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Abstract

We study a variant of the classical art gallery problem, where an art gallery is modeled by a polygon with curvilinear
sides. We focus on piecewise-convex and piecewise-concavepolygons, which are polygons whose sides are convex
and concave arcs, respectively. It is shown that for monitoring a piecewise-convex polygon withn ≥ 2 vertices,⌊ 2n

3 ⌋

vertex guards are always sufficient and sometimes necessary. We also present an algorithmfor computing at most⌊ 2n
3 ⌋

vertex guards inO(n logn) time andO(n) space. For the number of point guards that can be stationed at any point
in the polygon, our upper bound⌊ 2n

3 ⌋ carries over and we prove a lower bound of⌈ n2⌉. For monitoring a piecewise-
concave polygon withn ≥ 3 vertices, 2n−4 point guards are always sufficient and sometimes necessary, whereas there
are piecewise-concave polygons where some points in the interior are hidden from all vertices, hence they cannot be
monitored by vertex guards. We conclude with bounds for somespecial types of curvilinear polygons.

Key words: art gallery, curvilinear polygons, vertex guards, point guards, piecewise-convex polygons,
piecewise-concave polygons
2000 MSC:68U05, 68W40

1. Introduction

In the classical art gallery problem, anart gallery is represented by a simply connected closed polygonal domain
(for shortpolygon) P. The art gallery is monitored by a set of guards, each represented by a point inP, if every point
in P is visible to at least one of the guards. Two points see each other if they are visible to each other, i.e., if the
closed line segment connecting them lies inP. Victor Klee asked what is the minimum number of guards that can
monitor any polygon withn ≥ 3 vertices. Art gallery-type problems have found applications in robotics [1, 2], motion
planning [3, 4], computer vision and pattern recognition [5, 6, 7, 8], graphics [9, 10], CAD/CAM [11, 12] and wireless
networks [13]. Curvilinear objects were typically modeledwith straight-line polygonal approximations. Starting from
the late 80s, some geometric algorithms were extended to curvilinear polygons [14]. Refer to the recent book edited
by Boissonnat and Teillaud [15] for a collection of computational-geometry results for curves and surfaces. In this
context this paper addresses the classical art gallery problem for various classes of polygonal regions bounded by
curvilinear edges. To the best of our knowledge this is the first time that the art gallery problem is considered in this
context.

The first results on art gallery-type problems date back to the 1970’s. Chv́atal [16] proved that every simple
polygon withn vertices can be monitored by⌊ n3⌋ vertex guards; this bound is tight in the worst case. Later Fisk [17]

∗Corresponding author
Email addresses:mkaravel@tem.uoc.gr (Menelaos I. Karavelas),cdtoth@math.ucalgary.ca (Csaba D. T́oth),

elias.tsigaridas@loria.fr (Elias P. Tsigaridas)

Preprint submitted to Computational Geometry: Theory and Applications May 19, 2009



gave an elegant algorithmic proof using a 3-coloring of a triangulation of the polygon. Fisk’s algorithm runs in
O(n) time for a triangulated polygon withn vertices, and the time complexity of the triangulation isO(n) based on
Chazelle’s algorithm [18]. Lee and Lin [19] showed that finding the minimum number of vertex guards for a given
simple polygon is NP-hard, which was extended to point guards by Aggarwal [20]. Other types of art galleries have
also been considered. Kahn, Klawe and Kleitman [21] showed that every simple orthogonal polygon, i.e., simple
polygon with axes-aligned edges, withn vertices can be monitored by⌊ n4⌋ vertex guards, and this bound is best
possible. SeveralO(n) time algorithms have been proposed for placing the guards in this variation of the problem,
notably by Sack [22] and later by Lubiw [23]. Edelsbrunner, O’Rourke and Welzl [24] gave anO(n) time algorithm
for placing ⌊ n4⌋ point guards that jointly monitor an orthogonal polygon with n vertices. Other types of guarding
problems have also been studied in the literature. For a detailed discussion of these variations and the corresponding
results the interested reader should refer to the book by O’Rourke [25], or the survey papers by Shermer [26] and by
Urrutia [27].

The main focus of this paper is the class of polygons that are either locally convex or locally concave (except
possibly at the vertices), the edges of which are convex arcs(defined below); we call such polygonspiecewise-convex
andpiecewise-concave polygons, respectively.

We show that every piecewise-convex polygon withn ≥ 2 vertices can be monitored by at most⌊ 2n
3 ⌋ vertex guards.

This bound is tight: there are piecewise-convex polygons with n vertices, for everyn ≥ 2, that cannot be monitored
by fewer than⌊ 2n

3 ⌋ vertex guards. Our upper bound is based on an algorithm for placing vertex guards, which can be
implemented inO(n logn) time andO(n) space. Our algorithm is a generalization of Fisk’s algorithm [17]; in fact,
when applied to a straight-line polygon withn ≥ 3 vertices, it produces at most⌊ n3⌋ vertex guards. For the purposes
of our complexity analysis and results, we assume, throughout the paper, that the curvilinear edges of our polygons
are arcs of algebraic curves of constant degree. As a result,all predicates required by the algorithms described in
this paper takeO(1) time in the real RAM model of computation model. The central idea for our upper bound is the
approximation of a piecewise-convex polygon by a straight-line polygon by adding Steiner vertices on the boundary
of the curvilinear polygon. The resulting polygonal approximation is a simple straight-line polygon. We compute
a guard set for the polygonal approximation by a slightly modified version of Fisk’s algorithm [17]. This guard set
monitors the original curvilinear polygon, however, vertex guards may be located at Steiner vertices. The final step of
our algorithm maps the vertex guards of the polygonal approximation to vertex guards of the curvilinear polygon. Our
upper bound of⌊ 2n

3 ⌋ also applies to point guards. However, it does not match the best lower bound we have found.
There are piecewise-convex polygons withn vertices, for everyn ≥ 2, that cannot be monitored by fewer than⌈ n2⌉
point guards.

