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Integrability of linear non autonomous hamiltonians through differential Galois theory

David Blazquez-Sanz

U. Sergio Arboleda

In this talk we introduce a notion of integrability for Hamiltonian systems in the non au-
tonomous sense. For the cases of 1+1/2 degrees of freedom and quadratic homogeneous Hamilto-
nians of 2+1/2 degrees of freedom we prove that this notion is equivalent to the classical complete
integrability of the system in the extended phase space. For the case of quadratic homogeneous
Hamiltonians of 2+1/2 degrees of freedom we also give a reciprocal of the Morales-Ramis result.
We classify those systems by terms of symplectic change of frames involving algebraic functions of
time, and give their canonical forms.

(Joint work with S. Carrilo, U. Nacional de Colombia)
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Symbolic Analysis for Lattice Path Combinatorics

Alin Bostan

INRIA Paris-Rocquencourt, ALGORITHMS Project, Domaine de Voluceau, 78153 Le Chesnay, France

Alin.Bostan@inria.fr

We give an overview of a recent line of research showing how several problems of enumerative
combinatorics can be systematically solved using an experimental-mathematics approach combined
with modern computer algebra algorithms. We describe the computer-driven discovery and proof
of structural properties and closed forms for generating functions coming from enumeration of
lattice walks with small steps in the quarter plane. The results are taken from several joint works
with Frédéric Chyzak, Philippe Flajolet, Mark van Hoeij, Manuel Kauers, Lucien Pech and Karol
Penson.
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Challenges and pitfalls of automatic learning in the Big Data Age

Mireille Boutin

School of Electrical and Computer Engineering, Purdue University, USA

Being able to automatically learn from large data sets is viewed by many as a key to solving an
ever increasing number of unsolved engineering problems such as automatic Improvised Explosive
Device (IED) detection, and baggage screening. The widespread availability of different sensing
modalities, which allows us to obtain a large amount of redundant data, combined with the com-
putational power of today’s computers, offers the promise of near perfect accuracy at real-time
speeds. In this talk, I will summarize some of the computational and conceptual challenges that
must be surmounted before this promise can be fulfilled.
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DDMF: A Generated, Online Dictionary of Special Functions

Frédéric Chyzaka

aINRIA (France)

Special functions are used in many areas of applied mathematics and the continuous need of
scientists for lists of their mathematical properties has led to a great deal of reference books on
special functions. Formulas in such books are typically collected from the litterature by mathe-
matical experts. Furthermore, more and more powerful algorithms have been developed over the
last decades by the computer-algebra community to compute properties of special functions.

Thus, it has become just natural to automate the writing of a mathematical handbook on
special functions, insofar as a sufficiently large and well identified class of functions share common
algorithmic properties. Our encyclopedia DDMF (for “Dynamic Dictionary of Mathematical Func-
tions”) focuses on so-called “differentiably finite functions,” that is, functions that are described
as solutions of a linear different equation with polynomial coefficients and finitely many initial
conditions. These functions enjoy a great deal of common algorithmic properties that have been
studied intensively.

For each mathematical function, the current version (v1.6) algorithmically computes, then dis-
plays: its potential symmetries; Taylor and Chebyshev series expansions; more generally, asymp-
totic expansions given in closed form or through definitions by recurrence; calculations of guaran-
teed, arbitrary-precision numerical approximations; real plots; its Laplace transform; expressions
in terms of hypergeometric functions. Upon request by the user, more terms in series expansions
or more digits in numerical approximations can be computed incrementally. For some of the prop-
erties, human-readable proofs are also automatically generated and displayed. In addition, our
encyclopedia can in principle be augmented with any new function of the class.

In this talk, I will demonstrate the mathematical web site (http://ddmf.msr-inria.inria.
fr/), present the algorithms used, and briefly touch on the underlying system that generates the
web site.

