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Lattice polytopes

Let P ⊂ Rn be a convex lattice polytope, i.e., P is the convex hull
of a finite set of lattice points.

The codegree of P is defined (Batyrev–Nill) by

codeg(P ) = min
N
{m |mP has interior lattice points}.

For example, codeg(∆n) = n+ 1 and codeg(2∆n) = dn+1
2 e.

The degree of P is deg(P ) = n+ 1− codeg(P ).



Ehrhart series

Let fP (m) denote the number of lattice points in mP . The
Ehrhart series is the generating function

FP (t) =
∑
m

fP (m)tm =
h∗P (t)

(1− t)n+1
,

where h∗P (t) is a polynomial of degree d equal to the degree of P .

The normalized volume of P is equal to the sum of the coefficients
of h∗P , and the leading coefficient is the number of lattice points in
kP , where k is the codegree.This gives an indication of the
combinatorial and computational interest in these notions.



Cayley polytopes
A Cayley polytope is a polytope of the form

P = Cayley(P0, . . . , Pk),

where k ≥ 1, Pi = Conv({pij}) ⊂ Rm, e0, . . . , ek are the vertices
of ∆k ⊂ Rk , and P = Conv({(pij , ei)}) ⊂ Rk+m.

A generalized Cayley polytope is a polytope P s, where the ei are
replaced by sei in the definition above.

Cayley2(6∆1, 5∆1, 3∆1)



Batyrev–Nill asked: Given d, does there exist an integer N(d) such
that any polytope P of degree d and dimP ≥ N(d) is a Cayley
polytope?

Recently, Haase, Nill, and Payne showed that for general polytopes,
this holds, with

N(d) ≤ (d2 + 19d− 4)/2.

We believe that if P is regular, then N(d) = 2d+ 1. We can prove
it for regular polytopes satisfying an additional assumption.

(Note that n ≥ 2d+ 1 is equivalent to codeg(P ) ≥ n+3
2 .)



Codegree of polytopes

Write
P = ∩H+

ρi,−ai
,

where the H+
ρi,−ai

are halfplanes defined by the normal vectors ρi
and the ai’s are integers.

Assume from now on P is regular (aka Delzant, aka smooth), i.e.,
at any vertex there are precisely n edges, and the first lattice points
on these edges form a basis for the lattice.

Set P (r) = ∩H+
ρi,−ai+r

. Observe that the lattice points of P (1) are
the same as the interior lattice points of P . (Note that P (r) does
not need to be a lattice polytope, and even if it is, it does not need
to be regular nor of the same dimension as P .)



The Q-codegree of P is defined as

codegQ(P ) = inf
Q
{a
b
| (aP )(b) ∩ Zn 6= ∅}.

Note that we have

codeg(P ) ≥ codegQ(P ) ≥ codeg(P )− 1.

Example

codegQ(2∆n) = n+1
2 and codeg(2∆n) = dn+1

2 e.



Nef value for polytopes

We say that P (r) is spanned if P (r) ∩ Zn 6= ∅ and for any vertex
m = (−a1, . . . ,−an) (in the lattice basis {ρ1, . . . , ρn}) the lattice
point (−a1 + r, . . . ,−an + r) is in P (r).

Example
Let P be the polytope obtained from the simplex

m∆3 = Conv{(0, 0, 0), (m, 0, 0), (0,m, 0), (0, 0,m)}

by removing the simplex

∆3 = Conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}

Assume m ≥ 4. Then P (1) ∩ Zn 6= ∅, but P (1) is not spanned.



In fact, the vertex (1, 0, 0) = (y = 0) ∩ (z = 0) ∩ (x+ y + z = 1)
of P “goes to” the lattice point

(0, 1, 1) = (y = 1) ∩ (z = 1) ∩ (x+ y + z = 2)

which is not a point in P (1). Similarly for the vertices (0, 1, 0) and
(0, 0, 1).

Note that if we instead remove 2∆3, then the polytope is spanned:
the vertices (2, 0, 0), (0, 2, 0), and (0, 0, 2) all go to the same lattice
point (1, 1, 1), which is an interior point of the original polytope.



