Guarding curvilinear art galleries with vertex or point guards
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Abstract

We study a variant of the classical art gallery problem, \leaT art gallery is modeled by a polygon with curvilinear
sides. We focus on piecewise-convex and piecewise-conmaygons, which are polygons whose sides are convex
and concave arcs, respectively. It is shown that for moinigoa piecewise-convex polygon with> 2 vertices,L%J
vertex guards are alwaysfiigient and sometimes necessary. We also present an algdoittmomputing at mosl_t%]
vertex guards irO(nlogn) time andO(n) space. For the number of point guards that can be statianaalygpoint

in the polygon, our upper boun@J carries over and we prove a lower bound 1. For monitoring a piecewise-
concave polygon with > 3 vertices, B—4 point guards are alwaysficient and sometimes necessary, whereas there
are piecewise-concave polygons where some points in tagantre hidden from all vertices, hence they cannot be
monitored by vertex guards. We conclude with bounds for sspeeial types of curvilinear polygons.

Key words: art gallery, curvilinear polygons, vertex guards, poinaigls, piecewise-convex polygons,
piecewise-concave polygons
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1. Introduction

In the classical art gallery problem, art gallery is represented by a simply connected closed polygonal domai
(for shortpolygorn) P. The art gallery is monitored by a set of guards, each repteddoy a point irP, if every point
in P is visible to at least one of the guards. Two points see eduér @t they are visible to each other, i.e., if the
closed line segment connecting them liePinVictor Klee asked what is the minimum number of guards thaat c
monitor any polygon witim > 3 vertices. Art gallery-type problems have found applimagiin robotics [1, 2], motion
planning [3, 4], computer vision and pattern recognitiofg57, 8], graphics [9, 10], CAILAM [11, 12] and wireless
networks [13]. Curvilinear objects were typically modeleith straight-line polygonal approximations. Startingrfr
the late 80s, some geometric algorithms were extended tdioear polygons [14]. Refer to the recent book edited
by Boissonnat and Teillaud [15] for a collection of compigaal-geometry results for curves and surfaces. In this
context this paper addresses the classical art gallerylggrofor various classes of polygonal regions bounded by
curvilinear edges. To the best of our knowledge this is tist fime that the art gallery problem is considered in this
context.

The first results on art gallery-type problems date back ¢1®70’s. Chatal [16] proved that every simple
polygon withn vertices can be monitored Y} | vertex guards; this bound is tight in the worst case. Latgk Fi7]
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gave an elegant algorithmic proof using a 3-coloring of angulation of the polygon. Fisk’s algorithm runs in
O(n) time for a triangulated polygon with vertices, and the time complexity of the triangulatiorO&) based on
Chazelle’s algorithm [18]. Lee and Lin [19] showed that finglthe minimum number of vertex guards for a given
simple polygon is NP-hard, which was extended to point gaiagdAggarwal [20]. Other types of art galleries have
also been considered. Kahn, Klawe and Kleitman [21] showeatlévery simple orthogonal polygon, i.e., simple
polygon with axes-aligned edges, withvertices can be monitored Hy; | vertex guards, and this bound is best
possible. SeverdD(n) time algorithms have been proposed for placing the guardksis variation of the problem,
notably by Sack [22] and later by Lubiw [23]. EdelsbrunneiR@Qurke and Welzl [24] gave a®(n) time algorithm

for placing| %] point guards that jointly monitor an orthogonal polygontwit vertices. Other types of guarding
problems have also been studied in the literature. For dle@iscussion of these variations and the corresponding
results the interested reader should refer to the book by @ke [25], or the survey papers by Shermer [26] and by
Urrutia [27].

The main focus of this paper is the class of polygons that @nerelocally convex or locally concave (except
possibly at the vertices), the edges of which are convex(defined below); we call such polygop&cewise-convex
andpiecewise-concave polyggnespectively.

We show that every piecewise-convex polygon with 2 vertices can be monitored by at mp%lj vertex guards.
This bound is tight: there are piecewise-convex polygorth wiertices, for everyn > 2, that cannot be monitored
by fewer thari_z—?fj vertex guards. Our upper bound is based on an algorithm &eimg vertex guards, which can be
implemented inO(nlogn) time andO(n) space. Our algorithm is a generalization of Fisk’s aldgwnit{17]; in fact,
when applied to a straight-line polygon with> 3 vertices, it produces at mos}| vertex guards. For the purposes
of our complexity analysis and results, we assume, throuigtie paper, that the curvilinear edges of our polygons
are arcs of algebraic curves of constant degree. As a redlufitedicates required by the algorithms described in
this paper tak&(1) time in the real RAM model of computation model. The cahinea for our upper bound is the
approximation of a piecewise-convex polygon by a stralgitpolygon by adding Steiner vertices on the boundary
of the curvilinear polygon. The resulting polygonal appnaation is a simple straight-line polygon. We compute
a guard set for the polygonal approximation by a slightly ified version of Fisk’s algorithm [17]. This guard set
monitors the original curvilinear polygon, however, vertgiards may be located at Steiner vertices. The final step of
our algorithm maps the vertex guards of the polygonal appration to vertex guards of the curvilinear polygon. Our
upper bound otz—G[‘J also applies to point guards. However, it does not match dés¢ lower bound we have found.
There are piecewise-convex polygons withertices, for everyn > 2, that cannot be monitored by fewer thia}y
point guards.

