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Abstract. We present algorithmic, complexity and implementation re-
sults concerning real root isolation of a polynomial of degree d, with
integer coefficients of bit size ≤ τ , using Sturm (-Habicht) sequences and
the Bernstein subdivision solver. In particular, we unify and simplify the
analysis of both methods and we give an asymptotic complexity bound of
eOB(d4τ2). This matches the best known bounds for binary subdivision
solvers. Moreover, we generalize this to cover the non square-free polyno-
mials and show that within the same complexity we can also compute the
multiplicities of the roots. We also consider algorithms for sign evalua-
tion, comparison of real algebraic numbers and simultaneous inequalities,
and we improve the known bounds at least by a factor of d.
Finally, we present our C++ implementation in synaps and some prelim-
inary experiments on various data sets.

1 Introduction

The representation and manipulation of shapes is important in many applica-
tions, e.g. CAGD, non linear computational geometry, robotics and molecular
biology. The usual underlying models for these shapes are parametrized patches
of rational surfaces, BSplines, natural quadrics and implicit algebraic curves or
surfaces. Geometric processing on these objects, e.g. computing boundary rep-
resentations [8], arrangements [18,38], Voronoi diagram of curved objects [21],
requires the intensive use of polynomial solvers and computations with algebraic
numbers. In such applications, a geometric model may involve several thousands
of algebraic primitives. Their manipulations involve the computation of intersec-
tion points, of predicates on these intersection points (such as the comparison of
coordinates), of the sign of polynomial expressions at these points (such as the
sign of a polynomial which defines the boundary of an object). The coordinates
of these intersection points, which are the solutions of polynomial equations, are
real algebraic numbers that we need to manipulate efficiently.

The objective of this paper is to give an overview of effective computations
with real algebraic numbers, which unify, simplify and improve previous ap-



proaches. We will tackle both complexity analysis and practical issues. We con-
sider two algorithms for real root isolation of univariate integer polynomials, one
based on Sturm sequences and one based on Descartes’ rule of sign and we will
put both under the general concept of a subdivision solver. We will also analyse
algorithms for sign evaluation, comparison of real algebraic numbers and the
problem of simultaneous inequalities.

Our aim is to provide better insights on these algorithms and better bounds
on their complexity. For the analysis we consider the bit complexity model which
is more realistic than the arithmetic one in the problems we are interested in.
Our algorithms are essentially output sensitive, since they depend not only on
the input bit size, but also on the actual separation bound, as we will see.

Notation. In what follows OB means bit complexity and the ÕB-notation
means that we are ignoring logarithmic factors. For a polynomial f ∈ Z[X],
deg (f) denotes its degree. By L (f) we denote an upper bound on the bit size
of the coefficients of f (including a bit for the sign). For a ∈ Q, L (a) is the max-
imum bit size of the numerator and the denominator. Let M (τ) denote the bit
complexity of multiplying two integers of bit size at most τ and M (d, τ) denote
the bit complexity of multiplying two univariate polynomials of degrees bounded
by d and coefficient bit size at most τ . Using FFT, M (τ) = OB(τ logc1τ) and
M (d, τ) = OB(dτ logc2(dτ)) for suitable constants c1, c2.

Prior works. Various algorithms exist for polynomial real root isolation, but
most of them focus on square-free polynomials. There is a huge bibliography on
the problem and the references cited in this paper are only the tip of the iceberg
of the existing bibliography.

Collins and Akritas [10] introduced a subdivision-based real root isolation
algorithm that relies on Descartes’ rule of sign (we call it Descartes solver from

now on) and derived a bound of ÕB(d6τ2). Johnson [27] improved the bound

to ÕB(d5τ2) without using fast Taylor shifts [48], whereas a gap in his proof
was corrected by Krandick [29]. The latter also presented a different way of
traversing the subdivision tree. Rouillier and Zimmermann (c.f. [43] and refer-
ences therein) presented a unified approach with optimal memory management
for various variants of the Descartes solver.

An algorithm (we call it Bernstein solver from now on) that is based on
a combination of Descartes’ rule and on the properties of the Bernstein basis
was first introduced by Lane and Riesenfeld [31] and a bound on its complexity
was first obtained by Mourrain et al [39]. The interested reader may also refer
to Mourrain et al [37] for a variant with optimal memory management and
the connection to Descartes solver. In the same context, Eigenwillig et al [15]
proposed a randomized algorithm for square-free polynomials with bit stream
coefficients. The complexity of all these algorithms was bounded by ÕB(d6τ2).
Recently, it was proven that the number of steps of both Descartes and Bernstein
solver is ÕB(dτ) [16,46], which is the crucial step for obtaining a ÕB(d4τ2) bound
for both solvers [16], provided the polynomials are square-free.
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Another algorithm, also based on Descartes’ rule of sign but which does not
rely on subdivision schemes, is the CF algorithm [1,47]. It exploits the continued
fraction expansion of the real roots of a polynomial in order to isolate them. The
expected bit complexity of this algorithm is ÕB(d4τ2) [47].

If we restrict ourselves to real root isolation using Sturm (or Sturm-Habicht)
sequences (we call it Sturm solver from now on) the first complete complexity
analysis is probably due to Heindel [26]; see also [11], who obtained a complexity

of ÕB(d7τ3). Du et al [14], giving an amortized-like argument for the number of

subdivisions, obtained a complexity of ÕB(d4τ2), for square-free polynomials.
Another family of solvers (that we call numerical), compute an approximation

of all the roots (real and complex) of a polynomial up to a desired accuracy (see
e.g. [45,40]). They are based on the construction of balanced splitting circles in

the complex plane and achieve the quasi-optimal complexity bound ÕB(d3τ), if
we want to isolate the roots. However, performance in practice does not always
agree with that predicted by asymptotic analysis. Let us also mention the Aberth
solver [5,6], which has unknown (bit) complexity, but is very efficient in practice.

For sign evaluation and comparison as well as computations with real alge-
braic numbers the reader may refer to [42]. In [19] for degree ≤ 4, it is proved

that these operations can be performed in O(1), or ÕB(τ). For the problem
of simultaneous inequalities (SI), we are interested in computing the (number
of) real roots of a polynomial f , such that n other polynomials achieve specific
sign conditions, where the degree of all the polynomials is bounded by d and
their bit size by τ . Ben-Or, Kozen and Reif [3] presented the BKR algorithm
for SI and Canny [7] improved it in the univariate case (by a factor) achieving
O(n(md log(m) log2(d)+m2.376)) arithmetic complexity, where m is the number
of real roots of f . Coste and Roy [12] introduced Thom’s encoding for the real
roots of a polynomial and SI in this encoding (see also [44]). Their approach is
purely symbolic and works over arbitrary real closed fields. They state a complex-
ity of ÕB(N8), using fast multiplication algorithms but not fast computations
and evaluation of polynomial sequences, where N ≥ n, d, τ . Basu, Pollack and
Roy [2] presented an algorithm for SI where the real algebraic numbers are in

isolating interval representation, with complexity ÕB(nd6τ2) or ÕB(N9), that
uses repeated refinements of the isolating intervals and does not assume fast
multiplication algorithms.

