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Let P ⊂ Rn be a convex n-dimensional lattice polytope. The codegree codeg(P ) of P is
the smallest integer m such that the polytope mP contains interior lattice points. The
degree d of P is the integer d = n + 1− codeg(P ). Batyrev and Nill asked whether, given
d, there exists an integer N(d) such that every polytope P of degree d and dimension
n ≥ N(d) is a Cayley polytope. Recently, Haase, Nill, and Payne gave a positive answer
to this question by showing that N(d) exists and is bounded by a quadratic expression in
d. We propose the following answer in the case where the polytopes are assumed to be
regular: N(d) = 2d + 1.

We deduce our result from a theorem that characterizes regular lattice polytopes with
codegree ≥ n+3

2 : we prove, under an additional assumption, that these are precisely the
polytopes affinely equivalent to polytopes of the form P = Cayley(P0, . . . , Pk), where
k = codeg(P )− 1, k > n

2 , and the Pi are polytopes in Rn−k.
Our proof relies on the study of the nef value and the nef value map of a nonsingular

polarized toric variety (X, L). We define the nef value τ(P ) of a regular polytope and
show that it is equal to the nef value of the corresponding toric variety. Moreover, we
introduce a refined notion of codegree, codegQ(P ), which we relate to the codegree and to
the nef value of P .
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