Some piecewise-concave polygons have interior pointsemidbm all vertices (see Fig. 14(a)), and hence they
cannot be monitored by vertex guards alone. We thus turn tbemteon to point guards, and we show that-24
point guards are always ficient and sometimes necessary for monitoring a piecevdseave polygon witm > 3
vertices. Our upper bound proof is based on Fejeth$ technique for illuminating sets of disjoint convexjextis
in the plane [28]. Given a piecewise-concave poly@gmwe subdivideP into crescents (bounded by a convex and
a concave arc), each adjacent to an edgP,adnd into convex polygonal holes. Using FejgstiTs argument, if
we place guards at points incident to at least three crescantwo vertices of each triangular hole and all vertices
at holes with 4 or more vertices, we obtain a guard set thatitorsnall holes and all crescents, hence the entire
piecewise-concave polygdh Since the intersection graph of the crescents is outeaplarinose faces correspond to
the holes, it is easy to show that the number of point guardsrsost 21 — 4.

The rest of the paper is structured as follows. In Section 2igfane curvilinear polygons, including piecewise-
convex and piecewise-concave polygons. In Section 3 weeptesir algorithm for computing a vertex guard set,
of sizeLz—gj, for a piecewise-convex polygon withvertices, and present families of piecewise-convex patggbat
require a minimum 0[%”] vertex or[%} point guards in order to be monitored. In Section 4 we presentesults for
piecewise-concave polygons, namely, that-24 point guards are always necessary and sometinfésisnt for this
class of polygons. The final section of the paper, Sectioisgudses further results and states open problems.
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Figure 1: Diterent types of curvilinear polygons: (a) a straight-linéygon, (b) a piecewise-convex polygon, (c) a locally conpekgon, (d) a
piecewise-concave polygon, (e) a locally concave polygah(§ a general polygon.

2. Definitions

Types of curvilinear polygons. LetV be a sequence of pointg,...,v,, n > 2, andA a set of curvilinear arcs
as, ..., an, such that the endpoints af arev; andvi,1'. We assume that the aresanda;, i # j, do not intersect,
exceptwhen =i—1orj=i+1,inwhich case they intersect only at the pojtandvi,, respectively. We define
acurvilinear polygon Ro be the closed region delimited by the aacsThe pointsy; are called the vertices éf. An
arca; is aconvex ardf every line on the plane intersedsat either at most two points or along a line segment.

A polygonP is astraight-line polygorif its edges are line segments (see Fig. 1(a)). A polygaslocally convex
(see Fig. 1(c)), (resplocally concavesee Fig. 1(e))), if for every poirp on the boundary oP, with the possible
exception ofP’s vertices, there exists a disk centeredpasay D, such that? N D, is convex (resp., concave). A
polygonP is piecewise-convefsee Fig. 1(b)), (resppiecewise-concav@ee Fig. 1(d))), if it is locally convex (resp.,
concave), and the portion of the boundary between every busexutive vertices is a convex arc. Finally, a polygon
is said to be @eneral polygonf we impose no restrictions on the type of its edges (see HifJ). We use the term
curvilinear polygorto refer to a polygon the edges of which are either line oresegments.

Guards and guard sets. In our setting, aguard or point guardis a point in the interior or on the boundary of a
curvilinear polygonP. A guard of P that is also a vertex oP is called avertex guard We say that a curvilinear
polygonP is monitoredby a setG of guards if every point irP is visible from at least one point i@, where two
pointsp andqin P are visible from each other if the line segmeiulies entirely inP. The set that has this property
is called aguard setfor P. A guard set that consists solely of verticedRak called avertex guard set

3. Piecewise-convex polygons

In this section we present an algorithm which, given a piésexgonvex polygorP with n vertices, computes a
vertex guard seB of sizeL%”J. The basic steps of the algorithm are as follows:

indices are evaluated moduto



1. Compute the polygonal approximatiérof P.

2. Compute a constrained triangulatidigP) of P.

3. Compute a guard s€ for P, by 3-coloring the vertices af (P).
4. Compute a guard sé for P from the guard s&Bgp.

3.1. Polygonalization of a piecewise-convex polygon

Leta be a convex arc with endpoinisandvi,;. We call the convex region delimited bya; and the line segment
ViVi;1 aroom A room is called degenerate if the ads a line segment. A line segmepg, wherep, g € & is called
achord and the region delimited by the chopdjanda; is called asector The chord of a room; is defined to be the
line segment;vi, 1 connecting the endpoints of the correspondingaar@ degenerate sector is a sector with empty
interior. We distinguish between two types of rooms (see Ejg

1. aroom isemptyif it is non-degenerate and does not contain any verteR iof its interior or in the interior of
its chord.

2. aroom isnon-emptyf it is non-degenerate and contains at least one vertéXiofits interior or in the interior
of its chord.

In order to polygonaliz€ we add Steiner vertices in the interior of non-linear coramos. More specifically, for
each empty room we add a vertew; ; (anywhere) in the interior of the aeg (see Fig. 3). For each non-empty room
ri, let X; be the set of vertices ¢ that lie in the interior of the chordvi, of r;, andR; be the set of vertices ¢t that
are contained in the interior of or belong toX; (by assumptiorR # 0). If R # X;, letC; be the set of vertices on
the convex hull of the vertex seR(\ X;) U {vi, Vi;1}; if R = X, letCi = X U {v;, vi;1}. Finally, 1etC; = Cj \ {vi, Vi;1}.
Clearly,v; andvi,1 belong to the set; and, furthermoreC; # 0.

Let my be the midpoint o;vi,; and¢-(p) the line perpendicular tgvi,; passing through a poimt. If C' # X;,
then, for eacly € C, letw; j,, 1 < jx < |C{|, be the (unique) intersection of the lingv, with the arca;; if C = X;,
then, for eaclv € C/, letw; j,, 1 < jk < |C/], be the (unique) intersection of the licie(vi) with the arca;.

