Matrix-Based Implicit Representations of Rational Algebraic Curves and Applications

Thang Luu Ba
(Joint work with Laurent Busé)

Université de Nice and INRIA Sophia Antipolis

SAGA Workshop, March 15-19/2010, Auron-France
(1) Matrix representation of parameterized space curves

- The implicitation of parameterized space curves
- μ-basis of a rational curve \mathcal{C}
- The initial Fitting ideal
(2) Computing singular points of \mathcal{C} by means of its matrix representation
- The singular points of \mathcal{C}
- Rank of a representation matrix at a singular point
- Singular factors
(3) Curve/Curve intersection problem
- Curve/Curve intersection problem
- Linearization of a univariate polynomial matrix
- The Algorithm for extracting the regular part
- Matrix intersection algorithm

4 Conclusion

Matrix representation of parameterized space curves

The parameterized map

Suppose given a parametrization

$$
\begin{aligned}
\mathbb{P}_{\mathbb{K}}^{1} & \xrightarrow{\phi} \mathbb{P}_{\mathbb{K}}^{n} \\
(s: t) & \mapsto\left(f_{0}: f_{1}: \ldots: f_{n}\right)(s, t)
\end{aligned}
$$

of a space curve \mathbf{C} such that
i) f_{i} are the homogeneous polynomial with the same degree d .
ii) $\operatorname{gcd}\left(f_{0}, \ldots, f_{n}\right) \in \mathbb{K} \backslash\{0\}$.
$\mathcal{C}:=$ image of ϕ (called a rational curve).

Matrix representation of parameterized space curves

The implicitation of parameterized space curves μ-basis of a rational curve \mathcal{C}

The defining ideal of a parametrized space curve

Let h be ring morphism :

$$
\begin{aligned}
h: \mathbb{K}\left[x_{0}, \ldots, x_{n}\right] & \rightarrow \mathbb{K}[s, t] \\
x_{i} & \mapsto f_{i}(s, t) \quad i=0, \ldots, n .
\end{aligned}
$$

We have

$$
I_{\mathcal{C}}=\operatorname{ker} h .
$$

Remark.

- $I_{\mathcal{C}}$ is a homogeneous prime ideal of $\mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$.
- $V_{\mathbb{K}}\left(I_{\mathcal{C}}\right)=\mathcal{C}$.
- It is quite difficult to compute $I_{\mathcal{C}}$.

Matrix representation of parameterized space curves

The implicitation of parameterized space curves μ-basis of a rational curve \mathcal{C}

Syzygies of a set polynomial $f_{0}(s, t), \ldots, f_{n}(s, t)$

Denote $\mathbf{f}:=\left(f_{0}, \ldots, f_{n}\right)$,

$$
\operatorname{Syz}(\mathbf{f})=\left\{\left(g_{0}(s, t), \ldots, g_{n}(s, t)\right): \sum_{i=0}^{n} g_{i}(s, t) f_{i}(s, t)=0\right\}
$$

$\subset \oplus_{i=0}^{n} \mathbb{K}[s, t]$.

- By Hilbert-Burch Theorem : $\operatorname{Syz}(\mathbf{f})$ is free and graded $\mathbb{K}[s, t]$-module of rank n
- Chosing a basis $u_{1}(s, t), u_{2}(s, t), \ldots, u_{n}(s, t)$ of $\operatorname{Syz}(\mathbf{f})$.

μ-basis of a rational curve \mathcal{C}

Definition

$u_{1}(s, t), u_{2}(s, t), \ldots, u_{n}(s, t)$ is called a μ-basis of a rational space curve \mathcal{C}

Denote $\mu_{i}:=\operatorname{deg} u_{i}(s, t)$, then

- $\sum_{i=1}^{n} \mu_{i}=d$.
- The collection of integers $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$ is unique if we order $0 \leq \mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{n}$.
- It exist an effective algorithm for computing μ-basis (without base Grobner).