(Joint work in continuous progress with Alexandre Benoit, Alexis Darrasse, Stefan Gerhold,
Marc Mezzarobba, and Bruno Salvy.)
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A constructive version of Fitting’s theorem on isomorphisms and equivalences of linear systems

Thomas Cluzeaua, Alban Quadratb

aUniversité de Limoges ; CNRS ; XLIM UMR 6172, DMI, 123 avenue Albert Thomas, 87060 Limoges cedex,
France. cluzeau@ensil.unilim.fr

bINRIA Saclay-̂Ile-de-France, DISCO Project, Supelec, L2S, 3 rue Joliot Curie, 91192 Gif-sur-Yvette cedex,
France. Alban.Quadrat@inria.fr

Within the algebraic analysis approach to linear systems theory, a linear functional system
can be studied by means of its associated finitely presented left module. Testing whether two
linear systems/modules are isomorphic (the so-called equivalence problem) is an important issue in
systems/module theory. In this talk, we explicitly characterize the conditions for a homomorphism
between two finitely presented left modules to define an isomorphism, and we give an explicit
formula for the inverse of an isomorphism. Then, we constructively study Fitting’s major theorem,
which shows how to enlarge matrices presenting isomorphic modules by blocks of 0 and I to get
equivalent matrices. The consequences of this result on the Auslander transposes and adjoints
of the finitely presented left modules are given. Finally, we show how to deduce simple proofs of
Schanuel’s lemma for finitely presented modules and of the fact that Fitting ideals associated with a
finitely presented D-module M do not depend on any presentation of M , when D is a commutative
ring. The different results developed are implemented in the OreMorphisms package.
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Symbolic methods for symmetric variational problems: the SE(3) case

Tânia M. N. Goncalves and Elizabeth L. Mansfield

School of Mathematics, Statistics and Actuarial Science
University of Kent

Canterbury, CT2 7NF, UK

In the seminal paper “Invariante Variationsprobleme” by Emmy Noether, she showed that for
systems derived from a variational principle, the associated conservation laws could be obtained
from Lie group actions that left the variational problem unchanged. Recently, we proved that these
conservation laws could be rewritten as the divergence of the product of a moving frame and a
vector of invariants. The aim of this talk is to illustrate how the knowledge of the conservation
laws structure helps reduce the extremising problem, in particular for variational problems that
are invariant under the special Euclidean group SE(3).
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Symbolic Computation of Lax Pairs of Integrable Nonlinear Partial Difference Equations
on Quad-Graphs

Willy Hereman and Terry Bridgman

Department of Mathematical and Computer Sciences
Colorado School of Mines

Golden, CO 80401-1887, U.S.A.

The presentation deals with two-dimensional nonlinear partial difference equations (P∆Es)
which are completely integrable, i.e., they admit a Lax representation.

Based on work by Nijhoff, Bobenko and Suris, a method to compute Lax pairs will be presented.
The method is algorithmic and can be implemented in the syntax of computer algebra systems,
such as Mathematica and Maple.

A Mathematica program will be demonstrated that automatically computes Lax pairs for
scalar P∆Es on quad-graphs, including lattice versions of the potential Korteweg-de Vries (KdV)
equations, the modified KdV and sine-Gordon equations, as well as lattices derived by Adler,
Bobenko, and Suris.

The generalization of the symbolic code to nonlinear systems of integrable P∆Es on quad-
graphs is work in progress. Examples of Lax pairs of systems of P∆Es will be shown, including
the potential KdV and nonlinear Schrödinger lattices, and various Boussinesq-type lattices.
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Complete Integrability of Reductions of Lattice Equations

Peter H van der Kamp, Dinh Tran, Reinout Quispel

La Trobe University, Melbourne

For the complete integrability (in the sense of Arnold-Liouville) of a mapping one needs:

? the map to be symplectic,

? sufficiently many integrals (half its dimension),

? their involutivity,

? and their functional independence.

An overview will be given of recent results on the complete integrability of reductions of various
integrable lattice equations.
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How a Hard Conjecture in Number Theory was Knocked out with Symbolic Analysis

Manuel Kauersa

aResearch Institute for Symbolic Computation
Johannes Kepler University

A4040 Linz, Austria

We report on a proof of the famous qTSPP conjecture in partition theory, recently obtained in
a collaboration with Christoph Koutschan (RISC) and Doron Zeilberger (Rutgers).