Results. For the problem of real root isolation of a univariate polynomial, we
consider the general concept of a subdivision solver, Fig. 1, that mimics the
binary search algorithm. The Sturm and Bernstein solvers count differently the
number of real roots of a polynomial in an interval; see Cor. 2.1 and Prop. 3.1,
respectively. Moreover, the Sturm solver counts exactly the number of real roots
while the Bernstein solver provides an overestimation. However, exploiting the
fact that Descartes’ rule of sign (Prop. 3.1) can not overestimate the number
of real roots by more than the degree of the polynomial, both solvers can be
put under the general concept of the subdivision solver of Fig. 1. With exactly
the same arguments we can prove that they perform the same number of steps.
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The analysis that we present, Prop. 5.2, unifies and simplifies significantly the
previous approaches and applies as is to the Descartes solver, as well.

For the Sturm solver we present an algorithm with complexity ÕB(d4τ2),
that improves the result of Du et al [14], see also [13], by extending it to non
square-free polynomials. We simplify significantly the proof (Th. 5.1) and unify
it with the Bernstein approach. We also show that computing the multiplicities
of the roots can be achieved within the same complexity bound.

For the Bernstein solver, we simplify the proof of Eigenwillig et al [16,46]
for the number of subdivisions by considering the subdivision tree at an earlier
level and by using Th. 4.1 exactly as stated in [27,30]. Thus, we arrive at the
same bound for the Bernstein subdivision method (Th. 5.1) as in [16], but for
polynomials which are not necessarily square-free.

Real root isolation is an important ingredient for the construction of al-
gebraic numbers represented in isolating interval representation, see Def. 6.1.
We analyze the complexity of comparison, sign evaluation and simultaneous in-
equalities (Sec. 6). Even though the algorithms for these operations are not new
[2,19,42,51], the results from real solving and optimal algorithms for polynomial
remainder sequences, allow us to improve the complexity of all the algorithms,
at least by a factor of d (Cor. 6.1, 6.2). For SI we prove a bound (Cor. 6.3) of

ÕB(d4τ max{n, τ}).
These algebraic operations ought to have efficient and generic implemen-

tations so that they can be used by other scientific communities. We present
a package of synaps [36] that provides these functionalities on real algebraic
numbers and exploits various algorithmic and implementation techniques. Ex-
perimental results (Sec. 7) illustrate the advantages of the software and our
implementation of various algorithms for real root isolation.

Our results extend directly to the bivariate case, i.e. real solving a polynomial
system, sign evaluation of a bivariate polynomial evaluated over two algebraic
numbers and SI in two variables. However, due to reasons of space, we cannot
present these results here. The reader may refer to [22,20].

Outline. In Sec. 2, we recall the main ingredients of the Sturm solver and anal-
yse them in detail. Sec. 3 presents the ingredients of the Bernstein solver and
their complexity. In Sec. 4, we present the general scheme for two subdivision
algorithms based on Sturm-Habicht sequences and on the Bernstein basis rep-
resentation, for real root isolation and computation of the multiplicities. The
following section is devoted to the complexity analysis of both methods. Sec. 6
is devoted to operations with real algebraic numbers, i.e. comparison, sign eval-
uation and SI. Sec. 7 illustrates our implementation in synaps and experiments
concerning real root isolation on various data sets. Finally, we sketch our current
and future work in Sec. 8.
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2 Preliminaries for Sturm–Habicht Sequences

We recall here the main ingredients related to Sturm(-Habicht) sequences com-
putations and their bit complexity.

Let f =
∑p

k=0 fkxk, g =
∑q

k=0 gkxk ∈ Z[x] where deg(f) = p ≥ q = deg(g)
and L (f) = L (g) = τ . We denote by rem (f, g) and quo (f, g) the remainder and
the quotient, respectively, of the Euclidean division of f by g, in Q[x].

Definition 2.1. [32] The signed polynomial remainder sequence of f and g,
denoted by SPRS (f, g), is the polynomial sequence

R0 = f,R1 = g,R2 = − rem (f, g) , . . . , Rk = − rem (Rk−2, Rk−1) ,

with k the minimum index such that rem (Rk−1, Rk) = 0. The quotient sequence
of f and g is the polynomial sequence {Qi}0≤i≤k−1, where Qi = quo (Ri, Ri+1)
and the quotient boot is (Q0, Q1, . . . , Qk−1, Rk).

There is a huge bibliography on signed polynomial remainder sequences
(c.f. [2,49,51] and references therein). Gathen and Lucking [50] presented a uni-
fied approach to subresultants, while El Kahoui [17] studied the subresultants
in arbitrary commutative rings. For the Sturm-Habicht (or Sylvester-Habicht)
sequences the reader may refer to González-Vega et al [24], see also [2,32,33].

In this paper we consider the Sturm-Habicht sequence of f and g, i.e. StHa(f, g),
which contains polynomials proportional to the polynomials in SPRS (f, g).
Sturm-Habicht sequences achieve better bounds on the bit size of the coeffi-
cients.

Let Mj be the matrix which has as rows the coefficient vectors of the poly-
nomials fxq−1−j , fxq−2−j , . . . , fx, f , g, gx, . . . , gxp−2−j , gxp−1−j with respect
to the monomial basis xp+q−1−j , xp+q−2−j , . . . , x, 1. The dimension of Mj is
(p+ q− 2j)× (p+ q− j). For l = 0, . . . , p+ q− 1− j let M l

j be the square matrix
of dimension (p+ q−2j)× (p+ q−2j) obtained by taking the first p+ q−1−2j
columns and the l + (p + q − 2j) column of Mj .

Definition 2.2. The Sturm-Habicht sequence of f and g, is the sequence

StHa(f, g) = (Hp = Hp(f, g), . . . ,H0 = H0(f, g)),

where Hp = f , Hp−1 = g, Hj = δj

∑j
l=0 det (M l

j)x
l and δj = (−1)(p+q−j)(p+q−j−1)/2.

The sequence of principal Sturm-Habicht coefficients (hp = hp(f, g), . . . , h0(f, g))
is defined as hp = 1 and hj is the coefficient of xj in the polynomial Hj, for
0 ≤ j ≤ p. When hj = 0 for some j then the sequence is called defective,
otherwise non-defective.

If StHa(f, g) is non-defective then it coincides up to sign with the classical
subresultant sequence introduced by Collins [9], see also [51]. However, in the
defective case, one can have better control on the bit size of the coefficients in
the sequence, see e.g. [32,33].
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Theorem 2.1. [2,41,33,49] There is an algorithm that computes StHa(f, g) in

OB(pq M (pτ)), or ÕB(p2qτ). Moreover, L (Hj(f, g)) = O(pτ).

Let the quotient boot that corresponds to StHa(f, g), be StHaQ(f, g) =
(Q0, Q1, . . . , Qk−1,Hk). The number of coefficients in StHaQ(f, g) is O(q) and
their bit size is O(pτ) [2,41].

Theorem 2.2. [2,32,41,49] The quotient boot, the resultant and the gcd of f

and g, can be computed in OB(q log(q)M (pτ)) or ÕB(p q τ).