Some piecewise-concave polygons have interior points hidden from all vertices (see Fig. 14(a)), and hence they
cannot be monitored by vertex guards alone. We thus turn our attention to point guards, and we show that 2n − 4
point guards are always sufficient and sometimes necessary for monitoring a piecewise-concave polygon withn ≥ 3
vertices. Our upper bound proof is based on Fejes Tóth’s technique for illuminating sets of disjoint convex objects
in the plane [28]. Given a piecewise-concave polygonP, we subdivideP into crescents (bounded by a convex and
a concave arc), each adjacent to an edge ofP, and into convex polygonal holes. Using Fejes Tóth’s argument, if
we place guards at points incident to at least three crescents, at two vertices of each triangular hole and all vertices
at holes with 4 or more vertices, we obtain a guard set that monitors all holes and all crescents, hence the entire
piecewise-concave polygonP. Since the intersection graph of the crescents is outerplanar, whose faces correspond to
the holes, it is easy to show that the number of point guards isat most 2n− 4.

The rest of the paper is structured as follows. In Section 2 wedefine curvilinear polygons, including piecewise-
convex and piecewise-concave polygons. In Section 3 we present our algorithm for computing a vertex guard set,
of size⌊ 2n

3 ⌋, for a piecewise-convex polygon withn vertices, and present families of piecewise-convex polygons that
require a minimum of⌊ 2n

3 ⌋ vertex or⌈ n2⌉ point guards in order to be monitored. In Section 4 we presentour results for
piecewise-concave polygons, namely, that 2n− 4 point guards are always necessary and sometimes sufficient for this
class of polygons. The final section of the paper, Section 5, discusses further results and states open problems.
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Figure 1: Different types of curvilinear polygons: (a) a straight-line polygon, (b) a piecewise-convex polygon, (c) a locally convexpolygon, (d) a
piecewise-concave polygon, (e) a locally concave polygon and (f) a general polygon.

2. Definitions

Types of curvilinear polygons. Let V be a sequence of pointsv1, . . . , vn, n ≥ 2, andA a set of curvilinear arcs
a1, . . . ,an, such that the endpoints ofai arevi andvi+1

1. We assume that the arcsai anda j , i , j, do not intersect,
except whenj = i − 1 or j = i + 1, in which case they intersect only at the pointsvi andvi+1, respectively. We define
acurvilinear polygon Pto be the closed region delimited by the arcsai . The pointsvi are called the vertices ofP. An
arcai is aconvex arcif every line on the plane intersectsai at either at most two points or along a line segment.

A polygonP is astraight-line polygonif its edges are line segments (see Fig. 1(a)). A polygonP is locally convex
(see Fig. 1(c)), (resp.,locally concave(see Fig. 1(e))), if for every pointp on the boundary ofP, with the possible
exception ofP’s vertices, there exists a disk centered atp, sayDp, such thatP ∩ Dp is convex (resp., concave). A
polygonP is piecewise-convex(see Fig. 1(b)), (resp.,piecewise-concave(see Fig. 1(d))), if it is locally convex (resp.,
concave), and the portion of the boundary between every two consecutive vertices is a convex arc. Finally, a polygon
is said to be ageneral polygonif we impose no restrictions on the type of its edges (see Fig.1(f)). We use the term
curvilinear polygonto refer to a polygon the edges of which are either line or curve segments.
Guards and guard sets. In our setting, aguard or point guardis a point in the interior or on the boundary of a
curvilinear polygonP. A guard ofP that is also a vertex ofP is called avertex guard. We say that a curvilinear
polygonP is monitoredby a setG of guards if every point inP is visible from at least one point inG, where two
pointsp andq in P are visible from each other if the line segmentpq lies entirely inP. The setG that has this property
is called aguard setfor P. A guard set that consists solely of vertices ofP is called avertex guard set.

3. Piecewise-convex polygons

In this section we present an algorithm which, given a piecewise-convex polygonP with n vertices, computes a
vertex guard setG of size⌊ 2n

3 ⌋. The basic steps of the algorithm are as follows:

1Indices are evaluated modulon.
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1. Compute the polygonal approximationP̃ of P.
2. Compute a constrained triangulationT (P̃) of P̃.
3. Compute a guard setGP̃ for P̃, by 3-coloring the vertices ofT (P̃).
4. Compute a guard setGP for P from the guard setGP̃.

3.1. Polygonalization of a piecewise-convex polygon

Let ai be a convex arc with endpointsvi andvi+1. We call the convex regionr i delimited byai and the line segment
vivi+1 a room. A room is called degenerate if the arcai is a line segment. A line segmentpq, wherep,q ∈ ai is called
achord, and the region delimited by the chordpqandai is called asector. The chord of a roomr i is defined to be the
line segmentvivi+1 connecting the endpoints of the corresponding arcai . A degenerate sector is a sector with empty
interior. We distinguish between two types of rooms (see Fig. 2):

1. a room isemptyif it is non-degenerate and does not contain any vertex ofP in its interior or in the interior of
its chord.

2. a room isnon-emptyif it is non-degenerate and contains at least one vertex ofP in its interior or in the interior
of its chord.

In order to polygonalizeP we add Steiner vertices in the interior of non-linear convexarcs. More specifically, for
each empty roomr i we add a vertexwi,1 (anywhere) in the interior of the arcai (see Fig. 3). For each non-empty room
r i , let Xi be the set of vertices ofP that lie in the interior of the chordvivi+1 of r i , andRi be the set of vertices ofP that
are contained in the interior ofr i or belong toXi (by assumptionRi , ∅). If Ri , Xi , let Ci be the set of vertices on
the convex hull of the vertex set (Ri \ Xi) ∪ {vi , vi+1}; if Ri = Xi , let Ci = Xi ∪ {vi , vi+1}. Finally, letC∗i = Ci \ {vi , vi+1}.
Clearly,vi andvi+1 belong to the setCi and, furthermore,C∗i , ∅.

Let mi be the midpoint ofvivi+1 andℓ⊥i (p) the line perpendicular tovivi+1 passing through a pointp. If C∗i , Xi ,
then, for eachvk ∈ C∗i , let wi, jk, 1 ≤ jk ≤ |C∗i |, be the (unique) intersection of the linemivk with the arcai ; if C∗i = Xi ,
then, for eachvk ∈ C∗i , let wi, jk, 1 ≤ jk ≤ |C∗i |, be the (unique) intersection of the lineℓ⊥i (vk) with the arcai .

