, l6 = −1 + t. Then we can rewrite the
parameterization as

(x1, x2, x3) = (
l21l2
l4l5l6

,
l24l5
l1l2l3

,
l2l6
l25

),

and obtain the A-discriminant as
DA(c) = ∆B(

c21c2

c4c5c6
,

c24c5

c1c2c3
,
c2c6

c25
) = c45c36c53 − 8c2c25c46c53 +

16c22c56c53 +3c45c26c43c1c4−32c2c25c36c43c1c4 +80c22c46c43c1c4 +27c55c43c31−
225c2c35c6c43c31 + 500c22c5c26c43c31 + 3c45c6c33c21c24 − 48c2c25c26c33c21c24 +

160c22c36c33c21c24 − 225c2c35c33c41c4 + 1000c22c5c6c33c41c4 + c45c23c31c34 −
32c2c25c6c23c31c34 + 160c22c26c23c31c34 + 3125c32c33c61 + 500c22c5c23c51c24 −
8c2c25c3c41c44 + 80c22c6c3c41c44 + 16c22c51c54.

Example 20 Consider the discriminant computation
with matrix

B =


3 0 0

−1 −1 −1

−1 −1 0

0 −1 1

0 2 1

−1 1 −1


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which gives l1 = 3, l2 = −1− s− t, l3 = −1− s, l4 = −s+
t, l5 = 2s+t, l6 = −1+s−t. We have the parameterization

x1 =
l31

l2l3l6
=

27

(−1 + s− t)(−1− s− t)(−1− s)
,

x2 =
l25l6

l2l3l4
=

(2s + t)2(−1 + s− t)

(−1− s− t)(−1− s)(−s + t)
,

x3 =
l4l5

l2l6
=

(−s + t)(2s + t)

(−1 + s− t)(−1− s− t)
.

ResPol yields Newton polytope vertices (6, 4, 3), (6, 0, 0),
(0, 6, 0), (0, 0, 9), (0, 0, 0), (4, 6, 5), (6, 0, 3), (6, 4, 0), (0, 6, 9),
(4, 6, 0). We build a matrix M of corank 6 and obtain ∆B

by computing the gcd of polynomials corresponding to two
randomly chosen kernel vectors. It is a polynomial of de-
gree 10 containing 74 terms shown in Appendix A. Substi-
tuting xi’s by the corresponding rational functions in li’s
and renaming each li as ci, we get the discriminant DA.

Example 21 [2] We compute the A-discriminant when
A = {(0, 2, 0), (0, 0, 6), (0, 1, 2), (1, 2, 0), (1, 1, 3), (1, 2, 2),
(1, 1, 2)}. Then

A =


1 1 1 1 1 1 1

0 0 0 1 1 1 1

2 0 1 2 1 2 1

0 6 2 0 3 2 2

 , B =



1 0 1

0 1 1

−1 −1 −2

0 2 1

2 0 0

−1 −1 −1

−1 −1 0


Here l1 = 1 + t, l2 = s + t, l3 = −1 − s − 2t, l4 = 2s +
t, l5 = 2, l6 = −1 − s − t, l7 = −1 − s, and we have the
parameterization

x1 =
l1l25

l3l6l7
=

4(1 + t)

(−1− s− 2t)(−1− s− t)(−1− s)
,

x2 =
l2l24

l3l6l7
=

(s + t)(2s + t)2

(−1− s− 2t)(−1− s− t)(−1− s)
,

x3 =
l1l2l4

l23l6
=

(1 + t)(s + t)(2s + t)

(−1− s− 2t)2(−1− s− t)

The predicted implicit polytope has vertices: (0, 3, 9),
(9, 0, 0), (0, 9, 0), (0, 0, 9), (0, 0, 0), (9, 0, 3), (0, 9, 3), (3, 0, 9),
(0, 3, 9). The kernel of M has dimension 20. Computing the
gcd of two randomly chosen polynomials gives ∆B which
is of degree nine.

After factoring ∆B and substituting x1, x2, x3 by the cor-
responding rational functions in li’s and renaming each li
as ci, we obtain DA. The latter seems irreducible because
Maple cannot factor it even when we specialize all but one
ci to Z. Both DA and ∆B are shown in Appendix A.

6. Conclusions and future work

Sparse implicitization by interpolation and by using pre-
dicted support seems to be an effective tool, both for clas-
sical geometric implicitization as well as for computing dis-
criminants and resultants. An advantage of our method is
that it can seamlessly handle base points.