Theorem 2.3. [32,41] There is an algorithm that computes the evaluation of
StHa(f, g) over a number a, where a ∈ Q ∪ {±∞} and L (a) = σ with com-
plexity OB(q log(q)M (max{pτ, qσ})) or OB(qM (max (pτ, qσ))) if StHaQ(f, g)

is already computed. In both cases the complexity is ÕB(q max{pτ, qσ}).
In many cases, e.g. real root isolation, sign evaluation, comparison of real

algebraic numbers, we need the evaluation of StHa(f, f
′

) over a rational number
of bit size O(pτ). If we perform the evaluation by Horner’s rule then for every
polynomial in sequence, we must perform Ω(p) multiplications between numbers
of bit size O(pτ) and O(p2τ), thus the overall complexity is OB(p3

M (pτ)).
However, when we compute the complete StHa(f, f

′

) in OB(p2
M (pτ)) (Th. 2.1),

the quotient boot is computed implicitly [41,2]. Thus, we can use the quotient
boot in order to perform the evaluation even if we have already computed all the
polynomials in the sequence. Notice also that the computation should be started
by the last element of the quotient boot so as to avoid the costly evaluation of
the first two polynomials in the sequence using Horner’s scheme.

Even though this approach is optimal, it involves big constants in its com-
plexity, thus it is not efficient in practice when the length of the sequence is not
sufficiently big or when the sequence is defective, see e.g. [13]. Moreover, special
techniques should be used for its implementation to avoid costly operations with
rational numbers. So, as it is always the case with optimal algebraic algorithms,
the implementation is far from a trivial task.

Theorem 2.4. [2] The square-free part of f , i.e. fred, can be computed from

StHa(f, f
′

), in OB(p log(p)M (pτ)) or ÕB(p2τ), and L (fred) = O(p + τ).

Let W(f,g)(a) denote the number of modified sign changes of the evaluation of
StHa(f, g) over a. Notice that W(f,g)(a) does not refer to the usual counting of
sign variations, since special care should be taken for the presence of consecutive
zeros [2,24,32].

Theorem 2.5. [2,51,42] Let f, g ∈ Z[x] be relatively prime polynomials, where
f is square-free and f

′

is the derivative of f and its leading coefficient fd > 0.
If a < b are both non-roots of f and γ ranges over the roots of f in (a, b), then
W(f,g)(a) − W(f,g)(b) =

∑
γ sign (f

′

(γ)g(γ)).

Corollary 2.1. If g = f
′

then StHa(f, f
′

) is a Sturm sequence and Th. 2.5
counts the number of distinct real roots of f in (a, b).

For the Sturm solver V (f, [a, b]) will denote V (f, [a, b]) = W(f,f ′)(a)−W(f,f ′)(b).

6



3 Preliminaries for the Bernstein Basis Representation

In this section we present the main ingredients needed for the representation of
polynomials in the Bernstein basis.

Let R[x]d be the set of real polynomials of degree d. For a < b ∈ R, we denote

by Bi
d(x; a, b) =

(
d
i

) (x−a)i(b−x)d−i

(b−a)d (i = 0, . . . , d) the Bernstein basis of R[x]d on

an interval [a, b].

For any polynomial f =
∑d

i=0 biB
i
d(x; a, b) ∈ R[x]d represented in the Bern-

stein basis, the coefficients b = (bi)i=0,...,d are called control coefficients of f .
We denote by V (f, [a, b]) ≡ V (b), the number of sign changes in this sequence
b (after removing zero coefficients).

The following theorem, which is a direct consequence of Descartes’ rule, al-
lows us to bound the number of real roots of f on the interval [a, b]

Proposition 3.1. [2] The number N of real roots of f on (a, b) is bounded by
V (f, [a, b]). Moreover N ≡ V (f, [a, b]) mod 2.

Given a polynomial f represented in the Bernstein basis on an interval [a, b],
de Casteljau’s algorithm (see e.g. [2,37]), allows us to compute its representation
in the Bernstein bases on the two sub-intervals, IL = [a, (1 − t)a + tb] and
IR = [(1 − t)a + tb, b], where 0 ≤ t ≤ 1. Namely, bL = (bi

0)i=0,...,d (resp.
bR = (bd−i

i )i=0,...,d) are the control coefficients of f on IL (resp. IR), where
b0
i = bi, i = 0, . . . , d, and

br
i = (1 − t) br−1

i + t br−1
i+1 (t), 0 ≤ i ≤ d − r, 0 ≤ r ≤ d. (1)

In order to analyse the complexity of the de Casteljau algorithm we recall
some polynomial transformations related to the Bernstein representation, see
[37] for more details. Let R[x, y][d] be the set of homogeneous polynomials of

degree d in (x, y). For any f ∈ R[x]d, we denote by f the homogenisation of f
in degree d. For λ 6= 0, µ ∈ R, consider the following maps, R2 → R2:

– ρ : (x, y) 7→ (y, x),
– Hλ : (x, y) 7→ (λx, y), H ′

λ : (x, y) 7→ (x, λy),
– Tµ : (x, y) 7→ (x − µy, y), T ′

µ : (x, y) 7→ (x, y − µx).

The composition of the previous maps with f induces invertible transforma-
tions on the set of polynomials of degree d. The corresponding maps for non-
homogeneous polynomials, which we denote using the same names, are: ∀f ∈
R[x]d, ρ(f) = xdf(1/x), Hλ(f) = f(λx), H ′

λ(f) = f(λ−1x), Tµ(f) = f(x − µ)
and T ′

µ(f) = (1 − µx)df( x
1−µ x ).

For any polynomial, f(x) =
∑d

i=0 biB
i
d(x; a, b), we have

ρ ◦ T1 ◦ ρ ◦ Hb−a ◦ T−a(f) =

d∑

i=0

(
d

i

)
bix

i.

Now consider another interval [c, e]. The representation of f in the Bernstein

basis on [c, e] is f(x) =
∑d

i=0 b′iB
i
d(x; c, e). The map which transforms f from
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its Bernstein representation on [a, b] to its Bernstein representation on [c, e], i.e.

from
∑d

i=0

(
d
i

)
bix

i to
∑d

i=0

(
d
i

)
b′ix

i is

ρ◦T1 ◦ρ◦He−c ◦T−c ◦Ta ◦H 1
b−a

◦ρ◦T−1 ◦ρ = T ′
1 ◦He−c ◦Ta−c ◦H 1

b−a

◦T ′
−1. (2)

If we consider [a, b] = [0, 1] and [c, e] = [0, 1
2 ] then map (2) becomes: ρ◦T−1 ◦

ρ ◦ H 1
2
◦ ρ ◦ T1 ◦ ρ. And after simplifications, we obtain

∆L : f 7→ f(x +
y

2
,
y

2
) = f ◦ T−1 ◦ H ′

1
2

. (3)

If we consider the symmetric case, i.e. [a, b] = [0, 1] and [c, e] = [12 , 1], then
map (2) becomes: ρ◦T−1 ◦ρ◦H 1

2
◦T− 1

2
◦ρ◦T1 ◦ρ. It corresponds to the following

map on the homogeneous polynomials:

∆R : f 7→ f(
x

2
,
x

2
+ y) = f ◦ T ′

−1 ◦ H 1
2
.

In both cases, multiplication by 2d yields the maps

∆R : f 7→ f(x, x + 2 y) and ∆L : f 7→ f(2x + y, y), (4)

that operate operate on polynomials with integer coefficients.

Proposition 3.2. Let (bi)i=0,...,d ∈ Zd+1 be the coefficients of a polynomial f
in the Bernstein basis on the interval [a, b], and let ν be a bound on the bit size
of coefficients. The complexity of computing the Bernstein coefficients of f on
the two sub-intervals [a, a+b

2 ] and [a+b
2 , b] is bounded by ÕB(d(d + ν)) and their

bit size is bounded by d + ν.