Now consider the sequentkof the original vertices oP augmented by the Steiner vertices added to empty and
non-empty rooms; the order of the verticed/iis the order in which we encounter them as we traverse thedzoyn
of P counterclockwise. The straight-line polygon defined by sequencé/ of vertices is denoted b (see Fig.
4(a)). Itis easy to show that:

Lemma 1. The straight-line polygo® is a simple polygon.

Proof. It suffices show that the line segments replacing the curvilinegmeats ofP do not intersect other edges of
PorP.

Letr; be an empty room, and le ; be the point added in the interior af The interior of the line segmengsw; 1
andw; 1vi;1 lie in the interior ofrj. SinceP is a piecewise-convex polygon, ands an empty room, no edge Bfcould

Figure 2: The two types of rooms in a piecewise-convex polygpandry are empty rooms, whereas, andr/, are non-empty rooms.
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Figure 3: The Steiner vertices (white points) for rooragempty) andrs (non-empty).ws1 is a point in the interior ofz. ms is the midpoint
of the line segmentsvs, whereasws 1 andws are the intersections of the linesv, andmsvy with the arcas, respectively. In this example
R5 = {V1, V2, V7}, whereai:g = {V1, Vo}.

potentially intersect;w; ; or w; 1vi,1. Hence replacingy by the polylineviw; ;vi,1 gives us a new piecewise-convex
polygon.

Letr; be a non-empty room. Let;1,..., Wk be the points added am, whereK; is the cardinality ofC;. By
construction, every poindviy is visible fromw; .1, k = 1,...K; — 1, and every pointv k is visible fromw;y_1,
k=2,...Ki. Moreoverw; 1 is visible fromv; andwi g, is visible fromvi,;. Therefore, the interior of the segments in
the polylineviw; 1 ... W; g Vi41 lie in the interior ofr; and do not intersect any arc it Hence, substituting; by the
polyline viwi 1 ... Wik, Viz1 gives us a new piecewise-convex polygon.

As a result, the straight-line polygdhis a simple polygon. O

We call the straight-line polygoR, defined b)AN/,Nthestraight—Iine polygonal approximatioof P, or simply the
polygonal approximatioof P. An obvious result foP is the following:

Corollary 2. If P is a piecewise-convex polygon the polygonal approxiona® of P is a straight-line polygon that
is contained in P.

We end this subsection by proving a tight upper bound on tteecfithe polygonal approximation of a piecewise-
convex polygon. We start with an intermediate result, nartredt the set€; are pairwise disjoint.

Lemma 3. Leti, j,withl<i< j<n. Then(,.’:mC]f =0.

Proof. Consider an are; of P, delimited by the verticeg andvi,1 and letr; denote the shortest path ihbetween
them. Note thatr; is a straight-line polygonal path, the internal verticesvbich are the vertices &;. Sinceg; is
a convex arcg; is also a convex arca; ands; bound a (curvilinear) polygon, that we denote @y for which r; is
locally concave. That is, every point @ is a reflex vertex of);, and so every point i€ is a reflex (i.e., locally
concave) vertex o as well. At every vertexw € C, the bisector of the internal angle Bfenters the polygo; and
leavesQ; (andP) at some point along;.

Consider the bisector of the internal angle at every refletexav of P. If the bisector intersects some ag
thenw can belong to the s&? only. Since every bisector intersects at most oneagigve are referring to the first
intersection of the bisector while walking on it away frevjy every vertexw belongs to at most one @Y. O

An immediate consequence of Lemma 3 is the following corplthat gives us a tight bound on the number of
vertices of the polygonal approximatiéhof P.
5
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Figure 4: (a) The polygonal approximatiéh shown in gray, of the piecewise-convex polygewith verticesv;, i = 1,...,7. (b) The constrained
triangulation7(P) of P. The dark gray triangles are the constrained triangles pbhgyonal regiornvsws 1Ws 2VgV1VoVs is @ crescent. The triangles
Ws 1VoVs andviWsoVe are boundary crescent triangles. The triangies ovq is an upper crescent triangle, whereas the triamgle 1ws 2 is a
lower crescent triangle.

Figure 5: A piecewise-convex polygdhwith n vertices (solid curve), the polygonal approximat®of which consists of 8- 3 vertices (dashed
polyline).

Corollary 4. The number of vertices of the polygonal approximatidmf a piecewise-convex polygon P with n
vertices is at mos3n. This bound is tight (up to an additive constant).

Proof. Let a be a convex arc oP, and letr; be the corresponding room. fif is an empty room, theR contains
one Steiner vertex due #&. HenceP contains at mosh Steiner vertices attributed to empty roomsAnIf r; is a
non-empty room, the® contains|C/| Steiner vertices due tg. By Lemma 3 the set€, i = 1,...,n are pairwise
disjoint, which implies thap LICT< VI =n. ThereforeP contains then vertices ofP, contams at mogt vertices
in empty rooms of, and at mosh vertices in non-empty rooms & We thus conclude that the size\¢fis at most
3n.

