Classifying smooth lattice polytopes via toric fibrations

Alicia Dickenstein, Sandra Di Rocco, Ragni Piene

Workshop on Computational Algebraic Geometry Foundations of Computational Mathematics Hong Kong, June 20, 2008

Outline

Lattice polytopes

Codegree and nef value

The theorem

Adjunction on toric varieties

Lattice polytopes

Let $P \subset \mathbb{R}^n$ be a convex lattice polytope, i.e., P is the convex hull of a finite set of lattice points.

The *codegree* of P is defined (Batyrev-Nill) by

 $\operatorname{codeg}(P) = \min_{\mathbb{N}} \{ m \, | \, mP \text{ has interior lattice points} \}.$

For example, $\operatorname{codeg}(\Delta_n) = n + 1$ and $\operatorname{codeg}(2\Delta_n) = \lceil \frac{n+1}{2} \rceil$. The *degree* of *P* is $\operatorname{deg}(P) = n + 1 - \operatorname{codeg}(P)$.

Ehrhart series

Let $f_P(m)$ denote the number of lattice points in mP. The *Ehrhart series* is the generating function

$$F_P(t) = \sum_m f_P(m)t^m = \frac{h_P^*(t)}{(1-t)^{n+1}},$$

where $h_P^*(t)$ is a polynomial of degree d equal to the degree of P.

The normalized volume of P is equal to the sum of the coefficients of h_P^* , and the leading coefficient is the number of lattice points in kP, where k is the codegree. This gives an indication of the combinatorial and computational interest in these notions.

Cayley polytopes

A Cayley polytope is a polytope of the form

$$P = \operatorname{Cayley}(P_0, \ldots, P_k),$$

where $k \geq 1$, $P_i = \operatorname{Conv}(\{p_j^i\}) \subset \mathbb{R}^m$, e_0, \ldots, e_k are the vertices of $\Delta_k \subset \mathbb{R}^k$, and $P = \operatorname{Conv}(\{(p_j^i, e_i)\}) \subset \mathbb{R}^{k+m}$.

A generalized Cayley polytope is a polytope P^s , where the e_i are replaced by se_i in the definition above.

 $Cayley^2(6\Delta_1, 5\Delta_1, 3\Delta_1)$

Batyrev–Nill asked: Given d, does there exist an integer N(d) such that any polytope P of degree d and dim $P \ge N(d)$ is a Cayley polytope?

Recently, Haase, Nill, and Payne showed that for general polytopes, this holds, with

$$N(d) \le (d^2 + 19d - 4)/2.$$

We believe that if P is *regular*, then N(d) = 2d + 1. We can prove it for regular polytopes satisfying an additional assumption.

(Note that $n \ge 2d + 1$ is equivalent to $\operatorname{codeg}(P) \ge \frac{n+3}{2}$.)

Codegree of polytopes

Write

$$P = \cap H^+_{\rho_i, -a_i},$$

where the $H^+_{\rho_i,-a_i}$ are halfplanes defined by the normal vectors ρ_i and the a_i 's are integers.

Assume from now on P is regular (aka Delzant, aka smooth), i.e., at any vertex there are precisely n edges, and the first lattice points on these edges form a basis for the lattice.

Set $P^{(r)} = \cap H^+_{\rho_i, -a_i+r}$. Observe that the lattice points of $P^{(1)}$ are the same as the interior lattice points of P. (Note that $P^{(r)}$ does not need to be a lattice polytope, and even if it is, it does not need to be regular nor of the same dimension as P.)

The $\mathbb Q\text{-}\mathrm{codegree}$ of P is defined as

$$\operatorname{codeg}_{\mathbb{Q}}(P) = \inf_{\mathbb{Q}} \{ \frac{a}{b} | (aP)^{(b)} \cap \mathbb{Z}^n \neq \emptyset \}.$$

Note that we have

$$\operatorname{codeg}(P) \geq \operatorname{codeg}_{\mathbb{Q}}(P) \geq \operatorname{codeg}(P) - 1.$$

Example

$$\operatorname{codeg}_{\mathbb{Q}}(2\Delta_n) = \frac{n+1}{2} \text{ and } \operatorname{codeg}(2\Delta_n) = \lceil \frac{n+1}{2} \rceil.$$

Nef value for polytopes

We say that $P^{(r)}$ is spanned if $P^{(r)} \cap \mathbb{Z}^n \neq \emptyset$ and for any vertex $m = (-a_1, \ldots, -a_n)$ (in the lattice basis $\{\rho_1, \ldots, \rho_n\}$) the lattice point $(-a_1 + r, \ldots, -a_n + r)$ is in $P^{(r)}$.

Example

Let P be the polytope obtained from the simplex

 $m\Delta_3 = \operatorname{Conv}\{(0,0,0), (m,0,0), (0,m,0), (0,0,m)\}$

by removing the simplex

 $\Delta_3 = \operatorname{Conv}\{(0,0,0), (1,0,0), (0,1,0), (0,0,1)\}$

Assume $m \ge 4$. Then $P^{(1)} \cap \mathbb{Z}^n \neq \emptyset$, but $P^{(1)}$ is not spanned.

In fact, the vertex $(1,0,0)=(y=0)\cap(z=0)\cap(x+y+z=1)$ of P "goes to" the lattice point

$$(0,1,1)=(y=1)\cap(z=1)\cap(x+y+z=2)$$

which is not a point in $P^{(1)}$. Similarly for the vertices (0,1,0) and (0,0,1).