The qTSPP conjecture, posed by Andrews and Robbins around 1982, is a formula for counting
certain integer partitions. It became famous as the last unsolved problem on Stanley’s list of
conjectures on plane partitions.

Okada had pointed out that in order to prove the qTSPP conjecture, it suffices to prove a
certain determinant identity. Using computer algebra, this determinant identity in turn can be
reduced to a horrendous summation identity (300Mb in size), and, again making extensive use of
computer algebra, an even more horrendous summation certificate (7Gb in size) could finally be
constructed for this identity.

Our proof appeared a few months ago in the Proceedings of the National Academy of Science
and also attracted the attention of several German-speaking public media.
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Symbolic Computation of Convolution Integrals of Holonomic Functions

George Labahn

Symbolic Computation Group,
Cheriton School of Computer Science,

University of Waterloo, Waterloo, Ontario, Canada,
email : glabahn@cs.uwaterloo.ca

We describe an algorithm for the symbolic computation of convolution integrals of the form∫ ∞
0

g(t)f(xt)dt

for holonomic functions g and h. Such integrals include such well known integral transforms such as
Laplace, Fourier and Hankel transforms. The input holonomic functions are represented in terms
of the linear differential equations that they solve along with information about their behaviour
at 0 and ∞. The algorithm produces the linear differential equation solved by the convolution
integral along with regions where the solution is valid. Thentechniques make use of both algebra
and analysis. The algebraic form makes use of Mellin and inverse Mellin transforms while the
analysis determines when the algebra is actually valid. The resulting algorithm generalizes the
MeijerG method that is the current standard found in such computer algebra systems such as
Maple and Mathematica.

This is joint work with Jason Peasgood (Waterloo, Canada) and Bruno Salvy (INRIA, France).
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Termination Criteria for Zeilberger’s Algorithm in Mixed Cases

Ziming Li

Key Lab of Mathematics Mechanization, AMSS
Chinese Academy of Sciences, Beijing 100190

Email: zmli@mmrc.iss.ac.cn

We present three criteria on the termination of Zeilberger’s algorithm in mixed cases. The first is
for the differential and shift case; the second for the differential and q-shift case; and the last for
shift and q-shift case. The criteria describe necessary and sufficient conditions on the existence of
telescopers for hyperexponential-hypergeometric solutions in the above mixed case.

We will also review some results on which the criteria are based, including: a structure theorem
on compatible rational functions, and various generalizations of Hermite reduction in the mixed
cases.

This talk reports joint work with S. Chen, F. Chyzak, R. Feng and G. Fu.
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Noether’s Two Theorems, Moving frames and Symbolic Computation

Elizabeth Mansfield

SMSAS, University of Kent, Canterbury, CT2 7NF, UK.

Noether’s seminal paper in 1918 has an enduring appeal: variational problems and their con-
servation laws continue to be central in physical applications. Their Lie symmetries arise naturally
from the physics, and it appears her theorems are valid far more broadly, but just as powerfully,
in all the new kinds of variational problems that are arising.

Noether’s First Theorem guarantees conservation laws for smooth variational problems which
are invariant under a Lie group action, and typically these laws are of serious physical interest in
applications, for example, conservation of linear momentum, angular momentum, energy, potential
voticity and so on. The conservation laws are written as divergence expressions which are zero
on solutions of the system. Since the formulae for the laws are eye-glazingly recursive and com-
plicated (see Olver [1] for the formulae and historical notes), Noether’s laws are eminently suited
to implementation in the symbolic computation domain. However, the formulae on their own are
opaque in the sense that the resulting expressions can be lengthy and unstructured.

Since the variational principle is invariant under a Lie group, one can use a moving frame á
la Fels and Olver to structure the expressions for the laws. This yields the laws as a product of
the moving frame, in the adjoint representation of the group on its Lie algebra, and a vector of
invariants [2]. Using this structure, a great deal more information about the solution set can be
gleaned; in joint work with Tania Gonçalves, problems invariant under SL(2) and SE(3) actions
have been successfully studied [3,4].