The upper bound of the paragraph above is tight up to an additinstant. Consider the piecewise-convex polygon
P of Fig. 5. It consists oh — 1 empty rooms and one non-empty roomsuch thatCj| = n- 2. Itis easy to see that
V| = 3n-3. O

3.2. Triangulating the polygonal approximation
Let P be a piecewise-convex pongoP? its polygonal approximation, anfls the set of Steiner vertices i,
We construct @onstrained triangulatiorf P, i.e., we triangulaté®, while imposing some triangles to be part of this
6



triangulation. More precisely, we constrain the triangleg (P) created in the neighborhood of the verticeSp By
constraining the triangles in these neighborhoods, fieztvely triangulate parts ¢?. The remaining untriangulated
parts of P consist of one or more interior disjoint straight-line pgiys, which are then triangulated arbitrarily in
linear time and space. We call the pre-specified triangl&s(iR) constrained triangles We want the triangulation
7(P) to satisfy the following properties:

1. every triangle o (P), with a vertex inSp, also contains at least one vertextyfi.e., no triangles contain only
Steiner vertices,

2. every vertex irSs belongs to at least one triangled(P) the other two vertices of which are both vertices of
P, and

3. the triangles of(P) that contain vertices d® can be monitored by vertices Bf

These properties are exploited in Step 4 of the algorithregured later in this subsection.

Let us proceed to define the constrained triangleg (R). If r; is an empty room, and; ; is the Steiner vertex
added org;, add the edgegvi.1, viwi 1 andw; 1vi,1, thus forming the constrained trianglavi 1vi.1 (see Fig. 4(b)). If
ri is a non-empty roontgy, . .., Ck, the vertices irC, K; = |C'|, andwi 1, ..., Wk the Steiner vertices ig; (w;; has
been added og; due toc;), add the following edges, if they do not already exist:

1. ¢, Gk, fork=1,...,K; — 1, andvicy, Ck,Vi+1;

2. CkWi k, fork=1,..., Ki;

3. Wik, fork=1,...,Kj - 1;

4. Wik, Wik, fork=1,...,Kj — 1, andviw 1, Wi g, Vi1.

These edges formk2 constrained trianglesciCi1Wik+1, for k = 1,..., Ki — 1; GWi gWike1, fork = 1,... Kj — 1;
viciwi 1 andviziCk,Wik,. We call the polygonal region formed by these trianglesescent The triangless;ciwi 1
andvi,1Ck,W g, are calledooundary crescent trianglethe triangles Gy aWik+1, K = 1,..., K — 1, are calledipper
crescent triangleswhereas the trianglesw; \Wik+1, kK =1,...,K; — 1, are calledower crescent triangles

Note that the pointsy; j, ] < K; (resp.,wi,) are vertices of exactly one triangle (resp., exactly tviangles) in
7(P), such that the other two vertices of the triangle (respeauh of the two triangles) belong R

3.3. Computing a guard set for the original polygon

Assume that we have colored the vertitesf P with three colors, so that no triangledn(P) contains two vertices
of the same color. This can be easily done by the standardioBxug algorithm for straight-line polygons presented
in [29, 17]. Let red, green and blue be the three colors, anddelln andMa be the set of vertices & of red, green
and blue color, respectively, whefestands for eitheP, P or Sg. Clearly, all three set&s, I1s andM;p are guard sets
for P. In fact, they are also guard sets fras the following lemma suggests (see also Fig. 6).

Lemma 5. Each one of the setsgKIlz and M is a guard set for P.

Proof. Let Gg be one ofK;, ITs and M. By constructionGs monitors all triangles iy (P). To show thaGs is a
guard set foP, it suffices to show thaBs also monitors the non-degenerate sectors defined by the efl§end the
corresponding convex subarcskf

Indeed, lesbe a non-degenerate sector associated with the convey ard letT € 7(P) be the triangle incident
to the chord ofs. If r; is an empty room, each of the three verticesTahonitorsr; (and therefore alsg). If r; is
a non-empty room, the vertex df that is not an endpoint of the chord efis a vertex inC; and monitorss by
construction. Clearly, one of the three vertice§ dfelongs taGs. O

Let as now assume, without loss of generality, tha{ < [TIp| < |[Mp|. Define the mapping from Ks, to the
power set ° of ITp by mapping a vertex in Ks, to all the neighboring vertices ofin 7°(P) that belong td1p (see
Fig. 7 for the three possible cases #r Notice that 1< [f(X)| < 2.

Finally, define the seBp = Kp U f(Ks;), wheref(Ks;) = UxeKSﬁ f(x). We claim thaGp is a guard set foP.

Lemma 6. The set G = Kp U f(Ks,) is a guard set for P.

7
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Figure 6: The three guard sets #rare also guard sets fé as Lemma 5 suggests.

Proof. The regions inP \ P are sectors bounded by a curvilinear arc, which is a subasmafdge ofP, and the
corresponding chord connecting the endpoints of this subBr show thaGp is a guard set foP, it suffices show
that every triangle i (P) and every sector if? \ P is monitored by at least one vertex@p.

If all three vertices of a triangl&@ € 7 (P) are vertices oP, one of the vertices of isin Kp € Gp. If T is a
triangle in an empty room (see Fig. 8(left)), or a boundasscent triangle (see Fig. 8(middle)), either the unique
Steiner vertex of T is in Ks;, in which case one of the other two verticeslobelongs tof (Ks,), or zis not inKs;,
in which case one of the other two verticesTobelongs toKp. Moreover, the sectgsectors adjacent to an edge of
T in rj is/are visible by both vertices df in P and thus monitored by one of them. Finally, upper and lowesaent
triangles come in pairs. Lt be an upper crescent triangle in a non-empty rop(eee Fig. 8(right)). Lek, y be the
vertices ofT in P, and letz be its vertex inSg; it is assumed here thats the intersection ofryy with a. Let T’ be
the lower crescent triangle adjacentftalong the edgez w be the third vertex o’, ands be the sector ifP \ P
adjacent taew. Sincex andy belong toC;, eitherx ory monitorsT, T’ ands. We end the proof by claiming that
eitherx ory belongs tdGp: if x ory belongs taKp the claim is obvious; if neithex nory belongs taKp, thenz € Ks;
in which case one af andy belongs tof (Ks;). O

Since f(Ks,) c IIp we get thalGp C Kp U ITp. SinceKp andIlp are the two sets of smallest cardinality among
Kp, ITp andMp, we conclude thdGp| < |[Kp| + |TIp| < L%J, and thus arrive at the following theorem.