We focused on the case that the kernel dimension ex-
ceeds 1. If this is due to insufficient genericity at evaluating
M , one increases the randomness of evaluation points, and
employs rectangular matrices with sufficiently more rows

than columns, which corresponds to oversampling the given
parametric object. Otherwise, the predicted polytope is a
superset of the actual one. We characterized this case in
terms of sparse elimination theory and discussed methods
to obtain a smaller multiple or the exact implicit equation
by applying multivariate polynomial gcd, either exact or
apprximate. By factoring, one can determine which of the
factors vanishes when the xi variables are substituted by
the parametric expressions. For larger problems, we employ
approximate computation.

Our matrices have quasi-Vandermonde structure, since
the matrix columns are indexed by monomials and the
rows by values on which the monomials are evaluated. This
reduces matrix-vector multiplication to multipoint evalu-
ation of a multivariate polynomial. It is unclear how to
achieve this post-multiplication in time quasi-linear in the
size of the polynomial support when the evaluation points
are arbitrary, as in our case. Existing work achieves quasi-
linear complexity for specific points [14,24].

Employing the Bernstein base representation of multi-
variate polynomials may improve the numerical stability of
our algorithms. However, one has to cope with conversion
issues and the potential increase of size of the interpolation
matrix.
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[2] L. Busé, A. Dickenstein, and I.Z. Emiris. Discriminant with

codimension 3, 2002. Manuscript, INRIA Sophia-Antipolis.

[3] R.M. Corless, M. Giesbrecht, Ilias S. Kotsireas, and S.M.
Watt. Numerical implicitization of parametric hypersurfaces

with linear algebra. In Proc. Art. Intell. Scient. Comp., pages

174–183, 2000.

[4] M.A. Cueto and A. Dickenstein. Some results on inhomogeneous
discriminants. In Proc. XVI Latin Amer. Algebra Colloq., Bibl.

Rev. Mat. Iberoamericana, pages 41–62, 2007.

[5] C. D’Andrea and M. Sombra. The Newton polygon of a rational
plane curve. Math. in Computer Science, 4(1):3–24, 2010.

[6] A. Dickenstein and B. Sturmfels. Elimination theory in

codimension 2. J . Symbolic Computation, 34:119–135, 2002.

[7] T. Dokken and J.B. Thomassen. Overview of approximate

implicitization. Topics in algebraic geometry and geometric
modeling, 334:169–184, 2003.

[8] M. Elkadi, A. Galligo, and T. Luu Ba. Approximate gcd of

several univariate polynomials with small degree pertubations.
J. Symbolic Comput, 47(4):410–421, 2012.

[9] I.Z. Emiris, V. Fisikopoulos, C. Konaxis, and L. Penaranda.

An output-sensitive algorithm for computing projections of
resultant polytopes. In Proc. ACM Symp. on Computational

9



Geometry, Chapel Hill, North Carolina, pages 179–188, June

2012.

[10] I.Z. Emiris, A. Galligo, and H. Lombardi. Certified approximate
univariate GCDs. J. Pure Appl. Algebra, 117-118:229–251, 1997.

[11] I.Z. Emiris, T. Kalinka, and C. Konaxis. Implicitization of

curves and surfaces using predicted support. In Electr. Proc.
Inter. Works. Symbolic-Numeric Computation, pages 137–146,

San Jose, Calif., 2011.

[12] I.Z. Emiris, C. Konaxis, and L. Palios. Computing the Newton
polygon of the implicit equation. Math. in Comp. Science, Spec.

Issue Comp. Geometry & CAD, 4:25–44, 2010.

[13] I.Z. Emiris and I.S. Kotsireas. Implicit polynomial support
optimized for sparseness. In Proc. Intern. Conf. Computational

science appl.: Part III, pages 397–406, Berlin, 2003. Springer.
[14] I.Z. Emiris and V.Y. Pan. Symbolic and numeric methods

for exploiting structure in constructing resultant matrices.

J. Symbolic Computation, 33:393–413, 2002.
[15] J.-C. Faugère, G. Moroz, F. Rouillier, and M. Safey El

Din. Classification of the perspective-three-point problem,

discriminant variety and real solving polynomial systems of
inequalities. In Proc. ACM ISSAC, pages 79–86, 2008.

[16] I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky.

Discriminants, resultants & multidimensional determinants.
Birkhauser, 2008.

[17] E. Kaltofen, Z. Yang, and L. Zhi. Approximate greatest

common divisors of several polynomials with linearly constrained
coefficients and singular polynomials. In Proc. ISSAC’06, pages

169–177, Genova, Italy, 2006.

[18] M. Kapranov. A characterization of a-discriminant
hypersurfaces in term of the gauss map. Math. Ann, 290:277–

285, 1991.
[19] A. Marco and J.J. Martinez. Implicitization of rational surfaces

by means of polynomial interpolation. CAGD, 19:327–344, 2002.

