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Thang Luu Ba ( Joint work with Laurent Busé) Matrix-Based Implicit Representations of Rational Algebraic Curves and Applications



Matrix representation of parameterized space curves
Computing singular points of C by means of its matrix representation

Curve/Curve intersection problem
Conclusion

1 Matrix representation of parameterized space curves
The implicitation of parameterized space curves
µ-basis of a rational curve C
The initial Fitting ideal

2 Computing singular points of C by means of its matrix
representation

The singular points of C
Rank of a representation matrix at a singular point
Singular factors

3 Curve/Curve intersection problem
Curve/Curve intersection problem
Linearization of a univariate polynomial matrix
The Algorithm for extracting the regular part
Matrix intersection algorithm

4 Conclusion
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The parameterized map

Suppose given a parametrization

P1
K

φ−→ Pn
K

(s : t) 7→ (f0 : f1 : . . . : fn)(s, t)

of a space curve C such that

i) fi are the homogeneous polynomial with the same degree d.

ii) gcd(f0, . . . , fn) ∈ K \ {0}.
C := image of φ (called a rational curve).
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The defining ideal of a parametrized space curve

Let h be ring morphism :

h : K[x0, . . . , xn] → K[s, t]

xi 7→ fi (s, t) i = 0, . . . , n.

We have
IC = ker h.

Remark.

IC is a homogeneous prime ideal of K[x0, . . . , xn].

VK(IC) = C.
It is quite difficult to compute IC .
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Syzygies of a set polynomial f0(s, t), . . . , fn(s, t)

Denote f := (f0, . . . , fn),

Syz(f) =

{
(g0(s, t), . . . , gn(s, t)) :

n∑
i=0

gi (s, t)fi (s, t) = 0

}

⊂ ⊕n
i=0K[s, t].

By Hilbert-Burch Theorem : Syz(f) is free and graded
K[s, t]-module of rank n

Chosing a basis u1(s, t), u2(s, t), . . . , un(s, t) of Syz(f).
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µ-basis of a rational curve C

Definition

u1(s, t), u2(s, t), . . . , un(s, t) is called a µ-basis of a rational space
curve C

Denote µi := deg ui (s, t), then∑n
i=1 µi = d .

The collection of integers (µ1, µ2, . . . , µn) is unique if we
order 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µn.

It exist an effective algorithm for computing µ-basis (without
base Grobner).
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Denote A := K[x0, . . . , xn]; C := A[s, t], we consider the grading of
C given by deg(s) = deg(t) = 1 and deg(a) = 0 for all a ∈ A. Set

ui (s, t, x0, x1, . . . , xn) =
n∑

j=0

ui ,j(s, t)xj ∈ C

and B be the cokernel of the following graded map :

φ : ⊕n
i=1C (−µi )

u1,...,un−−−−→ C : (g1, . . . , gn) 7→
n∑

i=1

uigi (1)

φν : [⊕n
i=1C (−µi )

u1,...,un−−−−→ C ]ν : (g1, . . . , gn) 7→
n∑

i=1

uigi (2)
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- Denote F(Bν), the initial Fitting ideal of Bν , which is the ideal of
A generated by the (ν + 1)-minors of a matrix of (2).

Theorem

For all integer ν ≥ µn + µn−1 − 1,

F(Bν) = IC
deg(φ)

at all points on C except a finite number (possibly zero) support on
C.

Remark.

F(Bν) = IC if φ is birational map (i.e.deg(φ) = 1).√
F(Bν) = IC .
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The matrix representation of a space curve C

Suppose that ν ≥ µn + µn−1 − 1, we have

Matrix M(φ)ν of linear map φν is called a matrix
representations of a space curve C. Its entries are linear forms
in K[x0 . . . , xn]

Size of M(φ)ν is (ν + 1)× (n(ν + 1)− d).

Remark.

It is easy to compute M(φ)ν .

M(φ)ν can be seen as a bridge between the parametric
representation φ of C and its implicit representation IC .
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Example

Let C be the rational space curve given by parameterized

f0(s, t) = 3s4t2 − 9s3t3 − 3s2t4 + 12st5 + 6t6,

f1(s, t) = −3s6 + 18s5t − 27s4t2 − 12s3t3 + 33s2t4 + 6st5 − 6t6,

f2(s, t) = s6 − 6s5t + 13s4t2 − 16s3t3 + 9s2t4 + 14st5 − 6t6,

f3(s, t) = −2s4t2 + 8s3t3 − 14s2t4 + 20st5 − 6t6.
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A µ-basis for C is :

u1 = (s2 − 3st + t2)x + t2y

u2 = (s2 − st + 3t2)y + (3s2 − 3st − 3t2)z ,

u3 = 2t2z + (s2 − 2st − 2t2)w .

From degs,t(u1) = degs,t(u2) = degs,t(u3) = 2, we can chose
ν = 3, then matrix representation of C is


x + y 0 3y − 3z 0 2z − 2w 0
−3x x + y −y − 3z 3y − 3z −2w 2z − 2w

x −3x y + 3z −y − 3z w −2w
0 x 0 y + 3z 0 w

 .
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The singular points of C

Let C be a rational space curve of parameterized by the birational
map

P1
K

φ−→ P3
K

(s : t) 7→ (f0 : f1 : f2 : f3)(s, t).