Theorem 7. Let P be a piecewise-convex polygon with 12 vertices. P can be monitored with at m@%}] vertex
guards.

We close this subsection by making two remarks:

Remark 1. When the input to our algorithm is a straight-line polygonralbms are degenerate; consequently, no
Steiner vertices are created, and the guard set computegsponds to the set of colored vertices of smallest car-
dinality, hence producing a vertex guard set of size at kst In that respect, our algorithm can be viewed as a
generalization of Fisk’s algorithm [17] to the class of @etse-convex polygons.

Remark 2. Given a straight-line polygoR withr > 2 reflex vertices, we can vieR® as a piecewise-convex polygon
the edges of which areconvex polylines, where > r. In this context Theorem 7 can be “translated” as follows:

If the boundary of a simple straight-line polyg®ncan be partitioned into > 2 convex polylines such
thatP is a piecewise-convex polygon with its edges beingctbenvex polylines, theR can be monitored
with at mos %] vertex guards.



(@) (b)

© (d)

Figure 7: The three cases in the definition of the mapging€ase (a):x is a Steiner vertex in an empty room. Case (b)s an Steiner vertex
in a non-empty room and is not the last Steiner vertex addeti@wurvilinear arc. Cases (c) and (d)is the last Steiner vertex added on the
curvilinear arc of a non-empty room (in (d)(x)| = 1, whereas in (d)f (x)| = 2).

3.4. Time and space complexity

In this subsection we show how to compute the vertex guar@ssah O(nlogn) time andO(n) space. It is
straightforward to show that Steps 2—4 of our algorithm (seginning of Section 3) can be implemented in linear
time and space. To complete our time and space complexitysisave need to show how to compute the polygonal
approximationP of P in O(nlogn) time and linear space. In order to comp#tgt suffices to compute for each room
ri the set of vertice€;. If Cf = 0, thenr; is empty, otherwise we have the set of vertices we wantednEXowe can
compute the pointss x and the straight-line polygolR in O(n) time and space.

The underlying idea is to splR into y-monotone piecewise-convex subpolygons. For each ngamthin each
suchy-monotone subpolygon we then compute the correspondinG;'seThis is done by first computing a subset
S; of the setR; of the points in the room;, such thatS; 2 C;', and then applying an optimal time and space convex
hull algorithm to the se§; U {vi, vi,1} in order to comput€;, and subsequently from th@}. In the discussion that
follows, we assume that for each convex arof P we associate a s&, which is initialized to be the empty set. The
setsS; are progressively filled with vertices &, so that in the end they fulfill the containment property rmared
above.

Splitting P into y-monotone piecewise-convex subpolygons is done in twesstep

1. First we split each convex ag; into y-monotone pieces. Ld? be the piecewise-convex polygon we get by
introducing they-extremal points for each and letV’ be the vertex set d¥. Since eacla; can yield up to three
y-monotone convex pieces, we conclude {4t < 3n. Obviously splitting the convex ar@s into y-monotone
pieces take®©(n) time and space. A vertex added to split a convex arc yrmoonotone pieces are called an
added extremal vertex

9
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Figure 8: Proof of Lemma 6. From left to right: the case of emptyme; the case of boundary crescent triangles; the case of apgdower
crescent triangles.

Figure 9: Decomposition of a piecewise-convex polygon ietoytmonotone subpolygons. The white points are added extrentadegthat have
been added in order to split ngamonotone arcs tg-monotone pieces. The bridges are shown as dashed segments.

2. Second, we apply tB’ the standard algorithm for computiygmonotone subpolygons of a straight-line poly-
gon (cf. [30] or [31]). The algorithm in [30] (or [31]) is valinot only for line segments, but also for piecewise-
convex polygons consisting ggmonotone arcs (such &). Since|V’| < 3n, we conclude that computing the
y-monotone subpolygons & takesO(nlogn) time and require®(n) space.

Note that a non-split arc d? belongs to exactly ong-monotone subpolygorny-monotone pieces of a split arc Bf
may belong to at most thrgemonotone subpolygons (see Fig. 9).

Suppose now that we haveyanonotone polygorQ. The edges of) are either convex arcs &, or pieces of
convex arcs oP, or line segments between mutually visible vertices?pfidded in order to form thg-monotone
subpolygons oP; we call these line segmenisidges(see Fig. 9). For each non-bridge edgef Q, we want to
compute the sef;. This is done by sweepin@ in the negativey-direction (i.e., by moving the sweep line frono
to —c). The events of the sweep correspond toytheordinates of the vertices §f, which are all known before-hand
and can be put in a decreasing sorted list. There are fdli@relnt types of events:

1. the first event: corresponds to the top-most verteQ,of

2. the last event: corresponds to the bottom-most vert€ of

3. aleft event: corresponds to a vertex of the yeffhonotone chain o®, and
4. aright event: corresponds to a vertex of the rightonotone chain of.

Our sweep algorithm proceeds as follows. Kdie the sweep line parallel to theaxis at somey. For eachy in
between thg-maximal andy-minimal values ofQ, ¢ intersectQ at two points which belong to either a left edge
10



or a left vertexy, (i.e., an edge or vertex on the lgfimonotone chain of)), and either a right edge or a right vertex
v; (i.e., a edge or vertex on the rigitmonotone chain o). We associate the current left edgeat positiony to a
point setS, and the current right edge at positipto a point seBg. If the edges (resp..g) is a non-bridge edge, the
setS, (resp.,Sg) contains vertices o that are in the room of the convex arc®torresponding te (resp..&).