Now consider the sequenceṼ of the original vertices ofP augmented by the Steiner vertices added to empty and
non-empty rooms; the order of the vertices inṼ is the order in which we encounter them as we traverse the boundary
of P counterclockwise. The straight-line polygon defined by thesequencẽV of vertices is denoted bỹP (see Fig.
4(a)). It is easy to show that:

Lemma 1. The straight-line polygoñP is a simple polygon.

Proof. It suffices show that the line segments replacing the curvilinear segments ofP do not intersect other edges of
P or P̃.

Let r i be an empty room, and letwi,1 be the point added in the interior ofai . The interior of the line segmentsviwi,1

andwi,1vi+1 lie in the interior ofr i . SinceP is a piecewise-convex polygon, andr i is an empty room, no edge ofP could

r ′ne

r ′e

r ′′ne

r ′′e

Figure 2: The two types of rooms in a piecewise-convex polygon: r′e andr′′e are empty rooms, whereasr′ne andr′′ne are non-empty rooms.
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r3

r5

w3,1

w5,1

w5,2

Figure 3: The Steiner vertices (white points) for roomsr3 (empty) andr5 (non-empty).w3,1 is a point in the interior ofa3. m5 is the midpoint
of the line segmentv5v6, whereasw5,1 andw5,2 are the intersections of the linesm5v2 andm5v1 with the arca5, respectively. In this example
R5 = {v1, v2, v7}, whereasC∗5 = {v1, v2}.

potentially intersectviwi,1 or wi,1vi+1. Hence replacingai by the polylineviwi,1vi+1 gives us a new piecewise-convex
polygon.

Let r i be a non-empty room. Letwi,1, . . . ,wi,Ki be the points added onai , whereKi is the cardinality ofC∗i . By
construction, every pointwi,k is visible from wi,k+1, k = 1, . . .Ki − 1, and every pointwi,k is visible from wi,k−1,
k = 2, . . .Ki . Moreover,wi,1 is visible fromvi andwi,Ki is visible fromvi+1. Therefore, the interior of the segments in
the polylineviwi,1 . . .wi,Ki vi+1 lie in the interior ofr i and do not intersect any arc inP. Hence, substitutingai by the
polylineviwi,1 . . .wi,Ki vi+1 gives us a new piecewise-convex polygon.

As a result, the straight-line polygoñP is a simple polygon. �

We call the straight-line polygoñP, defined byṼ, thestraight-line polygonal approximationof P, or simply the
polygonal approximationof P. An obvious result for̃P is the following:

Corollary 2. If P is a piecewise-convex polygon the polygonal approximation P̃ of P is a straight-line polygon that
is contained in P.

We end this subsection by proving a tight upper bound on the size of the polygonal approximation of a piecewise-
convex polygon. We start with an intermediate result, namely that the setsC∗i are pairwise disjoint.

Lemma 3. Let i, j, with1 ≤ i < j ≤ n. Then C∗i ∩C∗j = ∅.

Proof. Consider an arcai of P, delimited by the verticesvi andvi+1 and letπi denote the shortest path inP between
them. Note thatπi is a straight-line polygonal path, the internal vertices ofwhich are the vertices ofC∗i . Sinceai is
a convex arc,πi is also a convex arc.ai andπi bound a (curvilinear) polygon, that we denote byQi , for whichπi is
locally concave. That is, every point inC∗i is a reflex vertex ofQi , and so every point inC∗i is a reflex (i.e., locally
concave) vertex ofP as well. At every vertexw ∈ C∗i , the bisector of the internal angle ofP enters the polygonQi and
leavesQi (andP) at some point alongai .

Consider the bisector of the internal angle at every reflex vertex w of P. If the bisector intersects some arca j ,
thenw can belong to the setC∗j only. Since every bisector intersects at most one arca j (we are referring to the first
intersection of the bisector while walking on it away fromw), every vertexw belongs to at most one setC∗j . �

An immediate consequence of Lemma 3 is the following corollary that gives us a tight bound on the number of
vertices of the polygonal approximatioñP of P.
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v2
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(b)

Figure 4: (a) The polygonal approximationP̃, shown in gray, of the piecewise-convex polygonP with verticesvi , i = 1, . . . ,7. (b) The constrained
triangulationT (P̃) of P̃. The dark gray triangles are the constrained triangles. Thepolygonal regionv5w5,1w5,2v6v1v2v5 is a crescent. The triangles
w5,1v2v5 andv1w5,2v6 are boundary crescent triangles. The trianglev2w5,2v1 is an upper crescent triangle, whereas the trianglev2w5,1w5,2 is a
lower crescent triangle.

m1
v1 v2

v3
v4v5v6vn−3

vn−2
vn−1

vn

Figure 5: A piecewise-convex polygonP with n vertices (solid curve), the polygonal approximationP̃ of which consists of 3n− 3 vertices (dashed
polyline).

Corollary 4. The number of vertices of the polygonal approximationP̃ of a piecewise-convex polygon P with n
vertices is at most3n. This bound is tight (up to an additive constant).

Proof. Let ai be a convex arc ofP, and letr i be the corresponding room. Ifr i is an empty room, theñP contains
one Steiner vertex due toai . HenceP̃ contains at mostn Steiner vertices attributed to empty rooms inP. If r i is a
non-empty room, theñP contains|C∗i | Steiner vertices due toai . By Lemma 3 the setsC∗i , i = 1, . . . ,n are pairwise
disjoint, which implies that

∑n
i=1 |C

∗
i | ≤ |V| = n. ThereforeP̃ contains then vertices ofP, contains at mostn vertices

in empty rooms ofP, and at mostn vertices in non-empty rooms ofP. We thus conclude that the size ofṼ is at most
3n.

