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The problem

The problem
Compute a numerically stable polynomial basis of an ideal of points,

when the points derive from numerical data,
that is their coordinates are known with limited accuracy.
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X a set of approximate
points
X̃ another set ”nearby” X

⇒ X and X̃ are numerically equivalent
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The problem

The problem
Compute a numerically stable polynomial basis of an ideal of points,

when the points derive from numerical data,
that is their coordinates are known with limited accuracy.

X a set of approximate
points
X̃ another set ”nearby” X

⇒ X and X̃ are numerically equivalent

Nevertheless the vanishing ideals I(X) and I(X̃)
may have different bases

Aim: Look for a common characterization of I(X) and I(X̃)
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Practical problems

Formalize empirical data:

imprecise, known with
limited accuracy

large body

redundant

Need of new techniques:

Adapt classical algorithms to
the empirical case
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Practical problems

Formalize empirical data:

imprecise, known with
limited accuracy

large body

redundant

Need of new techniques:

Adapt classical algorithms to
the empirical case

In particular, in the exact case I(X) is usually computed using the
Buchberger-Möller (BM) Algorithm which returns a Gröbner basis of I(X).
How can we generalize BM in the presence of empirical data?
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Empirical point

Definition: An empirical point is a pair (p, ε) where p ∈ Rn is the
specified value and ε = (ε1, . . . , εn) (with each εi ∈ R+) is the
tolerance.
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Empirical point

Definition: An empirical point is a pair (p, ε) where p ∈ Rn is the
specified value and ε = (ε1, . . . , εn) (with each εi ∈ R+) is the
tolerance.
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Definition: Any point p̃ ∈ Rn which lies in the ε-neighbourhood of p
is called an admissible perturbation of (p, ε).
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Border bases I

Border bases studied by: Möller, Mourrain et al., Kreuzer, Robbiano,
Stetter.
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Border bases I

Border bases studied by: Möller, Mourrain et al., Kreuzer, Robbiano,
Stetter.

Let P = K [x1, . . . , xn]
Let I ⊆ P be a zero-dimensional ideal
Let Tn be the set of terms in x1, . . . , xn.
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Border bases I

Border bases studied by: Möller, Mourrain et al., Kreuzer, Robbiano,
Stetter.

Let P = K [x1, . . . , xn]
Let I ⊆ P be a zero-dimensional ideal
Let Tn be the set of terms in x1, . . . , xn.

Definition: Let O ⊆ Tn be non-empty.

O is called order ideal if it is factor closed, that is if it contains all the
divisors of its terms.
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Border bases I

Border bases studied by: Möller, Mourrain et al., Kreuzer, Robbiano,
Stetter.

Let P = K [x1, . . . , xn]
Let I ⊆ P be a zero-dimensional ideal
Let Tn be the set of terms in x1, . . . , xn.

Definition: Let O ⊆ Tn be non-empty.

O is called order ideal if it is factor closed, that is if it contains all the
divisors of its terms.

If O is order ideal, the border ∂O of O is defined by

∂O = (x1O ∪ . . . ∪ xnO) \ O
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Border bases I

Border bases studied by: Möller, Mourrain et al., Kreuzer, Robbiano,
Stetter.

Let P = K [x1, . . . , xn]
Let I ⊆ P be a zero-dimensional ideal
Let Tn be the set of terms in x1, . . . , xn.

Definition: Let O ⊆ Tn be non-empty.

O is called order ideal if it is factor closed, that is if it contains all the
divisors of its terms.

If O is order ideal, the border ∂O of O is defined by

∂O = (x1O ∪ . . . ∪ xnO) \ O

If O is order ideal, the elements of the minimal set of generators of
the monomial ideal Tn \ O are called the corners of O.
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border

corners

order ideals

M. Torrente (Università di Genova) Stable Border Bases for Ideals of Points Auron, March 2010 6 / 21



Border bases II

Idea of border bases:
describe the quotient ring P/I by an order ideal O ⊆ Tn whose residue
classes form a K -basis of P/I

