In this talk I will discuss very recent work on generalizations of the pentagram map, a map defined on the space of convex polygons in the projective plane. The pentagram map has been recently studied by R. Schwartz, S Tabachnikov and V. Ovsienko who proved that, when defined on twisted polygons, this discrete map is an integrable system. Furthermore, they proved that the pentagram map is a discretization of the Boussinesq equation, a well-known integrable PDE. In this talk we will give a short overview of their results and will discuss possible generalizations to maps defined on twisted k-gons in $\mathbb{R}P^n$, in particular $n = 3, 4$. We will describe conditions that will ensure that the generalizing map is a discretization of higher order AGD flows, and discuss on-going work to establish their integrability.