[20] M. Sanuki and T. Sasaki. Computing approximate gcds in iii-
conditioned cases. In Proc. SNC 2007, pages 170–179, ACM,

Ontario, Canada, 2007.

[21] T. Sasaki and M. Suzuki. Three new algorithms for multivariate
polynomial gcd. J. Symbolic computation, 13:395–411, 1992.

[22] B. Sturmfels, J. Tevelev, and J. Yu. The Newton polytope of

the implicit equation. Moscow Math. J., 7(2), 2007.
[23] B. Sturmfels and J. Yu. Tropical implicitization and mixed fiber

polytopes. In Software for Algebraic Geometry, volume 148 of

IMA Volumes in Math. & its Applic., pages 111–131. Springer,
New York, 2008.

[24] J. van der Hoeven and E. Schost. Multi-point evaluation in

higher dimensions. Technical Report, HAL 00477658, 2010.
[25] E. Wurm, J.B. Thomassen, B. Juttler, and T. Dokken.

Comparative benchmarking of methods for approximate
implicitization. In Geom. Modeling & Computing, pages 537–

548. 2004.

[26] Z. Zeng. Apatools: a software toolbox for approximate
polynomial algebra. ACM Comm. Comput. Algebra, 42:177–179,

2009.

[27] R. Zippel. Effective Polynomial Computation. Kluwer Academic
Publishers, Boston, 1993.

10



Appendix A. Omitted results

Results from Example 20
∆B(x1, x2, x3) = −14348907x3

2 + 314928x2
2x8

3 + 43046721x3
2x3 −

239112x1x4
2x5

3 + 451980x1x4
2x4

3 + 731916x1x4
2x3

3 − 1023516x1x4
2x2

3 +

393660x1x4
2x3 + 62208x2

1x2x5
3 + 93312x2

1x2x4
3 + 23328x1x2

2x7
3 +

7912566x1x2
2x5

3+98415x1x2
2x4

3−13994613x1x2
2x3

3+27103491x1x2
2x2

3+

1102248x1x2x6
3+17537553x1x2x4

3+1417176x1x2x5
3+414072x1x3

2x6
3−

125388x1x3
2x5

3−1062882x1x3
2x4

3+5334093x1x3
2x3

3−1200663x1x3
2x2

3+

3011499x1x3
2x3 − 729x2

1x4
2x4

3 + 2187x2
1x4

2x3
3 − 2187x2

1x4
2x2

3 +

729x2
1x4

2x3 + 25272x2
1x3

2x5
3 − 6804x2

1x3
2x4

3 − 657666x2
1x3

2x3
3 +

19683x2
1x3

2x2
3+104976x2

1x3
2x3+432x2

1x2
2x6

3−864x2
1x2

2x5
3+1368576x2

1x2
2x4

3+

1465776x2
1x2

2x3
3 + 2511405x2

1x2
2x2

3 + 432x3
1x3

2x4
3 − 864x3

1x3
2x3

3 −
1512x3

1x3
2x2

3 + 1944x3
1x3

2x3 + 66816x3
1x2

2x3
3 + 86400x3

1x2
2x2

3 +

1024x3
1x2x4

3+1024x4
1x2

2x2
3+314928x5

2x5
3+944784x5

2x3
3−944784x5

2x4
3−

314928x5
2x2

3 + 944784x4
2x6

3 + 5196312x4
2x4

3 − 1889568x4
2x5

3 +

12754584x4
2x2

3 − 12754584x4
2x3

3 − 4251528x4
2x3 − 944784x3

2x6
3 +

944784x3
2x7

3 − 25509168x3
2x4

3 + 12754584x3
2x5

3 − 43046721x3
2x2

3 +

27103491x3
2x3

3 − 12754584x2
2x5

3 + 12754584x2
2x6

3 + 43046721x2
2x2

3 −
86093442x2

2x3
3 + 43046721x2

2x4
3 + 4251528x2x7

3 + 43046721x2x5
3 −

43046721x2x4
3−729x3

1x3
2−59049x2

1x3
2 +14348907x6

3−1594323x1x3
2.