M. Torrente (Università di Genova) Stable Border Bases for Ideals of Points Auron, March 2010 7 / 21



Border bases II

Idea of border bases:
describe the quotient ring P/I by an order ideal O ⊆ Tn whose residue
classes form a K -basis of P/I

Definition:
Let O = {t1, . . . , tµ} be an order ideal and ∂O = {b1, . . . , bν} be its
border. Let B = {g1, . . . , gν} be a set of polynomials such that

gj = bj −

µ∑

i=1

αij ti αij ∈ K

B is called O-border prebasis of I .
If B ⊆ I and the residue classes O = {t̄1, . . . , t̄µ} form a K -vector space
basis of P/I , then B is called O-border basis of I .
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Border bases III

Proposition (Existence and Uniqueness of Border Bases)
Let O = {t1, . . . , tµ} be a basis of P/I .

There exists a unique O-border basis B of I .

Let B be an O-border prebasis whose elements are in I .
Then B is the O-border basis of I .
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Border bases III

Proposition (Existence and Uniqueness of Border Bases)
Let O = {t1, . . . , tµ} be a basis of P/I .

There exists a unique O-border basis B of I .

Let B be an O-border prebasis whose elements are in I .
Then B is the O-border basis of I .

Proposition (Relation with Gröbner bases)
Let σ be a term ordering on Tn and Oσ(I ) = Tn \ LTσ{I} order ideal.
Then

there exists a unique Oσ(I )-border basis B of I

the reduced σ-Gröbner basis of I is the subset of B corresponding to
the corners of Oσ(I )
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Gröbner bases vs border bases

Example (Border basis not containing Gröbner basis)
Let P = Q[x , y ] and

I = 〈4xy − 5y2 − 6x + 9y , x2 − y2 − 3x + 3y〉

Let O = {1, x , y , xy}; O is a basis of P/I , so there exists a unique
O-border basis B of I .

But B does not arise from any term ordering σ:

if x <σ y ⇒ x2 <σ xy ⇒ LTσ(I ) = 〈y2, xy , x3〉 Oσ = {1, y , x , x2}
if x <σ y ⇒ x2 <σ xy ⇒ LTσ(I ) = 〈x4, y〉 Oσ = {1, x , x2, x3}

if y <σ x ⇒ y2 <σ xy ⇒ LTσ(I ) = 〈x2, xy , y3〉 Oσ = {1, y , x , y2}
if x <σ y ⇒ x2 <σ xy ⇒ LTσ(I ) = 〈y4, x〉 Oσ = {1, y , y2, y3}

In any case Oσ(I ) 6= O
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Gröbner bases vs border bases - Example

1/4x^2+y^2−1=0

y

x^2+1/4y^2−1=0

x
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Gröbner bases vs border bases - Example

1/4x^2+y^2−1=0

y

x^2+1/4y^2−1=0

x

Oσ = {1, y , x , xy}

G =

{
x2 − 4

5
y2 − 4

5
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x
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Gröbner bases vs border bases - Example

1/4x^2+y^2−1=0

y

x^2+1/4y^2−1=0

x

Oσ = {1, y , x , xy}

G =

{
x2 − 4

5
y2 − 4

5

O = {1, y , x , xy}

B =





x2 − 4
5

x2y − 4
5y

xy2 − 4
5x

y2 − 4
5

xy=0

y

x

x^2+1/4y^2−1+εxy=0

1/4x^2+y^2−1+ε
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Gröbner bases vs border bases - Example

1/4x^2+y^2−1=0
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Gröbner bases vs border bases - Comparison

Let X be a finite set of distinct points of Kn

Let I(X) ⊆ P be the vanishing ideal of X
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Gröbner bases vs border bases - Comparison

Let X be a finite set of distinct points of Kn

Let I(X) ⊆ P be the vanishing ideal of X

Why Gröbner bases are UNSTABLE:
σ fixed term ordering
g = t−

∑
ci ti added to GB ⇔ eval. matrix MO∪{t}(X) rank-deficient

g = t −
∑

ci ti added to GB ⇒ closed condition ⇒ INSTABILITY
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Gröbner bases vs border bases - Comparison