Noether’s Second Theorem guarantees syzygies between the Euler-Lagrange equations for a
variational problem invariant under a Lie pseudogroup depending on a single free function. The
prototypical examples are gauge-invariant Lagrangians for which one of the Euler-Lagrange equa-
tions is a differential consequence of the others.

This Theorem has been considerably extended in joint work with Peter Hydon [5]. The ex-
tensions raise some potentially interesting questions in differential algebra, concerning the syzygy
modules of differential ideals.

Both of Noether’s theorems have been extended to finite difference variational problems, the
first by several authors (the most general statement and perhaps the clearest exposition is by
Hickman and Hereman [6]), and the second Theorem in [5].

The most interesting extensions at the moment are to finite element variational problems on
simplicial domains, and to problems defined on topologically nontrivial domains, such as networks
and graphs in the one-dimensional case, to spheres in the two-dimensional case, and to domains
with holes in the three-dimensional case. In these latter cases, Noether’s conservation laws, which
are local laws only, need to be extended. The algebraic construction similar to that of the Čech-de
Rham double complex (see [7]) allows this extension to be made. For difference systems defined
on topologially non-trivial lattice-like “manifolds”, it is conjectured that solutions can be counted
in terms of the analogues of Betti numbers [8], but nothing appears to be known about global
conservation laws.

In this talk, I will discuss a range of issues in symbolic computation that arise in the above
circle of ideas.

[1] Olver P.J., Applications of Lie groups to differential equations, Springer Verlag, Second
edition, 1993.

[2] Mansfield E.L., A practical guide to the invariant calculus, Cambridge University Press, 2010.

[3] Gonçalves T.M.N. and Mansfield E.L., On Moving Frames and Noether’s Conservation Laws.
Studies in Applied Mathematics, to appear.

[4] Gonçalves T.M.N. and Mansfield E.L., Moving Frames and Conservation Laws for Euclidean
invariant Lagrangians, submitted.
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[5] Hydon P.E. and Mansfield E.L., Extensions of Noether’s Second Theorem: from continuous
to discrete systems, Proc. Roy. Soc. London A, to appear.

[6] Hickman M. and Hereman W., 2003, Computation of densities and fluxes of nonlinear
differential-difference equations. Proc. Roy. Soc. London A 459 : 27052729.

[7] Bott R. and Tu L., Differential forms in algebraic topology. Graduate Texts in Mathematics,
82, Springer Verlag, 1982.

[8] Mansfield E.L. and Hydon P.E., 2008, Difference forms, Found. Comp. Math. 8: 427-467
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The Pentagram map and generalizations: discretizations of AGD flows

Gloria Maŕı Beffaa

aUniversity of Wisconsin-Madison

In this talk I will discuss very recent work on generalizations of the pentagram map, a map
defined on the space of convex polygons in the projective plane. The pentagram map has been
recently studied by R. Schwartz, S Tabachnikov and V. Ovsienko who proved that, when defined
on twisted polygons, this discrete map is an integrable system. Furthermore, they proved that the
pentagram map is a discretization of the Boussinesq equation, a well-known integrable PDE. In
this talk we will give a short overview of their results and will discuss possible generalizations to
maps defined on twisted k-gons in RPn, in particular n = 3, 4. We will describe conditions that
will ensure that the generalizing map is a discretization of higher order AGD flows, and discuss
on-going work to establish their integrability.
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Motions of curves in projective plane inducing the Kaup-Kupershmidt hierarchy

Emilio Musso

Department of Mathematics Politecnico di Torino, Corso Duca Degli Abruzzi 24, Turin, 10129 - Italy