Proof. Using the de Casteljau scheme, Eq. (1) using t = 1
2 , we prove by induction

that the coefficients br
i =

(br−1

i
+br−1

i+1
)

2 are of the form
b

r

i

2i , where b
r

i ∈ Z is of bit
size ≤ ν+r. Reducing to the same denominator 2d, we obtain integer coefficients
of bit size ≤ ν + d.

We denote by ν′ the bit size of the coefficients (
(
d
i

)
bi)i=0,...,d where (bi)i=0,...,d

are the coefficients of f in the Bernstein basis (Bi
d(x; a, b))i=0,...,d. Notice that

ν′ ≤ ν + d.
In order to compute the coefficients of f on [a, a+b

2 ] and [a+b
2 , b], we apply

the same operations as when we compute the coefficients of a polynomial in the
Bernstein basis on [0, 1

2 ] and [12 , 1], given its coefficients in the Bernstein basis
on [0, 1].

According to (3), applying de Casteljau’s algorithm corresponds first to mul-
tiply by the binomial coefficients, then to shift, y 7→ x + y, then to scale one
variable of the homogeneous polynomial f by 1

2 , and finally to divide by the
binomial coefficients3.

3 There is no need for the division step if we have to apply repeatedly the shift oper-
ation.
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Since the bit size of the binomial coefficients is bounded by d (their sum is

2d), multiplying the bi by them costs at most ÕB(d(ν + d)). Shifting by 1 a

polynomial of degree d with coefficients of bit size ≤ ν + d requires ÕB(d(d +
ν)) bit operations [49,48] and the resulting polynomial has (coefficient) bit size
O(ν + d). Consequently, scaling the variable of the (resulting) polynomial by 1

2

and computing the quotient by the binomial coefficients costs ÕB(d(ν + d)).
Therefore, the complexity of computing the Bernstein coefficients of f on the

sub-interval [a, a+b
2 ] is bounded by ÕB(d(ν + d)). By symmetry, inverting the

order of the coefficients of f , we obtain the same bound for the coefficients of f
on [a+b

2 , b], which ends the proof. ⊓⊔

4 Subdivision Solver

Let f =
∑d

i=0 aix
i ∈ Z[x], such that deg(f) = d and L (f) = τ , and let fred

be its square-free part. We want to isolate the real roots of f , i.e. to compute
intervals with rational endpoints that contain one and only one root of f , as well
as the multiplicity of every real root.

In Fig. 1, we present the general scheme of the subdivision solver that we
consider, augmented appropriately so that it also outputs the multiplicities. It
uses an external function V (f, I), which bounds the number of roots of f in
the interval I. A real root isolation algorithm can be put under the subdivision
solver concept of Fig. 1 if it can provide the V (f, I) function. In the case of the
Sturm solver, V (f, I) returns the exact number (counted without multiplicities)
of the real roots of f in I (Cor. 2.1). In the case of Bernstein solver, V (f, I) is
equal to the number of real roots of f in I (counted with multiplicities) modulo
2 (Prop. 3.1).

Separation bounds. An important quantity for the analysis of the subdivi-
sion solvers is a bound on the minimal distance, sep(f), between the roots of
a univariate polynomial f (also called separation bound), or more generally on
the product of distances between roots. We recall here classical results, slightly
adapted to our context. For the separation bound it is known, e.g. [2,34,51], that

sep(f) ≥ d−
d+2

2 (d+1)
1−d

2 2τ(1−d), thus log(sep(f)) = O(dτ). The latter provides
a bound on the bit size of the endpoints of the isolating intervals.

Recall, that Mahler’s measure, see e.g. [34,51,2], of a polynomial f is M(f) =

|ad|
∏d

i=1 max{1, |γi|}, where ad is the leading coefficient and γi are all the roots
of f . We know that M(f) < 2τ

√
d + 1 [2,34]. Thus, the following inequality

[2,34] holds:
M(fred) ≤ M(f) < 2τ

√
d + 1. (5)

For the minimum distance between two consecutive real roots of a square-
free polynomial, Davenport-Mahler bound is known [13] (see also [27,30]). The
conditions for this bound to hold were generalized by Du et al [14]. A similar
bound, with less strict hypotheses, also appeared in [35]. Using (5) we can provide
a bound similar to [27] for non square-free polynomials.
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ALGORITHM: Real Root Isolation

Input: A polynomial f ∈ Z[x], such that deg(f) = d and
L (f) = τ .
Output: A list of intervals with rational endpoints, which
contain one and only one real root of f and the multiplicity
of every real root.

1. Compute the square-free part of f , i.e. fred

2. Compute an interval I0 = (−B, B) with rational endpoints
that contains all the real roots. Initialize a queue Q with I0.
3. While Q is not empty do

a) Pop an interval I from Q and compute v := V (f, I).
b) If v = 0, discard I.
c) If v = 1, output I.
d) If v ≥ 2, split I into IL and IR and push them to Q.

4. Determine the multiplicities of the real roots, using the
square-free factorization of f .

Fig. 1. Real root isolation subdivision algorithm

Theorem 4.1 (Davenport-Mahler bound revisited). Let A = {α1, . . . , αk}
and B = {β1, . . . , βk} be subsets of distinct (complex) roots of f (not necessarily
square-free) such that βi /∈ {α1, . . . , αi} and |βi| ≤ |αi|, for all i ∈ {1, . . . , k}.
Then

k∏

i=1

|αi − βi| ≥ M(f)−d+1d−
d

2 (

√
3

d
)k.

The bound also holds when α1 > β1 = α2 > β2 = . . . αk > βk := αk+1, are
distinct real roots of f .

Proof. Use [27] and (5). ⊓⊔

5 Complexity Analysis of Real Root Isolation

In this section, we bound the number of bit operations for isolating the real roots
of a polynomial using the Sturm and the Bernstein solver. In what follows we
present in detail the complexity of each step of the subdivision algorithm (see
Fig. 1).

We consider the tree associated with a run of the subdivision algorithm on a
polynomial f . Each node represents an interval. The root of the tree corresponds
to the initial interval I0 = [a, b]. The algorithm splits every interval which is
not a leaf of the tree to two equal sub-intervals. The depth of a node of the
tree (associated with an interval I) is log2(|I0|/|I|). This is also the number
of subdivisions performed to obtain the sub-interval I from I0. The number
of steps (subdivisions) that the algorithm performs equals the total number of
nodes of the subdivision tree, or in other words equals the number of intervals
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(sub-intervals of I0) that are tested. Notice that the arguments are independent
of the subdivision solver, Sturm or Bernstein in this paper, that we use.

5.1 Square-Free Factorisation [step 1]

The computation of fred can be done in ÕB(d2τ) (Th. 2.4). Notice that L (fred) =
O(d+τ). In order to simplify notation, we assume that d = O(τ), thus L (fred) =
O(τ). Notice also that after this computation, the Sturm-Habicht sequence
StHa(f) is available. We do not need the complete sequence but only the quo-

tient boot, thus this computation can be done in ÕB(d2τ) (Th. 2.2). However,
we may also assume that the complete sequence is computed, with complexity
ÕB(d3τ) (Th. 2.1), since this step is not the bottleneck of the algorithm.