When they-maximal vertex/maxis encountered, i.e., during the first event, we initialigeandSg to be the empty
set. When a left event is encountered due a vertdgt e, be the left edge abowe ande gown be the left edge below
v and lete; be the current right edge. & is an non-bridge edge, amglis the corresponding convex arc iBf we
augment the se8; by the vertices ir_. Then, irrespectively of whether or nef,, is a bridge edge, we re-initialize
S| to be the empty set. Finally, & is a non-bridge edge, arg is the corresponding convex arc ity we check if
v| is in the roomry or lies in the interior of the chord af; if this is the case we add to Sg. When a right event
is encountered our sweep algorithm behaves symmetrié&lien the last event is encountered due toytmeinimal
vertexvmin, let g (resp.,e) be the left (resp., right) edge @ abovevy,,. If g (resp.,e) is a non-bridge edge, leg
(resp.,a;) be the corresponding convex archn In this case we simply augmest (resp.,S;) by the vertices ir5
(resp.,Sgr).

We claim that our sweep-line algorithm computes aetuch thatS; 2 C;". To prove this we need the following
intermediate result:

Lemma 8. Given a non-empty room of P, with g the corresponding convex arc, the vertices of the seielong to
the y-monotone subpolygons dfd@mputed via the algorithm in [30] (or [31]), which either stain the entire arc a
or y-monotone pieces of.a

Proof. Letu be a vertex ofP in C* that is not a vertex of any of themonotone subpolygons & (computed by
the algorithm in [30] or [31]) that contain either the enténea; or y-monotone pieces &;. Let Vinax (resp.,Vmin) be
the vertex ofP of maximum (resp., minimumy-coordinate irC;; ties are broken lexicographically. L&t be the line
parallel to thex-axis passing through Consider the following cases:

1. ue C\ {Vmin. Vmax}- Without loss of generality we can assume tié a vertex in the righy-monotone chain
of Cj (see Figs. 10(a) and 10(b)). Letbe the intersection aof, with a. Let Q (resp.,Q’) be they-monotone
subpolygon of”’ that containai (resp.,u’); by our assumptio® # Q. Finally, letu, (resp.,u_) be the vertex
of C; above (resp., below) in the righty-monotone chain of;.

The line segmeniu’ cannot intersect any edgesRfsince this would contradict the fact thae C;. Similarly,
uu cannot contain any vertices Bf: if vis a vertex ofP in the interior ofuu’, uwould be in the triangleu, u_,
which contradicts the fact thate C, whereas ifv is a vertex oV’ \ V in the interior ofuu’, P would not be
locally convex atv, a contradiction with the fact th@ is a piecewise-convex polygon. As a result, and since
Q # Q/, there exists a bridge edgentersectinguu’. Letw,, w_ be the two endpoints ain P’, wherew, lies
above the ling?, andw_ lies below the line/,. In fact neithemw, norw_ can be a vertex iv’ \ V, since the
algorithm in [30] (or [31]) connects a vertex \f \ V in a roomry with either they-maximal or they-minimal
vertex ofCy only. Let¢, (resp.,l_) be the line passing through the verticeandu, (resp.,u andu_). Finally,
let sbe the sector delimited by the linés, £- anda;. Now, if w, orw_ liesins, thenuis in the trianglewv, u,u_
or in the trianglew_u.,.u_, respectively (see Fig. 10(a)). In either case we get a adition with the fact that
u e C'. If neitherw, norw_ lie in s, then bothw, andw_ have to be vertices in, and moreoveu lies in the
convex quadrilateral, u,u_w_; again this contradicts the fact that C’ (see Fig. 10(b)).

2. U = Vmax By the maximality of they-coordinate ofu in C;, we have that thg-coordinate ofu is larger than
or equal to they-coordinates of both; andvi,;. Therefore, the liné, intersects the arg exactly twice, and,
moreoverg; has ay-maximal vertex oV’ \ V in its interior, which we denote by, (see Fig. 10(c)). Let’ be
the intersection of, with g that lies to the right ofi, and letQ (resp.,Q’) be they-monotone subpolygon ¢
that containsi (resp.,u’). By assumptiorQ # Q’, which implies that there exists a bridge edgetersecting
the line segmentu’. Notice, that, as in the casec C" \ {Vmin, Vmax, the line segmeniu’ cannot intersect any
edges ofP, or cannot contain any vertexof V" \ V; the former would contradict the fact that C, whereas
as the latter would contradict the fact tirits piecewise-convex. Furthermorgy cannot contain vertices &f
since this would contradict the maximality of tiieoordinate ot in C;.

Let w, andw_ be the endpoints of above and below,, respectively. Notice tha¢ cannot havev,,,, as
endpoint, since the only bridge edge that fag, as endpoint is the bridge edgg,,u. But thenw, must be a
vertex of P lying in r;; this contradicts the maximality of thecoordinate ot among the vertices i@;.
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Figure 10: Proof of Lemma 8. (a) The cas& C; \ {Vmin, Vmax}, With w_ € s. (b) The casel € C; \ {Vmin, Vmax}, With w,,w_ ¢ s. (c) The case
U = Vmaxe

3. U= Vpin. This case is entirely symmetric to the case Vimax O

An immediate corollary of the above lemma is the following:

Corollary 9. For each convex arcjaf P, the set Scomputed by the sweep algorithm described above is a superse
of the set C.