DA = 314928c95c66c3c34 + 14348907c94c42c63 − 1434890c96c72c33 +

432c91c45c44c26 + 23328c31c55c84c33 + 432c61c45c74c23 − 729c61c65c46c34 +
729c61c76c35c32−314928c65c96c32c3 +944784c85c54c46c23−4251528c35c96c52c23 +
944784c75c74c26c33+4251528c35c94c22c53−729c91c42c66−657666c61c35c22c46c3c34+
19683c61c25c32c56c3c24 + 5334093c31c35c32c56c23c34 + 3011499c31c76c5c52c23c4 +
86400c91c32c36c3c34 + 1465776c61c5c44c32c36c23 + 98415c31c25c54c32c36c33 −
13994613c31c5c44c42c46c33+7912566c31c35c64c22c26c33+1417176c31c5c74c32c6c43+

27103491c31c52c56c33c34 + 17537553c31c64c42c26c43 + 93312c61c64c32c6c33 +
731916c31c55c22c66c3c24 − 1023516c31c76c45c32c3c4 − 864c61c35c64c2c6c23 −
6804c61c45c44c2c36c3 + 104976c61c5c42c66c3c4 + 2511405c61c42c46c23c34 −
1062882c31c45c44c22c46c23−125388c31c55c54c2c36c23−1200663c31c25c42c66c23c24 +

1368576c61c25c54c22c26c23 + 451980c31c65c2c56c3c34 + 66816c91c5c44c22c26c3 +

5196312c65c22c66c23c34 + 27103491c35c42c66c33c34 + 43046721c62c66c43c34 +
393660c31c86c35c42c3−864c91c35c2c36c34+1024c91c64c22c23+414072c31c65c64c26c23−
239112c31c75c44c46c3+62208c61c5c74c22c33+25272c61c55c54c26c3−2187c61c45c22c66c4+
43046721c5c86c62c33c4 + 944784c75c86c22c3c4 − 944784c85c76c2c3c24 −
1889568c75c44c2c56c23 + 12754584c45c86c42c23c4 − 12754584c55c76c32c23c24 −
944784c65c64c2c36c33 − 25509168c45c44c32c56c33 + 12754584c55c54c22c46c33 −
43046721c25c76c52c33c24 − 12754584c35c64c32c36c43 + 12754584c45c74c22c26c43 −
86093442c5c44c52c56c43 + 43046721c25c54c42c46c43 + 43046721c5c74c42c26c53 −
43046721c64c52c36c53−59049c61c76c52c3−1594323c31c86c62c23+314928c65c94c43+

1024c121 c22c26c34+1944c91c5c32c56c4−1512c91c25c22c46c24+1102248c31c25c84c22c43+

2187c61c55c2c56c24.

Results from Example 21
∆B(x1, x2, x3) = 512x1x2x3

3 − 576x1x2x5
3 − 1024x1x2

2x2
3 +

3712x1x2
2x3

3 + 320x1x2
2x4

3 − 1664x1x3
2x2

3 + 320x1x3
2x3

3 − 64x1x4
2x2

3 −
608x2

1x2x3
3 + 368x2

1x2x4
3 − 960x2

1x2x5
3 + 1824x2

1x2
2x2

3 + 880x2
1x2

2x3
3 +

1088x2
1x2

2x4
3 − 64x2

1x2
2x5

3 − 1296x2
1x3

2x3 + 64x2
1x3

2x2
3 − 64x2

1x3
2x3

3 +

64x2
1x3

2x4
3 − 16x2

1x4
2x3 + 144x3

1x2x3
3 − 640x3

1x2x4
3 − 128x3

1x2x5
3 +

108x3
1x2

2x3 + 60x3
1x2

2x2
3 + 784x3

1x2
2x3

3 + 128x3
1x2

2x4
3 − 16x3

1x3
2x2

3 +

16x3
1x3

2x3
3 − 16x4

1x2x3
3 + 64x4

1x2x4
3 − 27x4

1x2
2x3 + 128x4

1x2
2x2

3 +

32x4
1x2

2x3
3 + 16x5

1x2x3
3 + 2048x2

2x3
3− 144x2

1x5
3 + 192x3

1x5
3− 216x3

1x3
2−

64x4
1x5

3

DA = −512c1c25c2c63 + 576c31c25c26c32c24c23 + 1024c25c7c2c4c73 −
320c21c25c26c7c32c34c33 − 3712c1c25c6c7c22c24c53 + 608c21c45c6c7c2c53 +

1664c25c6c27c22c34c63 − 320c1c25c26c27c32c44c43 − 368c31c45c26c7c22c4c33 +

960c41c45c36c7c32c24c3 − 880c21c45c26c27c22c24c43 − 1824c1c45c6c27c2c4c63 −
1088c31c45c36c27c32c34c23 + 1296c45c6c37c2c24c73 − 64c1c45c26c37c22c34c53 +

64c21c45c36c37c32c44c33 − 64c31c45c46c37c42c54c3 − 784c31c65c36c37c22c24c33 +

16c45c26c47c22c44c63+216c65c6c47c4c83+64c41c45c46c27c42c44+128c51c65c46c27c32c24+