The upper bound of the paragraph above is tight up to an additive constant. Consider the piecewise-convex polygon
P of Fig. 5. It consists ofn− 1 empty rooms and one non-empty roomr1, such that|C∗1| = n− 2. It is easy to see that
|Ṽ| = 3n− 3. �

3.2. Triangulating the polygonal approximation

Let P be a piecewise-convex polygon,P̃ its polygonal approximation, andSP̃ the set of Steiner vertices iñP.
We construct aconstrained triangulationof P̃, i.e., we triangulatẽP, while imposing some triangles to be part of this
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triangulation. More precisely, we constrain the trianglesof T (P̃) created in the neighborhood of the vertices inSP̃. By
constraining the triangles in these neighborhoods, we effectively triangulate parts of̃P. The remaining untriangulated
parts ofP̃ consist of one or more interior disjoint straight-line polygons, which are then triangulated arbitrarily in
linear time and space. We call the pre-specified triangles inT (P̃) constrained triangles. We want the triangulation
T (P̃) to satisfy the following properties:

1. every triangle ofT (P̃), with a vertex inSP̃, also contains at least one vertex ofP, i.e., no triangles contain only
Steiner vertices,

2. every vertex inSP̃ belongs to at least one triangle inT (P̃) the other two vertices of which are both vertices of
P, and

3. the triangles ofT (P̃) that contain vertices of̃P can be monitored by vertices ofP.

These properties are exploited in Step 4 of the algorithm presented later in this subsection.
Let us proceed to define the constrained triangles inT (P̃). If r i is an empty room, andwi,1 is the Steiner vertex

added onai , add the edgesvivi+1, viwi,1 andwi,1vi+1, thus forming the constrained triangleviwi,1vi+1 (see Fig. 4(b)). If
r i is a non-empty room,c1, . . . , cKi the vertices inC∗i , Ki = |C∗i |, andwi,1, . . . ,wi,Ki the Steiner vertices inai (wi, j has
been added onai due toc j), add the following edges, if they do not already exist:

1. ck, ck+1, for k = 1, . . . ,Ki − 1, andvic1, cKi vi+1;
2. ckwi,k, for k = 1, . . . ,Ki ;
3. ckwi,k+1, for k = 1, . . . ,Ki − 1;
4. wi,k,wi,k+1, for k = 1, . . . ,Ki − 1, andviwi,1, wi,Ki vi+1.

These edges form 2Ki constrained triangles:ckck+1wi,k+1, for k = 1, . . . ,Ki − 1; ckwi,kwi,k+1, for k = 1, . . . ,Ki − 1;
vic1wi,1 andvi+1cKi wi,Ki . We call the polygonal region formed by these triangles acrescent. The trianglesvic1wi,1

andvi+1cKi wi,Ki are calledboundary crescent triangles, the trianglesckck+1wi,k+1, k = 1, . . . ,Ki − 1, are calledupper
crescent triangles, whereas the trianglesckwi,kwi,k+1, k = 1, . . . ,Ki − 1, are calledlower crescent triangles.

Note that the pointswi, j , j < Ki (resp.,wi,Ki ) are vertices of exactly one triangle (resp., exactly two triangles) in
T (P̃), such that the other two vertices of the triangle (resp., ofeach of the two triangles) belong toP.

3.3. Computing a guard set for the original polygon

Assume that we have colored the verticesṼ of P̃ with three colors, so that no triangle inT (P̃) contains two vertices
of the same color. This can be easily done by the standard 3-coloring algorithm for straight-line polygons presented
in [29, 17]. Let red, green and blue be the three colors, and let KA,ΠA andMA be the set of vertices ofA of red, green
and blue color, respectively, whereA stands for eitherP, P̃ or SP̃. Clearly, all three setsKP̃,ΠP̃ andMP̃ are guard sets
for P̃. In fact, they are also guard sets forP, as the following lemma suggests (see also Fig. 6).

Lemma 5. Each one of the sets KP̃, ΠP̃ and MP̃ is a guard set for P.

Proof. Let GP̃ be one ofKP̃, ΠP̃ andMP̃. By construction,GP̃ monitors all triangles inT (P̃). To show thatGP̃ is a
guard set forP, it suffices to show thatGP̃ also monitors the non-degenerate sectors defined by the edges of P̃ and the
corresponding convex subarcs ofP.

Indeed, letsbe a non-degenerate sector associated with the convex arcai , and letT ∈ T (P̃) be the triangle incident
to the chord ofs. If r i is an empty room, each of the three vertices ofT monitorsr i (and therefore alsos). If r i is
a non-empty room, the vertex ofT that is not an endpoint of the chord ofs is a vertex inC∗i and monitorss by
construction. Clearly, one of the three vertices ofT belongs toGP̃. �

Let as now assume, without loss of generality, that|KP| ≤ |ΠP| ≤ |MP|. Define the mappingf from KSP̃
to the

power set 2ΠP of ΠP by mapping a vertexx in KSP̃
to all the neighboring vertices ofx in T (P̃) that belong toΠP (see

Fig. 7 for the three possible cases forx). Notice that 1≤ | f (x)| ≤ 2.
Finally, define the setGP = KP ∪ f (KSP̃

), where f (KSP̃
) =
⋃

x∈KSP̃
f (x). We claim thatGP is a guard set forP.

Lemma 6. The set GP = KP ∪ f (KSP̃
) is a guard set for P.
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Figure 6: The three guard sets forP̃, are also guard sets forP, as Lemma 5 suggests.

Proof. The regions inP \ P̃ are sectors bounded by a curvilinear arc, which is a subarc ofan edge ofP, and the
corresponding chord connecting the endpoints of this subarc. To show thatGP is a guard set forP, it suffices show
that every triangle inT (P̃) and every sector inP \ P̃ is monitored by at least one vertex inGP.

If all three vertices of a triangleT ∈ T (P̃) are vertices ofP, one of the vertices ofT is in KP ⊆ GP. If T is a
triangle in an empty room (see Fig. 8(left)), or a boundary crescent triangle (see Fig. 8(middle)), either the unique
Steiner vertexz of T is in KSP̃

, in which case one of the other two vertices ofT belongs tof (KSP̃
), or z is not inKSP̃

,
in which case one of the other two vertices ofT belongs toKP. Moreover, the sector/sectors adjacent to an edge of
T in r i is/are visible by both vertices ofT in P and thus monitored by one of them. Finally, upper and lower crescent
triangles come in pairs. LetT be an upper crescent triangle in a non-empty roomr i (see Fig. 8(right)). Letx, y be the
vertices ofT in P, and letz be its vertex inSP̃; it is assumed here thatz is the intersection ofmiy with ai . Let T′ be
the lower crescent triangle adjacent toT along the edgexz, w be the third vertex ofT′, ands be the sector inP \ P̃
adjacent tozw. Sincex andy belong toC∗i , eitherx or y monitorsT, T′ ands. We end the proof by claiming that
eitherx or y belongs toGP: if x or y belongs toKP the claim is obvious; if neitherx nory belongs toKP, thenz ∈ KSP̃

in which case one ofx andy belongs tof (KSP̃
). �

Since f (KSP̃
) ⊆ ΠP we get thatGP ⊆ KP ∪ ΠP. SinceKP andΠP are the two sets of smallest cardinality among

KP, ΠP andMP, we conclude that|GP| ≤ |KP| + |ΠP| ≤ ⌊
2n
3 ⌋, and thus arrive at the following theorem.