Let us now analyze the time and space complexity of Step leoalhorithm sketched at the beginning of this
subsection. Computing the polygonal approximatidnf P requires subdividing® into y-monotone subpolygons.
This subdivision take®(nlogn) time andO(n) space. Then we need to compute the Sgfer each convex arg; of
P. The setsS; can be implemented as red-black trees. During the courseraflgorithm we only perform insertions
on theS;’s. A vertexv of P is inserted at mosdedv) times in someS;, wherededV) is the degree of in they-
monotone decomposition & Since the sum of the degrees of the verticeB of they-monotone decomposition of
P is O(n), we conclude that the total size of tBgs is O(n) and that we perforrm®(n) insertions on th&;’s. Therefore
we needd(nlog n) time andO(n) space to compute ti®’s and theC;’s. The analysis above thus yields the following:

Theorem 10. Let P be a piecewise-convex polygon with 12 vertices. We can compute a guard set for P of size at
most| 4] in O(nlogn) time and @n) space.

3.5. Lower bound constructions

In this subsection we present aivertex piecewise-convex polygon, for every 2, that cannot be monitored by
fewer thari_%“] vertex guards (respl.51 point guards).

Itis clear that a piecewise-convex 2-gon (e.g., Fig. 1Ifgquires 1 vertex guard. Fig. 11(b) depicts a piecewise-
convex triangle that cannot be monitored by fewer than Zexest point guards.

For every integen > 4, we give a construction based on a regld@on a;a, ... ax, wherek = [3] > 2 (in
particular, fork = 2, a 2-gon is a line segmeata,). First assume that = 3k for an integek > 2. Letx denote the
circumscribed circle ofya, . . . ax. Replace each edges;,1,i = 1,2, ...,k by a piecewise-convex path (b, ¢, 8:1)
depicted in Fig. 12(b), to obtain a piecewise-conmegon P. The verticedy, andc; are in the left open halfplane
delimited by the directed linga;,; and they are separated from the polygeas . . . a, by the tangent of ata;. The
patterns &, b;, ¢, a;,1) are designed such that at each verteR,ahe tangents of the two adjacent edges are the same,
which we call thecommon tangerdat the vertex. The common tangentaais also tangent to the circleat a; the
common tangent dg is parallel to the common tangenta@f and the common tangent gtis perpendicular to the
common tangents @ andb;. Let A; and B; denote the empty rooms boundeddlg; andb;c;, respectively. LeC;
denote the part of the (non-empty) room boundedby,; that lies on the left side of both directed lin@s;,1 and
ac. Note that the regiond;, B;, andC; are hidden from any vertex &fother tharg;, bi, ;. However, none o, b;, ¢
sees all three regions, B;, C; entirely (in particularg does not se®; entirely; by doers not se€; entirely; andc;
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(a) (b) (c)

Figure 11: (a) a piecewise-convex 2-gon; (b) a piecewise-convex triangle #upiines 2 vertex guards; (c) a piecewise-convex
pentagon that requires 3 point guards.

does not sedy entirely). Hence each triple of regiof4;, B;, C;} requires at least two vertex guarddat by, ¢;}. This
gives a lower bound ofle= £, if n= 3k, k > 2.

Now assume that = 3k — 2 for an integek > 2. Replace every edgga;,1, fori = 1,2,...,k—1, by a piecewise-
convex path, b, ¢, a,1) depicted in Fig. 12(b). The previous argument shows thratéisulting piecewise-convex
n-gon requires (- 1) = L%J vertex guards. Finally, assume that 3k — 1 for k > 2. Replace every edgga .1,
fori = 1,2,..., k-1, by a piecewise-convex path; (b, ¢, a.1) depicted in Fig. 12(b); and replace eda@; by
(ax, bk, &1) depicted in Fig. 12(c). The common tangenbain Fig. 12(c) passes through sidga;. The empty room
bounded byyby is not visible from any other vertex bat andby, hence there must be a guard at one of these vertices.
Combined with the previous argument, the resulting pieseweonvexr-gon requires 2(— 1)+ 1 =2k -1 = L%J
vertex guards.

(c)

Figure 12:(a) Our lower bound construction far= 15; (b) a pattern with 3 vertices requiring two vertex guards; (c) a patigm
2 vertices requiring 1 vertex guard.

Theorem 11. For every integer r> 2, there is a piecewise-convex polygon with n vertices thahoaibe monitored
by fewer thar[%“] vertex guards.

The lower bound for point guards can be established much easity. Consider tha-vertex piecewise-convex
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polygonC shown in Fig. 11(c). It can be readily seen that we need on@ gaerd for any two consecutive prongs of
C; sinceC containsn prongs, a minimum of 5] point guards are necessary for monitor(hg

Theorem 12. For every integer r> 2, there is a piecewise-convex polygon with n vertices thahoaibe monitored
by fewer tharf 31 point guards.

4. Piecewise-concave polygons

In this section we address the problem of finding the minimwmlper of guards that can jointly monitor any
piecewise-concave polygon with> 3 vertices. Monitoring a piecewise-concave polygon witiieseguards may be
impossible even for very simple configurations (see Figal)4(n particular we prove the following:

Theorem 13. For every integer re 3, the minimum number of point guards that can jointly moné&oy piecewise-
concave polygon with n vertices2a — 4.