Interrelations between hierarchies of integrable non linear evolution equations and local motions
of curves in homogenous spaces have been widely investigated in the last decades. K-S. Chu
and C. Qu gave a complete account of integrable hierarchies originated by local motions of plane
curves with respect to several transformation groups of R2. In particular, they prove that the
fifth order Kaup-Kupershmidt equation is related to a local motion in centro-affine geometry
and that modified versions of the Kaup-Kupershmidt equations are related to motions of curves
in projective plane. In this talk we will explain how to construct geometrical flows of curves
in projective plane having the equations of the Kaup-Kupershmidt hierarchy as their analytical
counterparts (for every order). We analyze the congruence curves of the flows and we investigate in
more details the congruence curves defined by the cnoidal traveling wave solution of the fifth order
Kaup-Kupershmidt equation. More generally, we show that all critical curves of the projective
arc-length functional are congruence curves of the flow. We also exhibit new examples of traveling
wave solutions in terms of Wieretsrass ℘-functions. Our approach to the problem is mostly based
on symbolical and numerical computations performed with the software Mathematica 8.
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An algorithm of computing inhomogeneous differential equations for definite integrals

Hiromasa Nakayama, Kenta Nishiyama

Graduate school of Science, Kobe University, 1-1 Rokkodai, Nada-ku, 657-8501, Kobe, Japan
nakayama@math.kobe-u.ac.jp

Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka
University, Machikaneyama 1-1, Toyonaka 560-0043, Osaka, JAPAN k-nishiyama@cr.math.sci.osaka-u.ac.jp

Let us denote by D = K〈x1, . . . , xn, ∂1, . . . , ∂n〉 the Weyl algebra in n variables, where K is Q or
C and ∂i is the differential operator standing for xi. We denote by D′ = K〈x1, . . . , xm, ∂1, . . . , ∂m〉
the Weyl algebra in m variables, where m ≤ n and D′ is a subring of D.

Let I be a holonomic left D-ideal. The integration ideal of I with respect to x1, · · · , xm is
defined by the left D′-ideal

(I + ∂1D + · · ·+ ∂mD) ∩D′.

Oaku gave an algorithm computing the integration ideal. This algorithm is called the integration
algorithm of D-module. The Gröbner basis method in D is used in this algorithm.

We give a new algorithm computing not only generators of the integration ideal J but also
P0 ∈ I and P1, · · · , Pm ∈ D such as

P = P0 + ∂1P1 + · · ·+ ∂mPm

for any generator P ∈ J . Our algorithm is based on Oaku’s one. We call these P1, · · · , Pm inhomo-
geneous parts of P . As an important application of our algorithm, we can obtain inhomogeneous
differential equations for a definite integral with parameters by using generators of the integration
ideal and inhomogeneous parts.

For example, we compute an inhomogeneous differential equation for the integral A(x2) =∫ b
a
e−x1−x2x

3
1dx1. This is the case of m = 1, n = 2. The annihilating ideal of the integrand

f(x1, x2) = e−x1−x2x
3
1 in D is I = 〈∂1 + 1 + 3x2x

2
1, ∂2 +x31〉. The integration ideal of I with respect

to x1 is J = 〈27x32∂
2
2 + 54x22∂2 + 6x2 + 1〉 = 〈P 〉. The operator P1 = −(∂21 + 3∂1 + 3) is an

inhomogeneous part of P .

P ·A(x2) =

∫ b

a

∂1(P1 · e−x1−x2x
3
1)dx1 =

[
P1 · e−x1−x2x

3
1

]x1=b

x1=a

= −
[
(9x22x

4
1 − 3x2x

2
1 − 6x2x1 + 1)e−x1−x2x

3
1

]x1=b

x1=a
.

In this way, we get an inhomogeneous differential equation for the integral A(x2). We will give the
algorithm to compute inhomogeneous parts of the integration ideal and give some examples.

We implement these algorithms on the computer algebra system Risa/Asir. They are in the
program package nk restriction.rr.

References

[1] G. Almkvist, D. Zeilberger, The method of differentiating under the integral sign, Journal of
Symbolic Computation 10, 571-591, 1990.

[2] F. Chyzak, B. Salvy, Non-commutative Elimination in Ore Algebras Proves Multivariate Holo-
nomic Identities, Journal of Symbolic Computation 26, 187-227, 1998.