Theorem 7. Let P be a piecewise-convex polygon with n≥ 2 vertices. P can be monitored with at most⌊ 2n
3 ⌋ vertex

guards.

We close this subsection by making two remarks:

Remark 1. When the input to our algorithm is a straight-line polygon allrooms are degenerate; consequently, no
Steiner vertices are created, and the guard set computed corresponds to the set of colored vertices of smallest car-
dinality, hence producing a vertex guard set of size at most⌊ n3⌋. In that respect, our algorithm can be viewed as a
generalization of Fisk’s algorithm [17] to the class of piecewise-convex polygons.

Remark 2. Given a straight-line polygonP with r ≥ 2 reflex vertices, we can viewP as a piecewise-convex polygon
the edges of which arec convex polylines, wherec ≥ r. In this context Theorem 7 can be “translated” as follows:

If the boundary of a simple straight-line polygonP can be partitioned intoc ≥ 2 convex polylines such
thatP is a piecewise-convex polygon with its edges being thec convex polylines, thenP can be monitored
with at most⌊ 2c

3 ⌋ vertex guards.
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Figure 7: The three cases in the definition of the mappingf . Case (a):x is a Steiner vertex in an empty room. Case (b):x is an Steiner vertex
in a non-empty room and is not the last Steiner vertex added on the curvilinear arc. Cases (c) and (d):x is the last Steiner vertex added on the
curvilinear arc of a non-empty room (in (c)| f (x)| = 1, whereas in (d)| f (x)| = 2).

3.4. Time and space complexity
In this subsection we show how to compute the vertex guard setGP in O(n logn) time andO(n) space. It is

straightforward to show that Steps 2–4 of our algorithm (seebeginning of Section 3) can be implemented in linear
time and space. To complete our time and space complexity analysis, we need to show how to compute the polygonal
approximationP̃ of P in O(n logn) time and linear space. In order to computeP̃, it suffices to compute for each room
r i the set of verticesC∗i . If C∗i = ∅, thenr i is empty, otherwise we have the set of vertices we wanted. From C∗i we can
compute the pointswi,k and the straight-line polygoñP in O(n) time and space.

The underlying idea is to splitP into y-monotone piecewise-convex subpolygons. For each roomr i within each
suchy-monotone subpolygon we then compute the corresponding setC∗i . This is done by first computing a subset
Si of the setRi of the points in the roomr i , such thatSi ⊇ C∗i , and then applying an optimal time and space convex
hull algorithm to the setSi ∪ {vi , vi+1} in order to computeCi , and subsequently from thatC∗i . In the discussion that
follows, we assume that for each convex arcai of P we associate a setSi , which is initialized to be the empty set. The
setsSi are progressively filled with vertices ofP, so that in the end they fulfill the containment property mentioned
above.

Splitting P into y-monotone piecewise-convex subpolygons is done in two steps:

1. First we split each convex arcai into y-monotone pieces. LetP′ be the piecewise-convex polygon we get by
introducing they-extremal points for eachai and letV′ be the vertex set ofP′. Since eachai can yield up to three
y-monotone convex pieces, we conclude that|V′| ≤ 3n. Obviously splitting the convex arcsai into y-monotone
pieces takesO(n) time and space. A vertex added to split a convex arc intoy-monotone pieces are called an
added extremal vertex.
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Figure 8: Proof of Lemma 6. From left to right: the case of empty rooms; the case of boundary crescent triangles; the case of upper and lower
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Figure 9: Decomposition of a piecewise-convex polygon into teny-monotone subpolygons. The white points are added extremal vertices that have
been added in order to split non-y-monotone arcs toy-monotone pieces. The bridges are shown as dashed segments.

2. Second, we apply toP′ the standard algorithm for computingy-monotone subpolygons of a straight-line poly-
gon (cf. [30] or [31]). The algorithm in [30] (or [31]) is valid not only for line segments, but also for piecewise-
convex polygons consisting ofy-monotone arcs (such asP′). Since|V′| ≤ 3n, we conclude that computing the
y-monotone subpolygons ofP′ takesO(n logn) time and requiresO(n) space.

Note that a non-split arc ofP belongs to exactly oney-monotone subpolygon.y-monotone pieces of a split arc ofP
may belong to at most threey-monotone subpolygons (see Fig. 9).

Suppose now that we have ay-monotone polygonQ. The edges ofQ are either convex arcs ofP, or pieces of
convex arcs ofP, or line segments between mutually visible vertices ofP, added in order to form they-monotone
subpolygons ofP; we call these line segmentsbridges(see Fig. 9). For each non-bridge edgeei of Q, we want to
compute the setC∗i . This is done by sweepingQ in the negativey-direction (i.e., by moving the sweep line from+∞
to−∞). The events of the sweep correspond to they coordinates of the vertices ofQ, which are all known before-hand
and can be put in a decreasing sorted list. There are four different types of events:

1. the first event: corresponds to the top-most vertex ofQ,
2. the last event: corresponds to the bottom-most vertex ofQ,
3. a left event: corresponds to a vertex of the lefty-monotone chain ofQ, and
4. a right event: corresponds to a vertex of the righty-monotone chain ofQ.

Our sweep algorithm proceeds as follows. Letℓ be the sweep line parallel to thex-axis at somey. For eachy in
between they-maximal andy-minimal values ofQ, ℓ intersectsQ at two points which belong to either a left edgeel
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or a left vertexvl (i.e., an edge or vertex on the lefty-monotone chain ofQ), and either a right edgeer or a right vertex
vr (i.e., a edge or vertex on the righty-monotone chain ofQ). We associate the current left edgeel at positiony to a
point setSL and the current right edge at positiony to a point setSR. If the edgeel (resp.,er ) is a non-bridge edge, the
setSL (resp.,SR) contains vertices ofQ that are in the room of the convex arc ofP corresponding toel (resp.,er ).

