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Let us denote by D = K〈x1, . . . , xn, ∂1, . . . , ∂n〉 the Weyl algebra in n variables, where
K is Q or C and ∂i is the differential operator standing for xi. We denote by D′ =
K〈x1, . . . , xm, ∂1, . . . , ∂m〉 the Weyl algebra in m variables, where m ≤ n and D′ is a
subring of D.

Let I be a holonomic left D-ideal. The integration ideal of I with respect to x1, · · · , xm
is defined by the left D′-ideal

(I + ∂1D + · · ·+ ∂mD) ∩D′.

Oaku gave an algorithm computing the integration ideal. This algorithm is called the inte-
gration algorithm of D-module. The Gröbner basis method in D is used in this algorithm.

We give a new algorithm computing not only generators of the integration ideal J but
also P0 ∈ I and P1, · · · , Pm ∈ D such as

P = P0 + ∂1P1 + · · ·+ ∂mPm

for any generator P ∈ J . Our algorithm is based on Oaku’s one. We call these P1, · · · , Pm

inhomogeneous parts of P . As an important application of our algorithm, we can ob-
tain inhomogeneous differential equations for a definite integral with parameters by using
generators of the integration ideal and inhomogeneous parts.

For example, we compute an inhomogeneous differential equation for the integral
A(x2) =

∫ b
a e−x1−x2x3

1dx1. This is the case of m = 1, n = 2. The annihilating ideal of

the integrand f(x1, x2) = e−x1−x2x3
1 in D is I = 〈∂1 + 1 + 3x2x

2
1, ∂2 + x31〉. The integration

ideal of I with respect to x1 is J = 〈27x32∂
2
2 + 54x22∂2 + 6x2 + 1〉 = 〈P 〉. The operator

P1 = −(∂2
1 + 3∂1 + 3) is an inhomogeneous part of P .

P ·A(x2) =

∫ b

a
∂1(P1 · e−x1−x2x3

1)dx1 =
[
P1 · e−x1−x2x3

1

]x1=b

x1=a

= −
[
(9x22x

4
1 − 3x2x

2
1 − 6x2x1 + 1)e−x1−x2x3

1

]x1=b

x1=a
.

In this way, we get an inhomogeneous differential equation for the integral A(x2). We will
give the algorithm to compute inhomogeneous parts of the integration ideal and give some
examples.

We implement these algorithms on the computer algebra system Risa/Asir. They are
in the program package nk restriction.rr.
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