Remark.

The condition birational map is not restrictive.

Matrix representation of C is M(φ)ν with ν ≥ µ3 + µ2 − 1.
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Inversion formula of a point on C

Definition

An inversion formula of P ∈ C is a homogeneous polynomial
hP(s, t) whose roots (including multiplicities) are the parameter
values (si : ti ) corresponding to P, i.e.

hP(s, t) =
∏α

i=0(ti s − si t)ri ,
∑α

i=0 ri = r
where P = f(s0, t0) = · · · = f(sα, tα).

Definition

deg hP(s, t) is called a multiplicity of P. Denote mP(C)

Remark. This definition corresponds to the classical definition of
multiplicity.
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Computation of the inversion formula

Lemma

Let P ∈ C. Then,

hP(s, t) = gcd(u1(s, t; P), u2(s, t; P), u3(s, t; P)).
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Rank of a representation matrix at a singular point

Theorem

Given a point P ∈ P3, we have

rank M(φ)ν(P) = ν + 1−mP(C),

or equivalently corank M(φ)ν(P) = mP(C).

Remark. This theorem allows to characterize the singular points
with multiplicity by rank of matrix representation.
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Denote : M(φ)ν(s, t) := M(φ)ν(f0, f1, f2, f3).
Remark.

rank M(φ)ν(s, t) < ν + 1 for any point (s : t) ∈ P1

The entries of M(s, t) are homogeneous polynomials of two
variables of the same degree d.
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The singular factor of the parameterization φ

Di (s, t) := gcd of all the i-minors of M(φ)ν(s, t)

Definition

A collection of homogeneous polynomials d1(s, t), . . . , dν+1(s, t) in
K[s, t] such that for all integer i = 1, . . . , ν + 1

Di (s, t) = d i
ν+1d i−1

ν . . . d2
ν+1−i+2dν+1−i+1

is called a collection of singular factors of the parameterization φ.

Remark. The computation of the singular factors can be done
through Smith form computation.
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Singularity factors of matrix

Theorem

dν+1(s, t) = dν(s, t) = · · · = dµ3+1(s, t) = 1 and d1(s, t) = 0.

For any singular point P ∈ C, hP(s, t) | dmP(C)(s, t) and
gcd(hP(s, t), dk(s, t)) = 1 for all k > mP(C).
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Corollary

Let P = φ(s0 : t0) be a point on C, then dmP(C)(s0 : t0) = 0
and dk(s0 : t0) 6= 0 for all k > mP(C).

For any integer k such that 2 ≤ k ≤ µ3, the product∏
P∈C : mP(C)=k

hp(s, t)

that runs over all the singular points on C of multiplicity k,
divides the singular factor dk(s, t).
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Example

Let C be the rational space curve given by parameterized

f(s, t) = (s5, s3t2, s2t3, t5)

then matrix representation of C is

M(φ) =


y 0 0 x 0 z 0
−z y 0 0 x 0 z
x −z y −y 0 −w 0
0 0 −z 0 −y 0 −w

 ,

Thang Luu Ba ( Joint work with Laurent Busé) Matrix-Based Implicit Representations of Rational Algebraic Curves and Applications



Matrix representation of parameterized space curves
Computing singular points of C by means of its matrix representation

Curve/Curve intersection problem
Conclusion

The singular points of C
Rank of a representation matrix at a singular point
Singular factors

Substitute x = s5, y = s3t2, z = s2t3,w = t5, we have matrix
representation of C is

M(φ)(s, t) =


s3t2 0 0 s5 0 s2t3 0
−s2t3 s3t2 0 0 s5 0 s2t3

0 −s2t3 s3t2 −s3t2 0 −t5 0
0 0 −s2t3 0 −s3t2 0 −t5

 ,
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The form Smith of M(φ)(s, 1), M(φ)(1, t) are respectively
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 s2 0 0 0 0
0 0 0 0 0 0 0

 ,


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 t2 0 0 0 0
0 0 0 0 0 0 0

 ,

Factor singular of C : d4(s, t) = 1, d3(s, t) = 1, d2(s, t) = s2t2.
Thus, we have only two singular points of multiplycities 2,
A = (0 : 0 : 0 : 1),B = (1 : 0 : 0 : 0) corresponds to
(s0 : t0) = (0 : 1), (1 : 0).
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Curve/Curve intersection problem

Suppose given rational space curve C1 with M(φ1)(x , y , z ,w) to be
a matrix representation and a rational space curve C2 represented
by a parameterization

Ψ : P1
K → P3

K : (s : t) 7→ (x(s, t) : y(s, t) : z(s, t) : w(s, t))

where x(s, t), y(s, t), z(s, t),w(s, t) are homogeneous polynomials
of the same degree and without common factor in K[s, t].
Determine the set C1 ∩ C2 ⊂ P3

K
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Matrix representation of C1 ∩ C2

By replacing the variables x , y , z ,w by the homogeneous
polynomials x(s, t), y(s, t), z(s, t),w(s, t) respectively, we get the
matrix

M(φ1)(s, t) = M(φ1)(x(s, t), y(s, t), z(s, t),w(s, t)).