5.2 Root Bounds and Initialization [step 2]

The Cauchy bound states that if α is a real root of f then |α| ≤ B = 1 +

max
(∣∣∣ad−1

ad

∣∣∣ , . . . ,
∣∣∣ a0

ad

∣∣∣
)
≤ 2τ . Various upper bounds are known for the absolute

value of the real roots [2,51,49]. However, asymptotically the bit size of all the
bounds is the same, i.e. B ≤ 2τ . Thus, we can take I0 = [a, b], with a ≤ −2τ

and b ≥ 2τ .
For the Sturm solver, before starting the main loop, we may have to compute

the Sturm-Habicht sequence of f , which costs ÕB(d3τ) (Th. 2.1).
For the Bernstein solver, we have to represent fred in the Bernstein basis

on [a, b]. This can be done in O(d2) arithmetic operations and it produces co-
efficients of size O(d(d + τ)). The cost of this transformation is bounded by

ÕB(d3(d + τ)).

In both methods, the initialization step can be done in ÕB(d3(d + τ)).

5.3 Computing V (f, I) and Splitting [steps 3.a-d]

Suppose that the algorithm is at depth h of the subdivision tree. The tested
interval, say I, has endpoints of bit size bounded by τ +h, since each subdivision
step increases the bit size by one.

Using the Sturm solver, we compute V (f, I), Cor. 2.1, by evaluating StHa(f)

over the endpoints of I. The cost of the evaluation is ÕB(d2(τ + h)) (Th. 2.3).
Then we split I, i.e. compute the middle point of it, in OB(τ + h).

Using the Bernstein solver, we compute V (f, I) by counting the number of
sign variations in the control coefficients of f in I. This can be done in O(d)
operations. We denote by τ0 = O(d(d + τ)) (Sec. 5.2) a bound on the bit size of
the coefficients of f in the Bernstein basis on the interval I0. By Prop. 3.2, since
we performed h subdivisions so far, starting from a polynomial with coefficients
of bit size τ0, the coefficients of f on I are of bit size τ0 + dh and the complexity
of the splitting operation is in ÕB(d(d + τ0 + d h)) = ÕB(d2(d + τ + h)) (Sec.
5.2).

Consequently, for both solvers, steps 3.a-d can be performed with complexity
ÕB(d2(d + τ + h)).

11



5.4 Subdivision Tree Analysis [step 3]

In this section, we analyse the total number of subdivisions.
A bound on the number of the subdivision steps was derived in [30, Th. 5.5,

5.6], where in Rem. 5.7 the authors state: “The theorem (5.6) implies the dom-
inance relations hk ¹ n log (nd) and h ¹ n log (nd) which can be used in an
asymptotic analysis of Algorithm 1 when the ring S of the coefficients is Z”,
where k is the number of internal nodes of depth h in the recursion tree of the
subdivision algorithm based on Descartes’ rule, n is the degree and d is the
Euclidean norm of the polynomial. In [46, Th. 5], a O(dτ + d logd) bound is
derived and, later on, [16] proved optimality under the mild assumption that
τ = Ω(logd).

Our arguments for bounding the number of the subdivision steps are a combi-
nation and/or simplification of the arguments in [30,14,46]. Our proof (prop. 5.2)
is simpler than the one in [16,46] since the handling of the subdivision tree stops
at an earlier level and we use Th. 4.1 (as stated in [27] and [30]) without any
modifications. We also simplify substantially the proof of [14], for Sturm solver.

We denote by I the set of intervals which are the parents of two leaves in the
subdivision tree in Sturm (resp. Bernstein) solver. By construction, for I ∈ I,
V (f, I) ≥ 2 but for the two sub-intervals IL, IR of I, V (f, IL) and V (f, IR) are
in {0, 1}, since these intervals are leaves of the subdivision tree. Moreover, for
the Sturm solver, it holds that V (f, I) = 2 and V (f, IL) = V (f, IR) = 1.

Notice that |I| is less than V (f, I0), since at each subdivision the sum of the
variations of f on all the intervals cannot increase, for both methods (see [39,37]
for the Bernstein solver). In particular, we have |I| ≤ d.

Let αI (or βI) be a, possibly complex, root of f whose real part is in I.

Proposition 5.1. If I ∈ I then there exist two distinct (complex) roots αI 6= βI

of f such that |αI − βI | < 2|I|.

Proof. Consider an interval I ∈ I which contains two leaves IL, IR of the subdi-
vision tree. We have the following possibilities for the sign variation of f on the
two sub-intervals IL, IR:

(1, 1) : for both solvers, there are two distinct real roots α ∈ IL, β ∈ IR in I and
|α − β| ≤ |I|. This is the only case, which can happen in Sturm’s solver.

(0, 0) : this may happen only in the Bernstein solver. Since the sign variations
are V (f, I) ≥ 2, the first circle theorem [37,2,30] implies that there exist two

complex conjugate roots β, β in the disc D(m(I), |I|
2 ). Therefore, |β−β| ≤ |I|.

(1, 0) or (0, 1) : this may also happen only in the Bernstein solver. There is
a real root α in I. Since V (f, I) ≥ 2, the second circle theorem [37,2,30]
implies that there exists two complex conjugate roots β, β in the union of
the discs D(m(I) ± 1

2
√

3
i|I|, 1√

3
|I|), which is contained in a disc of diameter

2 |I|. Therefore |β − α| < 2|I|.
Thus the proposition holds. ⊓⊔

In addition, we can prove the following result.
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I I ′1

αI

βI

αI′

βI′

Fig. 2. Two disjoint intervals I and I ′ and the accociated two circles to each of
them.

Lemma 5.1. Let {αI , βI} ∩ {αI′ , βI′} 6= ∅, then I ∩ I ′ 6= ∅.

Proof. For the Sturm solver, this property is clear since αI , βI ∈ I.

Let us consider the Bernstein subdivision method. We suppose that I∩I ′ = ∅.
Without loss of generality, we can assume in the proof that I 6= I ′, |I| ≥ |I ′|,
and that ∀x ∈ I,∀y ∈ I ′, x ≤ y.

Since the intervals are obtained by binary subdivision, we can assume that
the distance between I and I ′ is at least |I ′|. Using scaling and translation, we
can assume that the right endpoint of I is 0 and that I ′ = [1 + u, 2 + u] (u ≥ 0).
The tangents to the larger circles, containing I and the roots αI and βI at (0, 0),

are
√

3
2 x ± y

2 = 0 (see Fig. 2). We denote by RI the union of the corresponding
discs, so that αI , βI ∈ RI .