Denote $A:=\mathbb{K}\left[x_{0}, \ldots, x_{n}\right] ; C:=A[s, t]$, we consider the grading of C given by $\operatorname{deg}(s)=\operatorname{deg}(t)=1$ and $\operatorname{deg}(a)=0$ for all $a \in A$. Set

$$
u_{i}\left(s, t, x_{0}, x_{1}, \ldots, x_{n}\right)=\sum_{j=0}^{n} u_{i, j}(s, t) x_{j} \in C
$$

and B be the cokernel of the following graded map:

$$
\begin{array}{r}
\phi: \oplus_{i=1}^{n} C\left(-\mu_{i}\right) \xrightarrow{u_{1}, \ldots, u_{n}} C:\left(g_{1}, \ldots, g_{n}\right) \mapsto \sum_{i=1}^{n} u_{i} g_{i} \\
\phi_{\nu}:\left[\oplus_{i=1}^{n} C\left(-\mu_{i}\right) \xrightarrow{u_{1}, \ldots, u_{n}} C\right]_{\nu}:\left(g_{1}, \ldots, g_{n}\right) \mapsto \sum_{i=1}^{n} u_{i} g_{i} \tag{2}
\end{array}
$$

The implicitation of parameterized space curves μ-basis of a rational curve \mathcal{C}
The initial Fitting ideal

- Denote $\mathfrak{F}\left(B_{\nu}\right)$, the initial Fitting ideal of B_{ν}, which is the ideal of A generated by the $(\nu+1)$-minors of a matrix of (2).

Theorem

For all integer $\nu \geq \mu_{n}+\mu_{n-1}-1$,

$$
\mathfrak{F}\left(B_{\nu}\right)=I_{\mathcal{C}}{ }^{\operatorname{deg}(\phi)}
$$

at all points on \mathcal{C} except a finite number (possibly zero) support on \mathcal{C}.

Remark.

- $\mathfrak{F}\left(B_{\nu}\right)=I_{\mathcal{C}}$ if ϕ is birational map (i.e.deg $(\phi)=1$).
- $\sqrt{\mathfrak{F}\left(B_{\nu}\right)}=I_{\mathcal{C}}$.

Matrix representation of parameterized space curves

The matrix representation of a space curve \mathcal{C}

Suppose that $\nu \geq \mu_{n}+\mu_{n-1}-1$, we have

- Matrix $\mathrm{M}(\phi)_{\nu}$ of linear map ϕ_{ν} is called a matrix representations of a space curve \mathcal{C}. Its entries are linear forms in $\mathbb{K}\left[x_{0} \ldots, x_{n}\right]$
- Size of $\mathrm{M}(\phi)_{\nu}$ is $(\nu+1) \times(n(\nu+1)-d)$.

Remark.

- It is easy to compute $\mathrm{M}(\phi)_{\nu}$.
- $\mathrm{M}(\phi)_{\nu}$ can be seen as a bridge between the parametric representation ϕ of \mathcal{C} and its implicit representation $I_{\mathcal{C}}$.

The implicitation of parameterized space curves μ-basis of a rational curve \mathcal{C}
The initial Fitting ideal

Example

Let \mathcal{C} be the rational space curve given by parameterized

$$
\begin{aligned}
& f_{0}(s, t)=3 s^{4} t^{2}-9 s^{3} t^{3}-3 s^{2} t^{4}+12 s t^{5}+6 t^{6} \\
& f_{1}(s, t)=-3 s^{6}+18 s^{5} t-27 s^{4} t^{2}-12 s^{3} t^{3}+33 s^{2} t^{4}+6 s t^{5}-6 t^{6} \\
& f_{2}(s, t)=s^{6}-6 s^{5} t+13 s^{4} t^{2}-16 s^{3} t^{3}+9 s^{2} t^{4}+14 s t^{5}-6 t^{6} \\
& f_{3}(s, t)=-2 s^{4} t^{2}+8 s^{3} t^{3}-14 s^{2} t^{4}+20 s t^{5}-6 t^{6}
\end{aligned}
$$

The implicitation of parameterized space curves μ-basis of a rational curve C
The initial Fitting ideal