64c61c85c46c27c22 − 64c51c85c46c37c22c4c3 + 64c25c26c37c32c54c53 − 2048c22c24c63 +

640c41c65c36c27c22c4c23−108c1c65c6c37c73−60c21c65c26c37c2c4c53+16c41c85c36c37c2c33−
128c41c65c46c37c32c34c3 + 16c21c65c36c47c22c34c43 − 16c31c65c46c47c32c44c23 +

27c21c85c26c47c63−128c31c85c36c47c2c4c43−32c41c85c46c47c22c24c23−16c51c150c46c47c2c23−
192c51c65c36c7c22c3 − 144c31c65c26c27c2c43 + 144c41c45c26c22c23.

Appendix B. Tables
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Table B.1

Parametric and implicit equations with matrix M of corank> 1.

Geometric object Parametric equations Implicit equation

Trifolium curve (−(−1 + t2)2(1− 14t2 + t4)/(1 + t2)4); y4 − 3xy2 + 2x2y2 + x3 + x4

2t(−1 + t2)(1− 14t2 + t4)/(1 + t2)4

Cayley sextic (4(1− t2)6 − 3(1− t2)4(1 + t2)2)/(1 + t2)6; 4(x2 + y2 − x)3 − 27(x2 + y2)2

(8(1− t2)5t− 2(1− t2)3t(1 + t2)2)/(1 + t2)6

Sphere 2s/(1 + t2 + s2); x2 + y2 + z2 − 1

2st/(1 + t2 + s2);

(−1− t2 + s2)/(1 + t2 + s2)

Double sphere (2(1− t2))s/((1 + t2)(1 + s2)); x2 + y2 + z2 − 1

2t(1− s2)/((1 + t2)(1 + s2));

(1− s2)/(1 + s2)

Eight surface (4(1− t2))s(1− s2)/((1 + t2)(1 + s2)2); x2 + y2 − 4z2 + 4z4

2t(1− 6s2 + s4)/((1 + t2)(1 + s2)2);

2s/(1 + s2)

Hypercone r(1− t2)(1− s2)/((1 + t2)(1 + s2)); x2 + y2 + z2 − w2

2r(1− t2)s/((1 + t2)(1 + s2));

2rt/(1 + t2);

r

Table B.2

The table shows the vertices of the actual implicit polytope, the number of its lattice points, the degree and number of monomials of the

implicit equation, the vertices of the predicted implicit polytope, the number of its lattice points, and the corank of M .

Geometric Implicit Predicted

object Newton polytope lattice degree mono- Newton polytope lattice corank # gi’s of

vertices points mials vertices points of M (degree)

Trifolium curve (4, 0), (1, 2), (0, 4), (3, 0) 8 4 5 (8, 0), (0, 8), (1, 0), (0, 2) 43 15 1(4),2(5),3(6),4(7),5(8)

Cayley sextic (6, 0), (0, 6), (0, 4), (3, 0) 19 6 11 (0, 2), (1, 0), (0, 12), (12, 0) 89 28 1(6),2(7),3(8),4(9),5(10),6(11),7(12)

Sphere (0, 0, 0), (0, 2, 0), (2, 0, 0), 10 2 4 (0, 0, 2), (4, 0, 0), (0, 4, 0), 35 10 1(2),3(3),6(4)

(0, 0, 2) (0, 0, 4), (0, 2, 0), (0, 0, 2)

Double (0, 0, 0), (0, 2, 0), (2, 0, 0), 10 2 4 (4, 0, 0), (0, 4, 0), (0, 0, 8), 125 45 3(4),4(5),9(6),11(7),18(8)

sphere (0, 0, 2) (2, 0, 0), (0, 0, 1), (4, 0, 4),

(0, 4, 4)

Eight (0, 2, 0), (2, 0, 0), (0, 0, 2), 10 4 4 (4, 0, 0), (0, 4, 0), (0, 0, 16), 171 62 1(4),3(5),5(6),5(7),6(8),6(9),6(10),

surface (0, 0, 4) (1, 0, 0), (0, 0, 1), (4, 0, 8), 6(11),6(12),6(13),6(14),4(15),2(16)

(0, 2, 0), (0, 4, 8)

Hypercone (0, 2, 0, 0), (2, 0, 0, 0), 10 2 4 (0, 0, 0, 8), (0, 0, 8, 0), 165 84 84(8)

(0, 0, 2, 0), (0, 0, 0, 2) (0, 8, 0, 0), (8, 0, 0, 0)
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