[3] H. Nakayama, K. Nisiyama, An Algorithm of Computing Inhomogeneous Differential Equa-
tions for Definite Int egrals, Mathematical Software – ICMS2010, Lecture Notes in Computer
Science 6327, Spring er, 2010, 221-232
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[4] T. Oaku, Algorithms for b-functions, restrictions, and algebraic local cohomology groups of
D-modules, Advances in Applied Mathematics 19, 61–105, 1997.

[5] T. Oaku, Y. Shiraki, N. Takayama, Algebraic Algorithm for D-modules and numerical analy-
sis, Computer mathematics (Proceedings of ASCM 2003), 23–39, Lecture Notes Ser. Comput.,
10, World Sci. Publ., River Edge, NJ, 2003.

[6] M. Saito, B. Sturmfels, N. Takayama, Gröbner Deformations of Hypergeometric Differential
Equations, Springer, 2000.

[7] N. Takayama, An Approach to the Zero Recognition Problem by Buchberger Algorithm,
Journal of Symbolic Computation 14, 265–282, 1992.

[8] M. Noro, et al: Risa/Asir, http://www.math.kobe-u.ac.jp/Asir

[9] H. Nakayama, K. Nishiyama: Risa/Asir package nk restriction.rr,
http://www.math.kobe-u.ac.jp/~nakayama/nk restriction.rr
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Reduction of Exterior Differential Systems under Symmetry Pseudogroups

Juha Pohjanpelto

Department of Mathematics, Oregon State University, Corvallis, OR 97331, USA

We will discuss a symmetry-based method for constructing solutions to systems of differential
equations founded on the reduction of exterior differential systems invariant under the action of
an infinite dimensional pseudogroup. Any system of differential equations ∆ = 0 with a symmetry
group G can be associated with an exterior differential system I invariant under G so that solutions
of ∆ = 0 correspond to integral manifolds of I. With the help of a moving frame, the exterior
differential system gives rise to a reduced system on a given cross section to the action of G. All
integral manifolds of the original system I can then be reconstructed from those of the reduced
system by the way of an equation of generalized Lie type for the symmetry group parameters.
Accordingly, we obtain a two-step algorithm for finding integral manifolds for exterior differential
systems akin to Vessiot’s method of group foliation. As examples, applications of the reduction
process to the construction of analytic solutions to non-linear partial differential equations will be
presented.
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Algebraic Properties and Symbolic Aspects of Ordinary Integro-Differential Operators
and Applications to Boundary Problems

Georg Regensburgera1

aINRIA Saclay – Île de France, Project DISCO, L2S, Supélec, 91192 Gif-sur-Yvette Cedex, France

An integro-differential algebra combines a differential algebra with a suitable notion of an integral
operator. By the fundamental theorem of calculus, the integral should be a right inverse of the
derivation. We require additionally a version of integration by parts that allows us to define an
“evaluation” in any integro-differential algebra. This is also our vantage point for treating initial
and boundary conditions in an algebraic setting.

We discuss the construction of the algebra of ordinary integro-differential operators over an
integro-differential algebra. We focus in particular on algebraic properties and algorithmic aspects
of the integro-differential operators over the polynomial ring in one indeterminate over a field of
characteristic zero with the usual derivation and integration. This algebra has also been studied
recently by V. V. Bavula in a series of papers using the fact that it can be constructed as a
generalized Weyl algebra.

Integro-differential operators over smooth or analytic functions provide an algebraic structure
for computing with boundary problems for linear ODEs as well as their solution operators (Green’s
operators). Our implementation is based on the fact that every integro-differential operator can be
written uniquely as a sum of a differential, an integral, and a boundary operator, and we illustrate
it with some sample computations.

This talk is based in part on joint work with Anja Korporal, Johannes Middeke, Alban Quadrat,
and Markus Rosenkranz.

1Supported by the Austrian Science Fund (FWF): J 3030-N18.
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Discrete Morales-Ramis theory : an example.