When they-maximal vertexvmax is encountered, i.e., during the first event, we initializeSL andSR to be the empty
set. When a left event is encountered due a vertexvl , letel,up be the left edge abovevl andel,downbe the left edge below
vl and leter be the current right edge. Ifel,up is an non-bridge edge, andai is the corresponding convex arc ofP, we
augment the setSi by the vertices inSL. Then, irrespectively of whether or notel,up is a bridge edge, we re-initialize
SL to be the empty set. Finally, ifer is a non-bridge edge, andak is the corresponding convex arc inP, we check if
vl is in the roomrk or lies in the interior of the chord ofrk; if this is the case we addvl to SR. When a right event
is encountered our sweep algorithm behaves symmetrically.When the last event is encountered due to they-minimal
vertexvmin, let el (resp.,er ) be the left (resp., right) edge ofQ abovevmin. If el (resp.,er ) is a non-bridge edge, letai

(resp.,a j) be the corresponding convex arc inP. In this case we simply augmentSi (resp.,S j) by the vertices inSL

(resp.,SR).
We claim that our sweep-line algorithm computes a setSi such thatSi ⊇ C∗i . To prove this we need the following

intermediate result:

Lemma 8. Given a non-empty room ri of P, with ai the corresponding convex arc, the vertices of the set C∗
i belong to

the y-monotone subpolygons of P′ computed via the algorithm in [30] (or [31]), which either contain the entire arc ai
or y-monotone pieces of ai .

Proof. Let u be a vertex ofP in C∗i that is not a vertex of any of they-monotone subpolygons ofP′ (computed by
the algorithm in [30] or [31]) that contain either the entirearcai or y-monotone pieces ofai . Let vmax (resp.,vmin) be
the vertex ofP of maximum (resp., minimum)y-coordinate inCi ; ties are broken lexicographically. Letℓu be the line
parallel to thex-axis passing throughu. Consider the following cases:

1. u ∈ C∗i \ {vmin, vmax}. Without loss of generality we can assume thatu is a vertex in the righty-monotone chain
of Ci (see Figs. 10(a) and 10(b)). Letu′ be the intersection ofℓu with ai . Let Q (resp.,Q′) be they-monotone
subpolygon ofP′ that containsu (resp.,u′); by our assumptionQ , Q′. Finally, letu+ (resp.,u−) be the vertex
of Ci above (resp., below)u in the righty-monotone chain ofCi .
The line segmentuu′ cannot intersect any edges ofP, since this would contradict the fact thatu ∈ C∗i . Similarly,
uu′ cannot contain any vertices ofP′: if v is a vertex ofP in the interior ofuu′, u would be in the trianglevu+u−,
which contradicts the fact thatu ∈ C∗i , whereas ifv is a vertex ofV′ \ V in the interior ofuu′, P would not be
locally convex atv, a contradiction with the fact thatP is a piecewise-convex polygon. As a result, and since
Q , Q′, there exists a bridge edgee intersectinguu′. Let w+, w− be the two endpoints ofe in P′, wherew+ lies
above the lineℓu andw− lies below the lineℓu. In fact neitherw+ nor w− can be a vertex inV′ \ V, since the
algorithm in [30] (or [31]) connects a vertex inV′ \ V in a roomrk with either they-maximal or they-minimal
vertex ofCk only. Letℓ+ (resp.,ℓ−) be the line passing through the verticesu andu+ (resp.,u andu−). Finally,
let sbe the sector delimited by the linesℓ+, ℓ− andai . Now, if w+ or w− lies in s, thenu is in the trianglew+u+u−
or in the trianglew−u+u−, respectively (see Fig. 10(a)). In either case we get a contradiction with the fact that
u ∈ C∗i . If neitherw+ nor w− lie in s, then bothw+ andw− have to be vertices inr i , and moreoveru lies in the
convex quadrilateralw+u+u−w−; again this contradicts the fact thatu ∈ C∗i (see Fig. 10(b)).

2. u ≡ vmax. By the maximality of they-coordinate ofu in Ci , we have that they-coordinate ofu is larger than
or equal to they-coordinates of bothvi andvi+1. Therefore, the lineℓu intersects the arcai exactly twice, and,
moreover,ai has ay-maximal vertex ofV′ \V in its interior, which we denote byv′max (see Fig. 10(c)). Letu′ be
the intersection ofℓu with ai that lies to the right ofu, and letQ (resp.,Q′) be they-monotone subpolygon ofP′

that containsu (resp.,u′). By assumptionQ , Q′, which implies that there exists a bridge edgee intersecting
the line segmentuu′. Notice, that, as in the caseu ∈ C∗i \ {vmin, vmax}, the line segmentuu′ cannot intersect any
edges ofP, or cannot contain any vertexv of V′ \ V; the former would contradict the fact thatu ∈ C∗i , whereas
as the latter would contradict the fact thatP is piecewise-convex. Furthermore,uu′ cannot contain vertices ofP
since this would contradict the maximality of they-coordinate ofu in Ci .
Let w+ and w− be the endpoints ofe above and belowℓu, respectively. Notice thate cannot havev′max as
endpoint, since the only bridge edge that hasv′max as endpoint is the bridge edgev′maxu. But thenw+ must be a
vertex ofP lying in r i ; this contradicts the maximality of they-coordinate ofu among the vertices inCi .
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Figure 10: Proof of Lemma 8. (a) The caseu ∈ C∗i \ {vmin, vmax}, with w− ∈ s. (b) The caseu ∈ C∗i \ {vmin, vmax}, with w+,w− < s. (c) The case
u ≡ vmax.

3. u ≡ vmin. This case is entirely symmetric to the caseu ≡ vmax. �

An immediate corollary of the above lemma is the following:

Corollary 9. For each convex arc ai of P, the set Si computed by the sweep algorithm described above is a superset
of the set C∗i .