Let X be a finite set of distinct points of Kn

Let I(X) ⊆ P be the vanishing ideal of X

Why Gröbner bases are UNSTABLE:
σ fixed term ordering
g = t−

∑
ci ti added to GB ⇔ eval. matrix MO∪{t}(X) rank-deficient

g = t −
∑

ci ti added to GB ⇒ closed condition ⇒ INSTABILITY

Why border bases are MORE STABLE:
O basis of P/I(X) ⇔ evaluation matrix MO(X) non-singular
O basis of P/I(X) ⇔ det(MO(X)) 6= 0 ⇒
O basis of P/I(X) ⇒ open condition ⇒ STABILITY
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Stable order ideals and stable border bases

Let Xε = {pε1, . . . , p
ε
s} finite set of distinct empirical points of Rn

Let X̃ = {p̃1, . . . , p̃s} admissible perturbation of Xε

Let O = {t1, . . . , tk} ⊆ Tn order ideal, t ∈ Tn
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Stable order ideals and stable border bases

Let Xε = {pε1, . . . , p
ε
s} finite set of distinct empirical points of Rn

Let X̃ = {p̃1, . . . , p̃s} admissible perturbation of Xε

Let O = {t1, . . . , tk} ⊆ Tn order ideal, t ∈ Tn

Definition
If the evaluation matrix MO(X̃) is full rank for each X̃ admissible
perturbation of Xε then O is called stable w.r.t. Xε
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Stable order ideals and stable border bases

Let Xε = {pε1, . . . , p
ε
s} finite set of distinct empirical points of Rn

Let X̃ = {p̃1, . . . , p̃s} admissible perturbation of Xε

Let O = {t1, . . . , tk} ⊆ Tn order ideal, t ∈ Tn

Definition
If the evaluation matrix MO(X̃) is full rank for each X̃ admissible
perturbation of Xε then O is called stable w.r.t. Xε

Proposition If O is stable contains exactly #X terms then

O is a basis of the quotient ring P/I(X)

there is an O-border basis B̃ for each perturbed ideal I(X̃)

the O-border basis B of I(X) exists, and is called stable
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How to get stable order ideals?

We generalize the Buchberger-Möller Algorithm

Main idea of BM Algorithm:
check the linear dependence of the vectors t(X), t1(X), . . . , tk(X)
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How to get stable order ideals?

We generalize the Buchberger-Möller Algorithm

Main idea of BM Algorithm:
check the linear dependence of the vectors t(X), t1(X), . . . , tk(X)

Main idea of new numerical algorithms:
check the numerical linear dependence of the above set of vectors,
that is check if there exists an admissible perturbation X̃ of Xε such
that the vectors

t(X̃), t1(X̃), . . . , tk(X̃)

are linearly dependent.
Numerical technique used: analyze the residual ρ(X̃), that is the
component of t(X̃) orthogonal to the vector space spanned by the
columns of MO(X̃).
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The Stable Order Ideal Algorithm

Let σ be a term ordering on T
n and let Xε = {pε1 , . . . , pεs } be a finite set of distinct empirical points, with X ⊂ R

n and a
common tolerance ε = (ε1, . . . , εn). Let e = (e11, . . . , esn) be the error variables whose constraints are given by
‖(ek1, . . . , ekn)‖ ≤ 1 for each k. Consider the following sequence of instructions.

S1 Start with the lists O = [1], L = [x1, . . . , xn ], the empty list C = [ ], and the matrices
M0 ∈ Mats,1(R) with all the elements equal to 1, and M1 ∈ Mats,1(R) with all the elements equal to
0.

S2 If L = [ ] then return the set O and stop. Otherwise let t = minσ(L) and delete it from L.

S3 Let v0 and v1 be the homogeneous components of degrees 0 and 1 of the evaluation vector v = t(X̃(e)).

Solve up to first order the least squares problem MO(X̃(e)) α(e) ≈ v , by computing the vectors

ρ0 = v0 − M0α0

ρ1 = v1 − M0α1 − M1α0

where

α0 = (M
t
0M0)

−1
M

t
0v0

α1 = (M
t
0M0)

−1
(M

t
0v1 + M

t
1v0 − M

t
0M1α0 − M

t
1M0α0).