Julien Roquesa

a Université Grenoble I - UMR CNRS 5582, Institut Fourier, 100 rue des maths, BP 74, 38402 St Martin d’Hères
cedex (France)

We will give an application of a non integrability criterion, of Morales-Ramis type, for discrete
dynamical systems. This is part of a work in collaboration with G. Casale.
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Differential implicitization of linear DPPEs:
Linear reparametrizations and differential resultants

Sonia L. Rueda

Dpto. de Matemática Aplicada, E.T.S. Arquitectura. Universidad Politécnica de Madrid
Avda. Juan de Herrera 4, 28040-Madrid, Spain. sonialuisa.rueda@upm.es

The implicitization and parametrization problems of unirational algebraic varieties have been
widely studied, and the results on the computation of the implicit equation of a system of algebraic
rational parametric equations by algebraic resultants are well known. The generalization of these
results to the differential case is a wide open field of research where many interesting problems
arise.

In [3], characteristic set methods were used to solve the differential implicitization problem
for differential rational parametric equations. Alternative methods are emerging to treat special
cases. Let K an ordinary differential field with derivation ∂ and D = K[∂] the ring of differential
operators with coefficients in K. We focus on the study of systems of linear differential parametric
polynomial equations (linear DPPEs),

P(X,U) =


x1 − a1 = L1,1(u1) + · · ·+ L1,n−1(un−1),

...
xn − an = Ln,1(u1) + · · ·+ Ln,n−1(un−1),

(1)

where Li,j ∈ D, not all Li,j ∈ K and ai ∈ K.
In [5], we defined linear complete differential resultants as a generalization of the differential

resultant defined by G. Carrà-Ferro in [1] (in the linear case). We proved that when nonzero the
differential resultant gives the implicit equation of ID, the implicit ideal of P. As in the algebraic
case differential resultants often vanish under specialization. Motivated by Canny’s method and
its generalizations (see references in [2]) in [4] a linear perturbation of P is considered. By means
of this perturbation an implicitization of P is computed if ID has dimension n− 1.

Let oi be the order of the ith equation of P. The next positive integers were used to define the
linear complete differential resultant,

γj(P) := min{oi −O(Li,j) | i ∈ {1, . . . , n}},

where O(Li,j) = deg(Li,j), if deg(Li,j) ≥ 0 and O(Li,j) = 0, if deg(Li,j) = −∞. Given a
differential operator L =

∑
β∈N0

cβ∂
β ∈ D, we define σβ(L) = cβ . The n × (n − 1) matrix σ(P)

whose ith row contains (σoi−γn−1
(Li,n−1), . . . , σoi−γ1(Li,1)) plays a relevant role in this study.

The implicitization algorithm provided in [4] works for systems P whose matrix σ(P) has
maximal rank. It will be shown how in the (n− 1)-dimensional case a reparametrization P ′ of P
(with implicit ideal ID′ = ID) can be constructed so that σ(P ′) has maximal rank.

References

[1] G. Carrà-Ferro, A resultant theory for ordinary algebraic differential equations, Lecture Notes in
Computer Science, 1255. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Pro-
ceedings, 1997.

[2] C. D’Andrea, I. Z. Emiris, Computing Sparse Projection Operators, Symbolic computation: solving
equations in algebra, geometry, and engineering (South Hadley, MA, 2000), 121-139, Contemp. Math.,
286, Amer. Math. Soc., Providence, RI, 2001.

[3] X.S. Gao, Implicitization of differential rational parametric equations, J. Symbolic Comput., 36
(2003), 811–824.

[4] S.L. Rueda, A perturbed differential resultant based implicitization algorithm for linear DPPEs. J.
Symbolic Comput. (2011), doi:10.1016/j.jsc.2011.05.001.

[5] S.L. Rueda and J.R. Sendra , Linear complete differential resultants and the implicitization of linear
DPPEs. J. Symbolic Comput., 45 (2010), 324–341.
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Symbolic Summation in Perturbative Quantum Field Theory

Carsten Schneidera

aResearch Institute for Symbolic Computation (RISC)
Johannes Kepler University,

Linz, Austria

We present summation algorithms in the context of difference fields that assist in the task to
evaluate 3-loop massive single scale Feynman integrals with operator insertion. Special emphasis
is put on new evaluations that are relevant for the the computations at the Large Hadron Collider
at CERN.
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Factoring Partial Differential Operators

Michael F. Singera

aDepartment of Mathematics, Box 8205, North Carolina State University, Raleigh, NC 27695

It has been known for a long time that an ordinary linear differential operator can be factored
into a product of irreducible ordinary linear operators and that this factorization is unique up to
a certain equivalence. This result follows from a Jordan-Hoelder type theorem for certain modules
over the ring of ordinary differential operators.