Note that if we instead remove $2\Delta_3$, then the polytope is spanned: the vertices (2,0,0), (0,2,0), and (0,0,2) all go to the same lattice point (1,1,1), which is an interior point of the original polytope.

Define the *nef value* of the polytope P to be

$$\tau(P) = \inf_{\mathbb{Q}} \{ \frac{a}{b} \, | \, (aP)^{(b)} \text{ is spanned } \}.$$

Clearly, $\tau(P) \ge \operatorname{codeg}_{\mathbb{Q}}(P)$, and if $\tau(P)$ is an integer, then $\tau(P) \ge \operatorname{codeg}(P)$.

Example

Take $P = m\Delta_3 \setminus \Delta_3$, $m \ge 4$. Then $\operatorname{codeg}_{\mathbb{Q}}(P) = \operatorname{codeg}(P) = 1$ and $\tau(P) = 2$ (because $P^{(1)}$ is not spanned at the vertices of the small facet).

We believe that when the codegree is big enough, $\tau(P)>\mathrm{codeg}_{\mathbb{O}}(P)$ cannot happen.

 $(\mathbf{P}(\mathcal{O}_{\mathbf{P}^1}(3)\oplus\mathcal{O}_{\mathbf{P}^1}(1)\oplus\mathcal{O}_{\mathcal{P}^1}(1)),\xi+\pi^*(\mathcal{O}_{\mathbf{P}^1}(1))$

The first polytope P^2 has n = 3, s = 2, m = 1, k = 2, and $\operatorname{codeg}_{\mathbb{Q}}(P^2) = \tau(P^2) = \frac{3}{2}$, $\operatorname{codeg}(P^2) = 2$.

The second polytope P^1 has n = 3, s = 1, m = 1, k = 2, and $\operatorname{codeg}_{\mathbb{Q}}(P^1) = \operatorname{codeg}(P^1) = \tau(P^1) = 3$.

The theorem

Theorem

Let P be a regular lattice polytope of dimension n, and assume that $\tau(P) = \operatorname{codeg}_{\mathbb{Q}}(P)$. The following are equivalent (1) $\operatorname{codeg}(P) \ge \frac{n+3}{2}$ (2) $P = \operatorname{Cayley}(P_0, \ldots, P_k)$, where $k = \operatorname{codeg}(P) - 1$ and $k > \frac{n}{2}$.

Note that a polytope as in (2) is *defective*, with defect $\delta = 2k - n$. (This means that the polarized toric variety (X, L) corresponding to P has defect $\delta = 2k - n$, i.e., its dual variety has codimension 2k - n + 1.)

Adjunction on toric varieties

Let X be a nonsingular projective variety, L an ample line bundle. Assume the canonical line bundle K_X is not nef. The nef value of (X,L) is

$$\tau_L = \min_{\mathbb{R}} \{ t \, | \, K_X + tL \text{ is nef } \}.$$

It is well known that τ_L is a positive rational number.

Assume X is a toric variety, and let $P = \cap H_{\rho_i,-a_i}^+$ denote the polytope defined by (X, L). Then $L = \sum a_i D_i$, where the D_i are the invariant divisors, and $K_X = -\sum D_i$. On a toric variety, a line bundle is nef if and only if it is spanned (generated by its global sections).

Since
$$P_{bK_X+aL} = (aP)^{(b)}$$
, we have $\tau_L = \tau(P)$.

Proof of the theorem

If $\tau = \frac{a}{b}$, the line bundle $bK_X + aL$ defines a morphism from X to a projective space. The Remmert–Stein factorization $\varphi \colon X \to Y$ of this map is called the nef value map.

Lemma

Assume $\tau := \tau(P) = \operatorname{codeg}_{\mathbb{Q}}(P)$. Then φ is not birational.

It follows from this lemma and $\tau \geq \frac{n+1}{2}$ that there exists a line C (with respect to L) on X which is contracted by φ , i.e., such that $(K_X + \tau L) \cdot C = 0$. It follows that τ is an integer, hence equal to $\operatorname{codeg}(P)$.

By adjunction theory, the inequality $\tau \geq \frac{n+3}{2}$ implies that φ is the contraction of an extremal ray in the nef cone NE(X).

By a result of Reid, such a contraction is a flat toric fibration, with Y smooth and toric and the general fiber $F = \mathbb{P}^k$, where $k = n - \dim Y$. Hence, $L|_F = \mathcal{O}_{\mathbb{P}}^k(s)$ for some s, and one shows that s = 1. This forces all fibers of φ to be \mathbb{P}^k , and therefore $X = \mathbb{P}(\varphi_*L)$ is a projective bundle.

To see that s = 1, take a line ℓ in $\mathbb{P}^k = F$. We get

$$0 = (K_X + \tau L) \cdot \ell = K_X \cdot \ell + \tau s = -(k+1) + \tau s$$

so that

$$\frac{n+3}{2} \le \tau = \frac{k+1}{s} \le \frac{n+1}{s}.$$

So s = 1 and $\tau = k + 1$, with $k > \frac{n}{2}$.

Since Y is toric, φ_*L splits as a sum of line bundles, and thus φ gives P the structure of a Cayley polytope.

We obtain the following corollary (obtained by Batyrev–Nill in the case of not necessarily regular polytopes).

Corollary

Assume P is a regular n-dimensional lattice polytope.