Define the nef value of the polytope P to be

τ(P ) = inf
Q
{a
b
| (aP )(b) is spanned }.

Clearly, τ(P ) ≥ codegQ(P ), and if τ(P ) is an integer, then
τ(P ) ≥ codeg(P ).

Example
Take P = m∆3 \∆3, m ≥ 4. Then codegQ(P ) = codeg(P ) = 1
and τ(P ) = 2 (because P (1) is not spanned at the vertices of the
small facet).

We believe that when the codegree is big enough,
τ(P ) > codegQ(P ) cannot happen.



(P(OP1(3)⊕OP1(1)⊕OP1(1)), ξ + π∗(OP1(1))

(P(OP1(2)⊕OP1(1)⊕OP1(1)), 2ξ)

Cayley1(4∆1, 2∆1, 2∆1)

Cayley2(4∆1, 2∆1, 2∆1)

The first polytope P 2 has n = 3, s = 2, m = 1, k = 2, and
codegQ(P 2) = τ(P 2) = 3

2 , codeg(P 2) = 2.

The second polytope P 1 has n = 3, s = 1, m = 1, k = 2, and
codegQ(P 1) = codeg(P 1) = τ(P 1) = 3.



The theorem

Theorem
Let P be a regular lattice polytope of dimension n, and assume
that τ(P ) = codegQ(P ). The following are equivalent
(1) codeg(P ) ≥ n+3

2

(2) P = Cayley(P0, . . . , Pk), where k = codeg(P )− 1 and k > n
2 .

Note that a polytope as in (2) is defective, with defect δ = 2k − n.
(This means that the polarized toric variety (X,L) corresponding
to P has defect δ = 2k − n, i.e., its dual variety has codimension
2k − n+ 1.)



Adjunction on toric varieties

Let X be a nonsingular projective variety, L an ample line bundle.
Assume the canonical line bundle KX is not nef. The nef value of
(X,L) is

τL = min
R
{t |KX + tL is nef }.

It is well known that τL is a positive rational number.

Assume X is a toric variety, and let P = ∩H+
ρi,−ai

denote the
polytope defined by (X,L). Then L =

∑
aiDi, where the Di are

the invariant divisors, and KX = −
∑
Di. On a toric variety, a line

bundle is nef if and only if it is spanned (generated by its global
sections).

Since PbKX+aL = (aP )(b), we have τL = τ(P ).



Proof of the theorem

If τ = a
b , the line bundle bKX + aL defines a morphism from X to

a projective space. The Remmert–Stein factorization ϕ : X → Y of
this map is called the nef value map.

Lemma
Assume τ := τ(P ) = codegQ(P ). Then ϕ is not birational.

It follows from this lemma and τ ≥ n+1
2 that there exists a line C

(with respect to L) on X which is contracted by ϕ, i.e., such that
(KX + τL) · C = 0. It follows that τ is an integer, hence equal to
codeg(P ).

By adjunction theory, the inequality τ ≥ n+3
2 implies that ϕ is the

contraction of an extremal ray in the nef cone NE(X).



By a result of Reid, such a contraction is a flat toric fibration, with
Y smooth and toric and the general fiber F = Pk, where
k = n− dimY . Hence, L|F = OkP(s) for some s, and one shows
that s = 1. This forces all fibers of ϕ to be Pk, and therefore
X = P(ϕ∗L) is a projective bundle.

To see that s = 1, take a line ` in Pk = F . We get

0 = (KX + τL) · ` = KX · `+ τs = −(k + 1) + τs

so that
n+ 3

2
≤ τ =

k + 1
s
≤ n+ 1

s
.

So s = 1 and τ = k + 1, with k > n
2 .

Since Y is toric, ϕ∗L splits as a sum of line bundles, and thus ϕ
gives P the structure of a Cayley polytope.



We obtain the following corollary (obtained by Batyrev–Nill in the
case of not necessarily regular polytopes).

Corollary
Assume P is a regular n-dimensional lattice polytope.
(1) deg(P ) = 0 if and only if P = ∆n,
(2) deg(P ) = 1 if and only if P = Cayley(P0, . . . , Pn−1) is a

Lawrence prism (the Pi are segments) or P = 2∆2.
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