Let us now analyze the time and space complexity of Step 1 of the algorithm sketched at the beginning of this
subsection. Computing the polygonal approximationP̃ of P requires subdividingP into y-monotone subpolygons.
This subdivision takesO(n logn) time andO(n) space. Then we need to compute the setsSi for each convex arcai of
P. The setsSi can be implemented as red-black trees. During the course of our algorithm we only perform insertions
on theSi ’s. A vertexv of P is inserted at mostdeg(v) times in someSi , wheredeg(v) is the degree ofv in the y-
monotone decomposition ofP. Since the sum of the degrees of the vertices ofP in they-monotone decomposition of
P is O(n), we conclude that the total size of theSi ’s is O(n) and that we performO(n) insertions on theSi ’s. Therefore
we needO(n logn) time andO(n) space to compute theSi ’s and theC∗i ’s. The analysis above thus yields the following:

Theorem 10. Let P be a piecewise-convex polygon with n≥ 2 vertices. We can compute a guard set for P of size at
most⌊ 2n

3 ⌋ in O(n logn) time and O(n) space.

3.5. Lower bound constructions

In this subsection we present ann-vertex piecewise-convex polygon, for everyn ≥ 2, that cannot be monitored by
fewer than⌊ 2n

3 ⌋ vertex guards (resp.,⌈ n2⌉ point guards).
It is clear that a piecewise-convex 2-gon (e.g., Fig. 11(a))requires 1 vertex guard. Fig. 11(b) depicts a piecewise-

convex triangle that cannot be monitored by fewer than 2 vertex or point guards.
For every integern ≥ 4, we give a construction based on a regulark-gon a1a2 . . . ak, wherek = ⌈ n3⌉ ≥ 2 (in

particular, fork = 2, a 2-gon is a line segmenta1a2). First assume thatn = 3k for an integerk ≥ 2. Let κ denote the
circumscribed circle ofa1a2 . . . ak. Replace each edgeaiai+1, i = 1,2, . . . , k, by a piecewise-convex path (ai ,bi , ci ,ai+1)
depicted in Fig. 12(b), to obtain a piecewise-convexn-gon P. The verticesbi andci are in the left open halfplane
delimited by the directed line−−−−→aiai+1 and they are separated from the polygona1a2 . . . ak by the tangent ofκ at ai . The
patterns (ai ,bi , ci ,ai+1) are designed such that at each vertex ofP, the tangents of the two adjacent edges are the same,
which we call thecommon tangentat the vertex. The common tangent atai is also tangent to the circleκ at ai ; the
common tangent atbi is parallel to the common tangent atai ; and the common tangent atci is perpendicular to the
common tangents atai andbi . Let Ai andBi denote the empty rooms bounded byaibi andbici , respectively. LetCi

denote the part of the (non-empty) room bounded byciai+1 that lies on the left side of both directed lines−−−−→aiai+1 and
−−→aici . Note that the regionsAi , Bi , andCi are hidden from any vertex ofP other thanai ,bi , ci . However, none ofai ,bi , ci

sees all three regionsAi , Bi ,Ci entirely (in particular,ai does not seeBi entirely; bi doers not seeCi entirely; andci

12



(a) (b) (c)

Figure 11: (a) a piecewise-convex 2-gon; (b) a piecewise-convex triangle that requires 2 vertex guards; (c) a piecewise-convex
pentagon that requires 3 point guards.

does not seeAi entirely). Hence each triple of regions{Ai , Bi ,Ci} requires at least two vertex guards at{ai ,bi , ci}. This
gives a lower bound of 2k = 2n

3 , if n = 3k, k ≥ 2.
Now assume thatn = 3k−2 for an integerk ≥ 2. Replace every edgeaiai+1, for i = 1,2, . . . , k−1, by a piecewise-

convex path (ai ,bi , ci ,ai+1) depicted in Fig. 12(b). The previous argument shows that the resulting piecewise-convex
n-gon requires 2(k − 1) = ⌊ 2n

3 ⌋ vertex guards. Finally, assume thatn = 3k − 1 for k ≥ 2. Replace every edgeaiai+1,
for i = 1,2, . . . , k − 1, by a piecewise-convex path (ai ,bi , ci ,ai+1) depicted in Fig. 12(b); and replace edgeaka1 by
(ak,bk,a1) depicted in Fig. 12(c). The common tangent atbk in Fig. 12(c) passes through sideaka1. The empty room
bounded byakbk is not visible from any other vertex butak andbk, hence there must be a guard at one of these vertices.
Combined with the previous argument, the resulting piecewise-convexn-gon requires 2(k − 1) + 1 = 2k − 1 = ⌊ 2n

3 ⌋

vertex guards.

a1

bi

ci

a2

a3

a4

a5

bk

ak

(a) (b) (c)

ai+1

ai−1

a1

ak−1

Ci

Bi

Ai

ai

κ
κ

Figure 12:(a) Our lower bound construction forn = 15; (b) a pattern with 3 vertices requiring two vertex guards; (c) a patternwith
2 vertices requiring 1 vertex guard.

Theorem 11. For every integer n≥ 2, there is a piecewise-convex polygon with n vertices that cannot be monitored
by fewer than⌊ 2n

3 ⌋ vertex guards.

The lower bound for point guards can be established much moreeasily. Consider then-vertex piecewise-convex
13



polygonC shown in Fig. 11(c). It can be readily seen that we need one point guard for any two consecutive prongs of
C; sinceC containsn prongs, a minimum of⌈ n2⌉ point guards are necessary for monitoringC.

Theorem 12. For every integer n≥ 2, there is a piecewise-convex polygon with n vertices that cannot be monitored
by fewer than⌈ n2⌉ point guards.

4. Piecewise-concave polygons

In this section we address the problem of finding the minimum number of guards that can jointly monitor any
piecewise-concave polygon withn ≥ 3 vertices. Monitoring a piecewise-concave polygon with vertex guards may be
impossible even for very simple configurations (see Fig. 14(a)). In particular we prove the following:

Theorem 13. For every integer n≥ 3, the minimum number of point guards that can jointly monitorany piecewise-
concave polygon with n vertices is2n− 4.