The center of the discs, whose union RI′ contains the roots αI′ and βI′ , are

( 3
2 + u,±

√
3

6 ) and their radius is
√

3
3 (see Fig. 2). A direct computation of the

distance between these centers and the two tangent lines shows that RI∩RI′ = ∅.
Consequently, if I ∩ I ′ = ∅, then we conclude that {αI , βI} ∩ {αI′ , βI′} = ∅. ⊓⊔

Let us number the intervals of I in increasing order and denote by I ′ the
subset with an even index and by I ′′ the subset with an odd index. By Lem. 5.1,
the pairs {αI , βI} for I ∈ I ′ (resp. I ′′) are disjoint. Thus, by Th. 4.1 (exchanging
the role of αI and βI if necessary), we have

∏

I∈J
|αI − βI | ≥ M(f)−d+1d−

d

2
−|J |√3

|J |
, (6)

for J = I ′ or J = I ′′. This is the key argument for the following result:

Proposition 5.2. The number of subdivisions in both methods is in O (dτ + d log(d)) .
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Proof. The number N of subdivisions equals the number of internal nodes in the
subdivision tree. It is less than the sum of the depth of I, for I ∈ I:

N ≤ ∑
I∈I log |b−a|

|I|
≤ |I| log|b − a| − ∑

I∈I log|I|
≤ |I| log|b − a| + |I| − ∑

I∈I log|αI − βI | (Prop. 5.1).

By (6), we have −∑
I∈I′ log|αI − βI | ≤ (d − 1)log(M(f)) + (d

2 + |I ′|)logd −
|I ′|log

√
3. A similar bound applies for I ′′.

As we can take a = −2τ , b = 2τ (by Cauchy bound), logM(f) ≤ τ +
1
2 log(d + 1) (Eq. 5) and |I ′| + |I ′′| = |I| ≤ d, the number of internal nodes,
N , in the subdivision tree is bounded by

N < |I| + |I|log|b − a| − ∑
I∈I log|αI − βI |

≤ d + d(τ + 1) + (d − 1)(2τ + log(d + 1)) + 2 d logd
= O (dτ + d logd) .

⊓⊔

Remark 5.1. The constant in this bound on the number of subdivisions can be
divided by 2, in Sturm method, by applying directly Th. 4.1 to αI , βI for I ∈ I.

5.5 Multiplicities [step 4]

In order to compute the multiplicities of the roots, we compute the square-free
factorization, i.e. a sequence of square-free coprime polynomials (g1, g2, . . . , gm)
with f = g1g

2
2 · · · gm

m and gm 6= 1. The algorithm of Yun [49] computes the

square-free factorization in ÕB(d2τ). To be more specific the cost is twice the
cost of the computation of StHa(f, f

′

) [23]. Moreover, deg(gi) = δi ≤ d and
L (gi) = O(dτ) by Mignotte’s bound [34], where 1 ≤ i ≤ m.

At every isolating interval, one and only one gi must have opposite signs at
its endpoints, since gi are square-free and pairwise coprime. If a gi changes sign
at an interval then the multiplicity of the real root that the interval contains is
i. Each gi can be evaluated over an isolating point in ÕB(δ2

i dτ), using Horner’s
rule. We can evaluate it over all the isolating points (there are at most d + 1),

in ÕB(δid
2τ) [49,51]. Since

∑m
i=1 δi ≤ d the overall cost is ÕB(d3τ).

5.6 Complexity of Real Root Isolation

In this section we prove that the bit complexity bound for the two subdivision
solvers is ÕB(d4τ2):

Theorem 5.1. Let f ∈ Z[x], with deg(f) = d and L (f) = τ , not necessarily
square-free. We can isolate the real roots of f and determine their multiplicities
using Sturm or Bernstein solver in ÕB(d4 τ2). Moreover, the endpoints of the
isolating intervals have bit size bounded by O(d τ).
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Proof. In order to isolate the real roots of f , we first compute its square-free
part (step 1). This can be done in ÕB(d2τ) arithmetic operations and yields
a polynomial fred, which coefficients are of bit size bounded by O(d + τ) (see
Sec. 5.1). This step is not necessary for the Sturm solver.

The initialisation step costs ÕB(d3(d + τ)) (Sec. 5.2).
Then we run the main loop of the subdivision algorithm. The cost of a sub-

division step at level h is ÕB(d2(d + τ + h)) (Sec. 5.3).
By Prop. 5.2, the number of subdivisions and the depth h of any node of the

subdivision tree is Õ(d τ). Therefore, the overall complexity of both subdivision

solvers is ÕB(d2(d + τ + d τ) d τ) = ÕB(d4τ2). ⊓⊔

Remark 5.2. In Sec. 5.1 we assumed that d = O(τ). If we drop this assump-

tion then the complexity of real root isolation is ÕB(d6 + d5τ + d4τ2). If N =

max{d, τ} then in both cases the complexity bound is ÕB(N6).

6 Real Algebraic Numbers

The real algebraic numbers, i.e. those real numbers that satisfy a polynomial
equation with integer coefficients, form a real closed field denoted by Ralg = Q.
From all integer polynomials that have an algebraic number α as root, the prim-
itive one (the gcd of the coefficients is 1) with the minimum degree is called
minimal. The minimal polynomial is unique (up to a sign), primitive and ir-
reducible [51]. Since we use Sturm-Habicht sequences, it suffices to deal with
algebraic numbers, as roots of any square-free polynomial and not as roots of
their minimal ones. In order to represent a real algebraic number we choose the
isolating interval representation.

Definition 6.1. The isolating-interval representation of real algebraic number
α ∈ Ralg is α ∼= (f(x), I), where f(x) ∈ Z[x] is square-free and f(α) = 0,
I = [a, b], a, b,∈ Q, α ∈ I and f has no other root in I.

Using the results of Sec. 2 and 3 we can compute the isolating interval repre-
sentation of all the real roots of a polynomial f , with deg(f) = d and L (f) = τ ,

in ÕB(d4τ2) and the endpoints of the isolating intervals have bit size O(dτ).

Comparison and sign evaluation. We can use Sturm-Habicht sequences in
order to find the sign of a univariate polynomial, evaluated over a real algebraic
number and to compare two algebraic numbers. We improve existing bounds by
one factor.

Corollary 6.1. Let g(x) ∈ Z[x], where deg(g) ≤ d and L (g) = τ , and a real

algebraic number α ∼= (f, [a, b]). We can compute sign(g(α)) in ÕB(d3τ).

Proof. By Th. 2.5

W(f,g)(a) − W(f,g)(b) = sign(g(α)) · sign(f
′

(α)),
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and thus
sign(g(α)) =

(
W(f,g)(a) − W(f,g)(b)

)
· sign(f

′

(α)).

Thus we need to perform two evaluations of StHa(f, g) over the endpoints of

the isolating interval of α. The complexity of each is ÕB(d3τ) (Th. 2.3). The
sign of f

′

(α) can be computed as

sign(f
′

(α)) = sign(f(b)) − sign(f(a)).

Notice that f(a)f(b) < 0, since γ is the unique real root of f in [a, b]. It reason-
able to assume that the signs of f over the endpoints of the isolating interval are
known. If this is not the case then we can evaluate f over them, using Horner’s
rule, with complexity ÕB(d3τ), since we need d multiplications of numbers of
bit size O(d2τ).

We conclude that the overall complexity of the operation is ÕB(d3τ). ⊓⊔

Corollary 6.2. We can compare two real algebraic numbers in isolating interval
representation in ÕB(d3τ).