To prove the sfiiciency of 2 — 4 point guards we adapt a technique due to Fefath J28] to our case. Fejes
Toth proved that the free space aroungairwise disjoint compact convex sets can be monitored by(2nadn — 7)
point guards. The edges of a piecewise-concave polyjare the boundaries of compact convex sets in the plane;
these sets however are not necessarily disjoint. The pnd@8i is based on a tessellation of the free space; here we
compute a tessellation restrictedRo

Proof. We are given a piecewise-concave polygdwith n vertices andh concave arcs (see Fig. 13). Successively
replace each concave aicby another concave akg with the same endpoints that decreases the polygon mayimall
Formally, we construct a sequence of piecewise-concawgposPy = P, P1,P,,...,P,. Fori = 1,2,...,n, we
obtainP; from P;_; by replacing the concave aacby a concave arg betweerv; andvi,; such tha®; is minimal (for
containment), that is, there is no piecewise-concave polfRj with n vertices such tha® C P; and the boundary of
P; differs fromP; only in the edge between andvi,;. LetK = {k : 1 <i < n}.

Let us call the region bounded lyandx; thecrescenbf edgea;. Fejes Dth proved that each akg¢is a polygonal
path, and the arog partition P into n crescents (one for each edge) and convex polygons, whichlleelgaps. The
crescents and convex gaps are fdnesof atessellation Tof P. A vertexof this tessellation is a point incident to at
least three faces. Note that every vertex of a gap is a veft€x Bejes Dth showed that we can monitor all crescents
and all gaps (hence, the enti®if we place point guards as follows:

e place a point guard at every vertexincident to at least 3 crescents;
e place two guards at two arbitrary vertices of every triaaggap;
e place a guard at each vertex of every gap with 4 or more vertice

Construct, now, a planar grajphwith vertex setk'. Two verticesq andx; of I are connected via an edgeifand
kj are adjacent. The graghis a planar graph combinatorially equivalent to an outergtagraphR with n vertices.
The edges of" connecting consecutive ares «i;1, 1 < i < n, correspond to the boundary edgesRyfwhereas
all other edges of correspond to diagonals R. Every gap of the tessellation incidentk@rescents corresponds
to boundedk-gon face ofR. Every ordinary vertex of the tessellation which is incidemk crescents but no gap
corresponds to a bound&etjon face oR.

Denote bydy the number ok-gon faces oR. Every triangular face oR corresponds to at most 2 point guards,
and evenk-gon facek > 4 corresponds to at molspoint guards. The total number of point guardsds23.;_, kdk.
This quantity does not decrease if we subdivide a boundexividth k > 4 vertices intdk — 2 triangles. In the worst
case, all faces are triangles. An outerplanar graph mitlrtices has at most— 2 triangular faces, hence the number
of point guards is bounded byr2¢ 2).

To prove the necessity, refer to the piecewise-concavegpal in Fig. 14(b). Each one of the pseudo-triangular
regions in the interior oP requires exactly two point guards in order to be monitorednsider for example the
pseudo-triangle shown in gray in Fig. 14(b). We need one point along each otleedlinesl;, I, andl; in order to
monitor the regions near the cornersrpfvhich implies that we need at least two points in order to itoonr (two out
of the three points of intersection of the lingsl, andl3). The number of such pseudo-triangular regions is exactly
n— 2, thus we need a total oh2- 4 point guards to monitadp. O
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Figure 13:A piecewise-concave 10-gon, the concave arder i = 1,2,...,10, the resulting tessellation into 10 crescents and 3
convex gaps, and the locations of 11 point guards.

5. Discussion and open problems

Every piecewise-convex polygon with > 3 vertices can be monitored Q%‘J vertex guards, which is best
possible. Furthermore, we presented2{nlog n) time andO(n) space algorithm for computing a vertex guard set of
size at most%“]. Every piecewise-concave polygons witle 3 vertices can be monitored by 2 4 point guards,
which is also best possible. We have not found a piecewisgenopolygon that requires more thpil point guards.
Closing the gap between the upper and lower bounds, for seafgoint guards, remains an open problem.

Beyond the two classes of polygons considered in this pégsrstraightforward to prove the following results
(the details are available in a preliminary version of traper [32]):

1. Given amonotonepiecewise-convex polygoR with n vertices (i.e., a piecewise-convex polygBrior which
there exists a link such that any line.* perpendicular td. intersects the boundary Bfat most twice)| 5] +1
vertex (resp.| 5| point) guards are always fiicient and sometimes necessary in order to mortor

2. Given alocally convex polygoR with n vertices n point guards are always icient and sometimes necessary
in order to monitorP. In particular, then vertices ofP are a guard set fde.

3. Given amonotondocally convex polygon (defined in direct analogy to monet@iecewise-convex polygons),
[5]+ 1 vertex or point guards are alwaydfcient and sometimes necessary.

4. Finally, there existjeneral polygonshat cannot be monitored with a finite number of point guards.

Karavelas [33, 34] has recently shown that every pieceaisgeXx polygon witm vertices can be monitored by
L%J edge guards or by”%lj guards each of which is either an edge or a straight-lineatialgof the polygon;
wheread 3| edges or straight-line diagonals are sometimes necegStngr types of guarding problems have been
studied in the literature, which eitherfl#ir on the type of guards, the topology of the polygons comsiti¢e.g.,
polygons with holes) or the guarding model; see the book dyadike [25], the surveys by Shermer [26] and by
Urrutia [27] for an extensive list of the variations of the gallery problem with respect to the types of guards or the
guarding model. It would be interesting to extend theselt®so the families of curvilinear polygons presented in
this paper.
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Figure 14: (a) A piecewise-concave polygBrthat cannot be monitored solely by vertex guards. Two corisecadges ofP have a common
tangent at the common vertex and as a result the three verfi€esee only the points along the dashed segments. (b) A pieceaismve polygon
P that requires @& — 4 point guards in order to be monitored.
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