A μ-basis for \mathcal{C} is :

$$
\begin{aligned}
& u_{1}=\left(s^{2}-3 s t+t^{2}\right) x+t^{2} y \\
& u_{2}=\left(s^{2}-s t+3 t^{2}\right) y+\left(3 s^{2}-3 s t-3 t^{2}\right) z \\
& u_{3}=2 t^{2} z+\left(s^{2}-2 s t-2 t^{2}\right) w
\end{aligned}
$$

From $\operatorname{deg}_{s, t}\left(u_{1}\right)=\operatorname{deg}_{s, t}\left(u_{2}\right)=\operatorname{deg}_{s, t}\left(u_{3}\right)=2$, we can chose $\nu=3$, then matrix representation of \mathcal{C} is

$$
\left(\begin{array}{cccccc}
x+y & 0 & 3 y-3 z & 0 & 2 z-2 w & 0 \\
-3 x & x+y & -y-3 z & 3 y-3 z & -2 w & 2 z-2 w \\
x & -3 x & y+3 z & -y-3 z & w & -2 w \\
0 & x & 0 & y+3 z & 0 & w
\end{array}\right)
$$

The singular points of \mathcal{C}

Let \mathcal{C} be a rational space curve of parameterized by the birational map

$$
\begin{aligned}
\mathbb{P}_{\mathbb{K}}^{1} & \xrightarrow{\phi} \mathbb{P}_{\mathbb{K}}^{3} \\
(s: t) & \mapsto\left(f_{0}: f_{1}: f_{2}: f_{3}\right)(s, t) .
\end{aligned}
$$

Remark.

- The condition birational map is not restrictive.
- Matrix representation of \mathcal{C} is $\mathrm{M}(\phi)_{\nu}$ with $\nu \geq \mu_{3}+\mu_{2}-1$.

Inversion formula of a point on \mathcal{C}

Definition

An inversion formula of $P \in \mathcal{C}$ is a homogeneous polynomial $h_{P}(s, t)$ whose roots (including multiplicities) are the parameter values ($s_{i}: t_{i}$) corresponding to P, i.e.

$$
h_{P}(s, t)=\prod_{i=0}^{\alpha}\left(t_{i} s-s_{i} t\right)^{r_{i}}, \sum_{i=0}^{\alpha} r_{i}=r
$$

where $P=\mathbf{f}\left(s_{0}, t_{0}\right)=\cdots=\mathbf{f}\left(s_{\alpha}, t_{\alpha}\right)$.

Definition

$\operatorname{deg} h_{P}(s, t)$ is called a multiplicity of P . Denote $m_{P}(\mathcal{C})$
Remark. This definition corresponds to the classical definition of multiplicity.

Computation of the inversion formula

Lemma

$$
\begin{aligned}
& \text { Let } P \in \mathcal{C} \text {. Then, } \\
& \qquad h_{P}(s, t)=\operatorname{gcd}\left(u_{1}(s, t ; P), u_{2}(s, t ; P), u_{3}(s, t ; P)\right) .
\end{aligned}
$$

Rank of a representation matrix at a singular point

Theorem

Given a point $P \in \mathbb{P}^{3}$, we have

$$
\operatorname{rank} \mathrm{M}(\phi)_{\nu}(P)=\nu+1-m_{P}(\mathcal{C})
$$

or equivalently corank $\mathrm{M}(\phi)_{\nu}(P)=m_{P}(\mathcal{C})$.
Remark. This theorem allows to characterize the singular points with multiplicity by rank of matrix representation.

Denote : $\mathrm{M}(\phi)_{\nu}(s, t):=\mathrm{M}(\phi)_{\nu}\left(f_{0}, f_{1}, f_{2}, f_{3}\right)$.
Remark.

- rank $\mathrm{M}(\phi)_{\nu}(s, t)<\nu+1$ for any point $(s: t) \in \mathbb{P}^{1}$
- The entries of $M(s, t)$ are homogeneous polynomials of two variables of the same degree d.