Proof. Let two algebraic numbers γ1
∼= (f1(x), I1) and γ2

∼= (f2(x), I2) where
I1 = [a1, b1], I2 = [a2, b2]. Let J = I1 ∩ I2. When J = ∅, or only one of γ1 and
γ2 belong to J , we can easily order the 2 algebraic numbers. If γ1, γ2 ∈ J , then
γ1 ≥ γ2 ⇔ f2(γ1) · f

′

2(γ2) ≥ 0. We obtain the sign of f2(γ2), using Cor. 6.1, thus

the complexity of comparison is ÕB(d3τ). ⊓⊔

Simultaneous inequalities Let f , A1, . . . , An1
, B1, . . . , Bn2

, C1, . . . , Cn3
∈

Z[x], with degree bounded by d and coefficient bit size bounded by τ . We wish
to compute the number of and the real roots, γ, of f such that Ai(γ) > 0,
Bj(γ) < 0 and Ck(γ) = 0 and 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n3. Let
n = n1 + n2 + n3.

Corollary 6.3. There is an algorithm that solves the problem of simultaneous
inequalities (SI) in ÕB(d4τ max{n, τ}).

Proof. First we compute the isolating interval representation of all the real
roots of f in ÕB(d4τ2) (Th. 5.1). There are at most d. For every real root γ
of f , for every polynomial Ai, Bj , Ck we compute sign (Ai(γ)), sign (Bj(γ)) and

sign (Ck(γ)). Sign determination costs ÕB(d3τ) (Cor. 6.1) and in the worst case

we must compute n of them. Thus the overall cost is ÕB(max{nd4τ, d4τ2}).

This improves the known bounds by one or two factors in the bit complexity
model.

7 Implementation and Experiments

In this section, we describe the package for algebraic numbers available in the
library synaps [36]. The purpose of this package is to provide a set of tools, for
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the manipulation of algebraic numbers, needed in applications such as Geometric
modeling, and non linear computational geometry. In the problems encountered
in these domains, the degree of the involved polynomials is not necessarily very
high (≤ 100), but geometric operations require an intensive use of algebraic
solvers.

For this reason, in this section we focus on univariate equations of small de-
gree in opposition with the first sections, but the input bit size may be beyond
machine precision. We analyse the behavior of our solvers, in this range of prob-
lems which appear in our geometric applications and for which the asymptotic
bounds may not be pertinent indicators. We do not consider large degree prob-
lems, where memory management issues might influence the solving strategy.

In synaps, there are several solver classes; their interface is as follows:

template < class T > struct SOLVER {

typedef NumberTraits<T>::RT RT;

typedef NumberTraits<T>::FT FT;

typedef NumberTraits<T>::FIT FIT;

typedef UPolDse<T> Poly;

typedef root_of<T, Poly> RO_t;

... };

where RT is the ring number type (typically Z), FT is the field number type
(typically Q), FIT is the interval type, Poly is the univariate polynomial, RO t

is the type for real algebraic numbers, etc.
Algebraic numbers are of the form:

template <class T, class UPOL=UPolDse<T> >

struct root_of {

NumberTraits<T>::Interval_t interval_;

UPOL polynomial_;

... };

parametrized by the type of coefficients and univariate polynomials. This allows
flexibility and an easy parametrisation of the code.

In order to construct a real algebraic number the user may select from several
different univariate solvers, that we are going to describe hereafter. The other
functionalities that we provide are the comparison, bool compare(const RO t&

a, const RO t& b) and the evaluation of signs int sign at(const Poly& P,

const RO t& a), based on interval evaluation and if necessary on the computa-
tion of Sturm-Habicht sequences. This involves several additional functions for
computing subresultant sequences with various methods (Euclidean, Subresul-
tants, Sturm-Habicht, etc), for computing the GCD, the square-free part, etc.
We also provide the four operations, i.e. {+,−, ∗, /}, of RO t with RT’s (integer
type) and FT’s (rational type).

Perhaps the most important operation is the construction of real algebraic
numbers, i.e. real root isolation of univariate polynomials. Several subdivision
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Fig. 3. Random polynomials of bit size 30 (top) and 50 (bottom) bits.

solvers have been tested for the construction of these algebraic numbers. We
report here on the following solvers:

(S1) solve( f,IslSturm<ZZ>());

(S2) solve( f,IslBzInteger<QQ>());

(S3) solve( f,IslBzBdgSturm<QQ>());

These solvers take as input, polynomials with integer or rational coefficients
and output intervals with rational endpoints. All use the same initial interval.

S1 (IslSturmQQ in the plots) is based on the construction of the Sturm-
Habicht sequence and subdivisions, using rational numbers or large integers
provided by the library gmp.

S2 (IslBzIntegerZZ in the plots) is an implementation of the Bernstein
subdivision solver, using integer coefficients. The polynomial is converted to the
Bernstein representation on the initial interval, using rational arithmetic. Then,
the coefficients are reduced to the same denominator, and the numerators are
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Fig. 4. Random polynomials with multiple roots of bit size 30 (top) and 50
(bottom) bits.

taken. Finally, the integer version of de Casteljau’s algorithm, see Eq. (4), is
applied at each subdivision step.

S3 (IslBzBdgSturmQQ in the plots) is a combination of two solvers. In a first
part, the polynomial is converted to the Bernstein representation on the initial
interval, using rational arithmetic and its coefficients are rounded to double

intervals. The Bernstein subdivision solver is applied on this interval representa-
tion and stops when it certifies the isolation of a root or when it is not possible
to decide the existence and uniqueness of a root from the “sign” (−,+, ?) of the
interval coefficients. In this case, in order to complete the isolation process, the
solver S2 is used on the intervals which are suspect.

We also compare with the time needed for computing the square-free factor-
ization of the tested polynomial (SturmSeq in the plots). Our implementation is
based on Yun’s algorithm and Sturm-Habicht sequences.
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Fig. 5. Mignotte polynomials of bit size 30 (top) and 50 (bottom) bits.

We test against core [28] (CORE in the plots), and mpsolve, a numerical
solver based on Aberth’s method [5] and implemented by G. Fiorentino and D.
Bini [6] (SlvAberthQQ in the plots), that are open source tools with real solving
capabilities. core implements the Sturm solver. In order to isolate the real
roots of a polynomial first it computes its square-free part and then performs
isolation. mpsolve implements an iterative method for approximating the roots
of a polynomial and the implementation is based on multiprecision floats. We
set the output precision of the algorithm to 30 digits. The code of mpsolve is
integrated in synaps and called similarly to the other solver (S1, S2 and S3), i.e
solve( f, Aberth<RR>()).

Other libraries such as [25], or Exacus with Leda [4], or RS [43], have not
been tested, due to accessibility obstacles. Namely Leda is a commercial software
and RS, neither open source, is accessible as a binary code through its maple

(v. 9.5) interface, which we did not have at the time of the experiments. For
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experiments against these libraries and the package of Rioboo [42] in Axiom,
for degree ≤ 4, the reader may refer to [19].

Our data are polynomials of degree d ∈ {5, . . . , 100} and coefficient bit size
τ ∈ {10, 20, 30, 40, 50} with various attributes. Namely Dτ

1 denotes random poly-
nomials with few real roots and Dτ

2 random polynomials with multiple real roots.
Dτ

3 denotes polynomials with d (multiple) integer real roots and Dτ
4 polynomi-

als with d (multiple) rational real roots. Dτ
5 denotes Mignotte polynomials, i.e.

a
(
xd − 2(Kx − 1)2

)
, where K ∈ [5..30], Dτ

6 polynomials that are the product of
two Mignotte polynomials and Dτ

7 Mignotte polynomials with multiple roots.

For reasons of space, we present timings, which are the average of 100 runs,
only for D30

1 , D50
1 , D30

2 , D50
2 , D30

5 , D50
5 , D30

7 and D50
7 . The experiments were

performed on an Pentium (2.6 GHz), using g++ 3.4.4 (Suse 10). We have to
emphasize that we do not consider experimentation as a competition, but rather
as a starting point for improving existing implementations.