S4 Let Ct ∈ Mats,sn(R) be such that ρ1 = Cte. Compute the minimal 2-norm solution ê of the
underdetermined system Cte = −ρ0.

S5 If ‖ê‖ >
√

s‖ε‖ then adjoin the vector v0 as a new column of M0 and the vector v1 as a new column
of M1. Append the power product t to O, and add to L those elements of {x1t, . . . , xnt} which are
not multiples of an element of L or C . Continue with step S2.

S6 Otherwise append t to the list C , and remove from L all multiples of t. Continue with step S2.
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The Stable Order Ideal (SOI) Algorithm

Input: a finite set Xε

⇓
SOI
⇓

Output: stable order ideal O
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The Stable Order Ideal (SOI) Algorithm

Input: a finite set Xε

⇓
SOI
⇓

Output: stable order ideal O

SOI

Parametrizes the empirical points

At each step it studies ρ(X̃) =
component of t(X̃) orthogonal
to MO(X̃)

Performs a first order error analysis
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The Stable Order Ideal (SOI) Algorithm

Input: a finite set Xε

⇓
SOI
⇓

Output: stable order ideal O

SOI

Parametrizes the empirical points

At each step it studies ρ(X̃) =
component of t(X̃) orthogonal
to MO(X̃)

Performs a first order error analysis

Note that:

once O stable and #O = s, then O-border basis B of I(X) is simply
computed via linear algebra

as a by-product a set of almost vanishing polynomials (polynomials
whose evaluation at the points is minimum) is returned

algorithm SOI is implemented in CoCoA with the name
StableBBasis5
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Example of two conics

Example: The original two conics:
{

x2 + 1
4y

2 − 1 = 0
1
4x

2 + y2 − 1 = 0

intersect at the points

Y =

{(√
4

5
,

√
4

5

)
,

(√
4

5
,−

√
4

5

)
,

(
−

√
4

5
,

√
4

5

)
,

(
−

√
4

5
,−

√
4

5

)}
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Example of two conics

Example: The original two conics:
{

x2 + 1
4y

2 − 1 = 0
1
4x

2 + y2 − 1 = 0

intersect at the points

Y =

{(√
4

5
,

√
4

5

)
,

(√
4

5
,−

√
4

5

)
,

(
−

√
4

5
,

√
4

5

)
,

(
−

√
4

5
,−

√
4

5

)}

We consider the new set of points:

X =

{(
10

13
,
10

13

)
,

(
10

9
,−

10

9

)
,

(
−
10

9
,
10

9

)
,

(
−
10

13
,−

10

13

)}

which are the solutions of:
{

x2 + 1
4y

2 − 1 + 11
25xy = 0

1
4x

2 + y2 − 1 + 11
25xy = 0
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Computations with CoCoA I

We compute Gröbner basis G of I(X)

G =





xy + 125
44 y

2 − 25
11

x2 − y2

y3 + 4400/13689x − 12500/13689y

and so

LT(I(X)) = {xy , x2, y3} OG = {1, y , x , y2}

Note that OG is not stable (OG is not a basis of P/I(Y))
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Computations with CoCoA II

Using the function StableBBasis5(Points:LIST, Toler:LIST)

w.r.t. tolerance ε = (0.25, 0.25) we obtain the stable order ideal

O = {1, y , x , xy}

whose border is ∂O = {y2, xy2, x2y , x2}, and the O-stable border
basis B of I(X)

B =





y2 + 44
125xy − 4

5
xy2 − αx + βy
x2y + βx − αy
x2 + 44

125xy − 4
5

where

α =
913141938782964423990065015706041347067

1000000000000000000000000000000000000000
≈ 0.91314

β =
40178245306450434655562860691065819271

125000000000000000000000000000000000000
≈ 0.32142
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Final remarks and future work

Remarks:

almost vanishing polynomials minimize the sum of squared
evaluations at X

almost vanishing polynomials do not minimize the squared distances
from X

Future work:

with similar techniques compute varieties lying close to the points X

use these polynomials to compute a border basis of a perturbed set of
points X̃
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Thank you!
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