To prove the sufficiency of 2n − 4 point guards we adapt a technique due to Fejes Tóth [28] to our case. Fejes
Tóth proved that the free space aroundn pairwise disjoint compact convex sets can be monitored by max(2n,4n− 7)
point guards. The edges of a piecewise-concave polygonP are the boundaries of compact convex sets in the plane;
these sets however are not necessarily disjoint. The proof in [28] is based on a tessellation of the free space; here we
compute a tessellation restricted toP.

Proof. We are given a piecewise-concave polygonP with n vertices andn concave arcs (see Fig. 13). Successively
replace each concave arcai by another concave arcκi with the same endpoints that decreases the polygon maximally.
Formally, we construct a sequence of piecewise-concave polygonsP0 = P, P1,P2, . . . ,Pn. For i = 1,2, . . . ,n, we
obtainPi from Pi−1 by replacing the concave arcai by a concave arcκi betweenvi andvi+1 such thatPi is minimal (for
containment), that is, there is no piecewise-concave polygon P′i with n vertices such thatP′i ( Pi and the boundary of
P′i differs fromPi only in the edge betweenvi andvi+1. LetK = {κi : 1 ≤ i ≤ n}.

Let us call the region bounded byai andκi thecrescentof edgeai . Fejes T́oth proved that each arcκi is a polygonal
path, and the arcsκi partitionP into n crescents (one for each edge) and convex polygons, which he calledgaps. The
crescents and convex gaps are thefacesof a tessellation Tof P. A vertexof this tessellation is a point incident to at
least three faces. Note that every vertex of a gap is a vertex of T. Fejes T́oth showed that we can monitor all crescents
and all gaps (hence, the entireP) if we place point guards as follows:

• place a point guard at every vertex ofT incident to at least 3 crescents;

• place two guards at two arbitrary vertices of every triangular gap;

• place a guard at each vertex of every gap with 4 or more vertices.

Construct, now, a planar graphΓ with vertex setK . Two verticesκi andκ j of Γ are connected via an edge ifκi and
κ j are adjacent. The graphΓ is a planar graph combinatorially equivalent to an outerplanar graphR with n vertices.
The edges ofΓ connecting consecutive arcsκi , κi+1, 1 ≤ i ≤ n, correspond to the boundary edges ofR, whereas
all other edges ofΓ correspond to diagonals inR. Every gap of the tessellation incident tok crescents corresponds
to boundedk-gon face ofR. Every ordinary vertex of the tessellation which is incident to k crescents but no gap
corresponds to a boundedk-gon face ofR.

Denote bydk the number ofk-gon faces ofR. Every triangular face ofR corresponds to at most 2 point guards,
and everyk-gon face,k ≥ 4 corresponds to at mostk point guards. The total number of point guards is 2d3+

∑n
k=4 kdk.

This quantity does not decrease if we subdivide a bounded face with k ≥ 4 vertices intok − 2 triangles. In the worst
case, all faces are triangles. An outerplanar graph withn vertices has at mostn− 2 triangular faces, hence the number
of point guards is bounded by 2(n− 2).

To prove the necessity, refer to the piecewise-concave polygonP in Fig. 14(b). Each one of the pseudo-triangular
regions in the interior ofP requires exactly two point guards in order to be monitored. Consider for example the
pseudo-triangleτ shown in gray in Fig. 14(b). We need one point along each one ofthe linesl1, l2 andl3 in order to
monitor the regions near the corners ofτ, which implies that we need at least two points in order to monitor τ (two out
of the three points of intersection of the linesl1, l2 andl3). The number of such pseudo-triangular regions is exactly
n− 2, thus we need a total of 2n− 4 point guards to monitorP. �
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Figure 13:A piecewise-concave 10-gon, the concave arcsκi for i = 1,2, . . . , 10, the resulting tessellation into 10 crescents and 3
convex gaps, and the locations of 11 point guards.

5. Discussion and open problems

Every piecewise-convex polygon withn ≥ 3 vertices can be monitored by⌊ 2n
3 ⌋ vertex guards, which is best

possible. Furthermore, we presented anO(n logn) time andO(n) space algorithm for computing a vertex guard set of
size at most⌊ 2n

3 ⌋. Every piecewise-concave polygons withn ≥ 3 vertices can be monitored by 2n − 4 point guards,
which is also best possible. We have not found a piecewise-convex polygon that requires more than⌈ n2⌉ point guards.
Closing the gap between the upper and lower bounds, for the case of point guards, remains an open problem.

Beyond the two classes of polygons considered in this paper,it is straightforward to prove the following results
(the details are available in a preliminary version of this paper [32]):

1. Given amonotonepiecewise-convex polygonP with n vertices (i.e., a piecewise-convex polygonP for which
there exists a lineL such that any lineL⊥ perpendicular toL intersects the boundary ofP at most twice),⌊ n2⌋+1
vertex (resp.,⌊ n2⌋ point) guards are always sufficient and sometimes necessary in order to monitorP.

2. Given a locally convex polygonP with n vertices,n point guards are always sufficient and sometimes necessary
in order to monitorP. In particular, then vertices ofP are a guard set forP.

3. Given amonotonelocally convex polygon (defined in direct analogy to monotone piecewise-convex polygons),
⌊ n2⌋ + 1 vertex or point guards are always sufficient and sometimes necessary.

4. Finally, there existgeneral polygonsthat cannot be monitored with a finite number of point guards.

Karavelas [33, 34] has recently shown that every piecewise-convex polygon withn vertices can be monitored by
⌊ 2n+1

5 ⌋ edge guards or by⌊ n+1
3 ⌋ guards each of which is either an edge or a straight-line diagonal of the polygon;

whereas⌊ n3⌋ edges or straight-line diagonals are sometimes necessary.Other types of guarding problems have been
studied in the literature, which either differ on the type of guards, the topology of the polygons considered (e.g.,
polygons with holes) or the guarding model; see the book by O’Rourke [25], the surveys by Shermer [26] and by
Urrutia [27] for an extensive list of the variations of the art gallery problem with respect to the types of guards or the
guarding model. It would be interesting to extend these results to the families of curvilinear polygons presented in
this paper.
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Figure 14: (a) A piecewise-concave polygonP that cannot be monitored solely by vertex guards. Two consecutive edges ofP have a common
tangent at the common vertex and as a result the three vertices of P see only the points along the dashed segments. (b) A piecewise-concave polygon
P that requires 2n− 4 point guards in order to be monitored.
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