Lemma

For all point (s0 : t0) ∈ P1
K, rank M(φ1)(s0, t0) drops if and only if

the point (x(s0, t0) : y(s0, t0) : z(s0, t0) : w(s0, t0)) ∈ C1 ∩ C2.

It follows that the points in C1 ∩ C2 associated to points (s : t)
such that s 6= 0, are in correspondence with the set of values t ∈ K
such that M(φ1)(1, t) drops of rank strictly less than its row and
column dimensions.
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Linearization of a polynomial matrix

Given an m × n-matrix M(t) = (ai ,j(t)) with ai ,j(t) ∈ K[t].

M(t) = Md td + Md−1td−1 + . . .+ M0

where Mi ∈ Km×n and d = maxi ,j{deg(ai ,j(t))}.
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Definition

The generalized companion matrices A,B of the matrix M(t) are
the matrices with coefficients in K of size ((d − 1)m + n)× dm
that are given by

A =

0BBBBB@
0 I . . . . . . 0
0 0 I . . . 0
...

...
...

...
...

0 0 . . . . . . I
Mt

0 Mt
1 . . . . . . Mt

d−1

1CCCCCA

B =

0BBBBB@
I 0 . . . . . . 0
0 I 0 . . . 0
...

...
...

...
...

0 0 . . . I 0
0 0 . . . . . . −Mt

d

1CCCCCA
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The Algorithm for extracting the regular part

Theorem

rank M(t) < drops ⇔ rank(A− tB) < drops .

In the paper (joint work with L. Busé and B. Mourrain (SNC09)),
we have given an algorithm allows to remove the singular blocks of
the pencil of matrices A− tB and obtain a regular pencil of matrix
A′ − tB ′

Theorem

rank(A− tB) drops ⇔ rank(A′ − tB ′) drops.
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Remark.

The idea of using matrix representations for computing the
intersection is quite old.

The novelty of our contribution is to enable non squares
matrices.

Matrix representation of C1 ∩ C2 is almost always non square
matrix.
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Matrix intersection algorithm

Input : Two rational space curves C1 and C2 parameterized by φ1

and φ2 respectively.
Output : The intersection points of C1 and C2 .
1. Build the matrix representation M(φ1)ν of C1 for a suitable ν.
2. Build the generalized companion matrices A and B of
M(φ1)(1, t).
3. Compute the companion regular matrices A′ and B ′.
4. Compute the eigenvalues of (A′,B ′).
5. For each eigenvalue t0, the point φ2(1 : t0) is one of the
intersection points.
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Example

Let C1 be the rational space curve given by the parameterization

f0(s, t) = 3s4t2 − 9s3t3 − 3s2t4 + 12st5 + 6t6,

f1(s, t) = −3s6 + 18s5t − 27s4t2 − 12s3t3 + 33s2t4 + 6st5 − 6t6,

f2(s, t) = s6 − 6s5t + 13s4t2 − 16s3t3 + 9s2t4 + 14st5 − 6t6,

f3(s, t) = −2s4t2 + 8s3t3 − 14s2t4 + 20st5 − 6t6.

and C2,the twisted cubic, is parameterized by

x(t) = 1, y(t) = t, z(t) = t2,w(t) = t3.
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M(φ1) =


x + y 0 3y − 3z 0 2z − 2w 0
−3x x + y −y − 3z 3y − 3z −2w 2z − 2w

x −3x y + 3z −y − 3z w −2w
0 x 0 y + 3z 0 w

 .
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Substitute : x(t) = 1, y(t) = t, z(t) = t2,w(t) = t3

M(φ1)(t) =


1 + t 0 3t − 3t2 0 2t2 − 2t3 0
−3 1 + t −t − 3t2 3t − 3t2 −2t3 2t2 − 2t3

1 −3 t + 3t2 −t − 3t2 t3 −2t3

0 1 0 t + 3t2 0 t3

 .
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We have M(φ1)(t) = M3t3 + M2t2 + M1t + M0 and the
generalized companion matrices of M(t) are

A =

 0 I 0
0 0 I

Mt
0 Mt

1 Mt
2

 ,B =

 I 0 0
0 I 0
0 0 −Mt

3

 .
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A′ =

(
0 0
0 0

)
,B ′ =

(
1 0
0 1

)
Then, we compute the following eigenvalues : t = 0 and thus C1

intersect C2 at the only point (1 : 0 : 0 : 0).
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Conclusion

Introduce new matrix- based representation of rational space
curves.

The detection of singularities points via matrix-based
representation of rational space curves.

Transfer the solving of the curve/curve intersection problem
into the eigenvalues computing problems.
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Computer algebraic system

Maple 12.

Mathemagix (Packtage MMX).

Macaulay 2.
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