A consequence of the above result is that the number of irreducible factors of an operator and their
orders are unique. This is no longer true for partial differential operators and we discuss several
examples to show in which ways this can fail. Instead of looking for factors one can consider
subspaces of the solution space that are again defined by the vanishing of linear operators. I will
discuss a result that states that there exists a finite tower of such subspaces where the successive
quotients are “simple” in a certain sense and show that these quotients are unique up to a certain
kind of equivalence. This is joint work with Phyllis Cassidy.
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Group foliation using moving frames

Rob Thomson

School of Mathematics, University of Minnesota, Minneapolis, USA.

The method of group foliation, first proposed by Lie and later developed by Vessiot, provides a
technique for using the symmetry group or pseudo-group of a differential equation to find solutions
which possess no symmetry. The method has found frequent use for finding new solutions to
important physical equations. We’ll describe the use of moving frames to accomplish the group
foliation algorithm. This algorithm is also closely related to the EDS reduction method recently
discovered by Anderson, Fels and Pohjanpelto.
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From algebra and algebraic geometry to differential equations

Franz Winkler,
Research Institute in Symbolic Computation,

Linz, Austria

An algebraic ordinary differential equation (AODE) is of the form F (x, y, y′, ..., y(n)) = 0, where F is
an (n+2)-variate polynomial over a differential field K. Solving AODEs is an open problem. There
are currently no general methods for solving such non-linear differential equations. We describe
an algorithm for determining the rational solvability of AODEs of order 1, and, in the positive
case, finding a general rational solution. Moreover, we introduce a group of affine transformations
preserving rational solvability. The orbits of this group provide a classification of AODEs of order
1, where the classes consist of equations having the same computational complexity with respect
to the computation of general rational solutions.
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Reduced Forms of Linear Differential Systems

Ainhoa Aparicio Monfortea, Elie Compointb, and Jacques-Arthur Weilc

aRISC, Linz, Austria

bUniversité de Lille I, France

cXLIM, Université de Limoges, France.

A linear differential system [A] : Y ′ = AY , with A ∈ Mat(n, k) is said to be in reduced form if
A ∈ g(k) where g is the Lie algebra of the differential Galois group G of [A].
In this talk, we will first explain why this notion is natural and desirable. A classical result
of Kolchin and Kovacic shows that any linear differential system admits reduced forms; we will
propose a procedure to achieve this reduction constructively (when the Galois group is reductive
and unimodular). The key ingredient is the following result : when G is reductive and unimodular,
the system [A] is in reduced form if and only if all of its invariants (rational solutions of appropriate
symmetric powers) have constant coefficients (instead of rational functions). When G is non-
reductive, we give a similar characterization via the semi-invariants of G.
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Differential Chow Form and Differential resultant

Chun-Ming Yuana

aKLMM, AMS, CAS

In this talk, an intersection theory for generic differential polynomials is presented. Based on the
intersection theory, the Chow form for an irreducible differential variety is defined and most of the
properties of the Chow form in the algebraic case are established for its differential counterpart.
Furthermore, the generalized differential Chow form is defined and its properties are proved. As
an application of the generalized differential Chow form, the differential resultant of n+ 1 generic
differential polynomials in n variables is defined and properties similar to that of the Macaulay
resultant for multivariate polynomials are proved.

The concept of sparse differential resultant for a system of quasi-generic differential polynomials
is introduced and its propertied are proved. In particular, a degree bound for the sparse differential
resultant is given. Based on the degree bound, an algorithm to compute the sparse differential
resultant is proposed, which is single exponential in terms of the order, the number of variables,
and the size of the quasi-generic polynomials.
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