For polynomials with few, distinct and well separated real roots, this is the
case for D1 and D2 (see Fig. 3 and 4), S1 is clearly the worst choice, since the
huge time for the computation of the Sturm sequence dominates the time for its
evaluation. In such data sets, S2 or even approximate solvers are the solvers of
choice, since not much output precision is needed in order to isolate the roots.

When there are roots that are very close and/or there are multiple roots, this
is the case for D5 and D7 (see Fig. 5 and 6), then the computation time of the
Sturm-Habicht sequence is negligible (for the experiments that we performed).
In such cases a combined solver is the solver of choice, since it isolates the well
separated roots and also provides good initial intervals for S2, if needed. Special
notice should be given to the bad behavior of the Bernstein solver (S2) in the
presence of multiple roots. The expected similar asymptotic behavior of Sturm
and Bernstein subdivision solvers can be guessed on these experimentations,
though the degree is not very high (≤ 100). This applies in the worst case
(Mignotte-like polynomials), whereas for random polynomials, the asymptotics
of the two solvers seem to be different.

We have to mention that CORE does not compute the multiplicities of the
real roots. In addition, for the Aberth solver (SlvAberthQQ in the plots), even
though we specified its parameters in order to search for real roots only and
detect multiplicities, since it is a numerical solver it must be given an output
precision. In order to be sure in advance that we isolate all real roots, the output
precision should be equal to the (theoretical) separation bound. In almost all
cases, mpsolve is the fastest implementation.

For the exact solvers, we consider solver S3, which is a combination of solvers,
as the most promising option. It is the fastest on random instances and com-
parable to S2 on all other instances. However, more theoretical work is needed
so that we can provide some guarantee for the approximations. Another impor-
tant issue is the implementation of the square-free factorization, which seems
to be the bottleneck for all the exact algorithms. As we mentioned before, our
implementation depends on the arithmetic with integers of arbitrary precision,
provided by gmp. This implementation approach does not seem the right choice
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Fig. 6. Mignotte-like polynomials with multiple roots of bit size 30 (top) and 50
(bottom) bits.

for the square-free factorization algorithms. We believe that an implementation
based on machine arithmetic combined with modular techniques will give much
better results.

In some geometric problems, it is more important to have controlled approx-
imation of the roots than to isolated them. This is the case in the following
example where we want to draw a curve defined by an implicit equation. In this
specific problem, the polynomial f(x, y) is of degree 43 in each variable with co-
efficients of bit size 50 [8]. In order to get a picture of the implicit curve in the

box [a, b]× [c, d], we solve the univariate polynomials f(a + k (b−a)
N , y)k=0,...,N−1

(N = 200) and then exchange the role of x and y. The subdivision is stopped,
when the precision of 10−4 is reached, without checking the existence and unique-
ness of the roots in the computed intervals.

Two types of solvers have been tested:
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– The first one (SlvBzStd<double>) is a direct implementation of the Bern-
stein solver with double arithmetic. It produces the left part of Fig. 7. We
see that in some regions, the solver is more sensible to numerical errors, and
behaves almost “like a random generator of points”.

– The second solver (SlvBzBdg<QQ>), similar to S3, uses exact (rational) arith-
metic to convert the input polynomial to its Bernstein representation. Then
it normalises the coefficients and rounds up and down the rational numbers
to the closest double numbers4. Then the main subdivision loop is performed
on double interval arithmetic, extending the sign count to this context. If all
the interval coefficients contain 0, we recompute the representation of the
initial polynomial (using exact rational arithmetic) and run again the round-
ing and subdivision steps with double arithmetic, until we get the required
precision. This produces the right part of Fig. 7.

Fig. 7. Left: Approximation using doubles. Right: Approximation using Bernstein solver and in-

terval arithmetic.

The Bernstein solver based on interval arithmetic and using this symbolic-
numeric strategy can be applied efficiently (even for input polynomials with large
coefficient size) to geometric problems, where (controlled) approximate results
are sufficient. Its main advantage is that it exploits the performance of machine
precision arithmetic for the main loop of the algorithm and the approximation
properties of the Bernstein representation. Notice that the size of the problem
is prohibitive for exact subdivision based solvers.

8 Current and Future Work

Our experiments imply that the combination of symbolic and numeric tech-
niques leads to very promising implementations. Along these lines, we plan to

4 For that purpose, one can use for instance the function get double of mpfr

(http://www.mpfr.org/) with correct rounding mode.
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improve the existing implementation of solvers, so that we can approximate with
guarantees the roots of a polynomial with exact coefficients. The applications
of Bernstein methods to polynomials with approximate coefficients is also under
investigation. We are also extending our package in synaps so that it can handle
computations in an extension field.

There are a lot of open questions concerning exact algorithms for real root
isolation. Just to mention few of them: Is there any class of polynomials, with
few real roots, such that the Bernstein solver performs O(dτ) subdivision steps

but the Sturm solver performs only a constant number? Does the ÕB(d4τ2)
holds for complex root isolation? What is the expected complexity of the exact
subdivision solvers?

The most important open problem for a theoretical and hopefully practical
point of view is the following: Is there any exact (subdivision based) solver with

complexity ÕB(d3τ), similar to the numerical solvers?
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36. B. Mourrain, J. P. Pavone, P. Trébuchet, and E. Tsigaridas. SYNAPS, a library

for symbolic-numeric computation. In 8th Int. Symposium on Effective Methods in
Algebraic Geometry, MEGA, Sardinia, Italy, May 2005. Software presentation.

37. B. Mourrain, F. Rouillier, and M.-F. Roy. Bernstein’s basis and real root isolation,
pages 459–478. Mathematical Sciences Research Institute Publications. Cambridge
University Press, 2005.

38. B. Mourrain, J. Técourt, and M. Teillaud. On the computation of an arrangement
of quadrics in 3d. Comput. Geom., 30(2):145–164, 2005.

39. B. Mourrain, M. Vrahatis, and J. Yakoubsohn. On the complexity of isolating real
roots and computing with certainty the topological degree. J. Complexity, 18(2),
2002.

40. V. Pan. Univariate polynomials: Nearly optimal algorithms for numerical factor-
ization and rootfinding. J. Symbolic Computation, 33(5):701–733, 2002.

41. D. Reischert. Asymptotically fast computation of subresultants. In ISSAC, pages
233–240, 1997.

42. R. Rioboo. Towards faster real algebraic numbers. In Proc. ACM Intern. Symp.
on Symbolic & Algebraic Comput., pages 221–228, Lille, France, 2002.

43. F. Rouillier and Z. Zimmermann. Efficient isolation of polynomial’s real roots. J.
of Computational and Applied Mathematics, 162(1):33–50, 2004.

44. M.-F. Roy and A. Szpirglas. Complexity of the Computation on Real Algebraic
Numbers. J. Symb. Comput., 10(1):39–52, 1990.

45. A. Schönhage. The fundamental theorem of algebra in terms of computational
complexity. Manuscript. Univ. of Tübingen, Germany, 1982.
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