The singular factor of the parameterization ϕ

$D_{i}(s, t):=\operatorname{gcd}$ of all the i-minors of $\mathrm{M}(\phi)_{\nu}(s, t)$

Definition

A collection of homogeneous polynomials $d_{1}(s, t), \ldots, d_{\nu+1}(s, t)$ in $\mathbb{K}[s, t]$ such that for all integer $i=1, \ldots, \nu+1$

$$
D_{i}(s, t)=d_{\nu+1}^{i} d_{\nu}^{i-1} \ldots d_{\nu+1-i+2}^{2} d_{\nu+1-i+1}
$$

is called a collection of singular factors of the parameterization ϕ.
Remark. The computation of the singular factors can be done through Smith form computation.

Singularity factors of matrix

Theorem

- $d_{\nu+1}(s, t)=d_{\nu}(s, t)=\cdots=d_{\mu_{3}+1}(s, t)=1$ and $d_{1}(s, t)=0$.
- For any singular point $P \in \mathcal{C}, h_{P}(s, t) \mid d_{m_{P}(\mathcal{C})}(s, t)$ and $\operatorname{gcd}\left(h_{P}(s, t), d_{k}(s, t)\right)=1$ for all $k>m_{P}(\mathcal{C})$.

Corollary

- Let $P=\phi\left(s_{0}: t_{0}\right)$ be a point on \mathcal{C}, then $d_{m_{P}(\mathcal{C})}\left(s_{0}: t_{0}\right)=0$ and $d_{k}\left(s_{0}: t_{0}\right) \neq 0$ for all $k>m_{P}(\mathcal{C})$.
- For any integer k such that $2 \leq k \leq \mu_{3}$, the product

$$
\prod_{P \in \mathcal{C}: m_{P}(\mathcal{C})=k} h_{p}(s, t)
$$

that runs over all the singular points on \mathcal{C} of multiplicity k, divides the singular factor $d_{k}(s, t)$.

Example

Let \mathcal{C} be the rational space curve given by parameterized

$$
\mathbf{f}(s, t)=\left(s^{5}, s^{3} t^{2}, s^{2} t^{3}, t^{5}\right)
$$

then matrix representation of \mathcal{C} is

$$
\mathrm{M}(\phi)=\left(\begin{array}{ccccccc}
y & 0 & 0 & x & 0 & z & 0 \\
-z & y & 0 & 0 & x & 0 & z \\
x & -z & y & -y & 0 & -w & 0 \\
0 & 0 & -z & 0 & -y & 0 & -w
\end{array}\right)
$$

Substitute $x=s^{5}, y=s^{3} t^{2}, z=s^{2} t^{3}, w=t^{5}$, we have matrix representation of \mathcal{C} is

$$
M(\phi)(s, t)=\left(\begin{array}{ccccccc}
s^{3} t^{2} & 0 & 0 & s^{5} & 0 & s^{2} t^{3} & 0 \\
-s^{2} t^{3} & s^{3} t^{2} & 0 & 0 & s^{5} & 0 & s^{2} t^{3} \\
0 & -s^{2} t^{3} & s^{3} t^{2} & -s^{3} t^{2} & 0 & -t^{5} & 0 \\
0 & 0 & -s^{2} t^{3} & 0 & -s^{3} t^{2} & 0 & -t^{5}
\end{array}\right),
$$

The form Smith of $\mathrm{M}(\phi)(s, 1), \mathrm{M}(\phi)(1, t)$ are respectively

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & s^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & t^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

Factor singular of $\mathcal{C}: d_{4}(s, t)=1, d_{3}(s, t)=1, d_{2}(s, t)=s^{2} t^{2}$.
Thus, we have only two singular points of multiplycities 2 ,
$A=(0: 0: 0: 1), B=(1: 0: 0: 0)$ corresponds to
$\left(s_{0}: t_{0}\right)=(0: 1),(1: 0)$.

Curve/Curve intersection problem

Suppose given rational space curve \mathcal{C}_{1} with $M\left(\phi_{1}\right)(x, y, z, w)$ to be a matrix representation and a rational space curve \mathcal{C}_{2} represented by a parameterization

$$
\psi: \mathbb{P}_{\mathbb{K}}^{1} \rightarrow \mathbb{P}_{\mathbb{K}}^{3}:(s: t) \mapsto(x(s, t): y(s, t): z(s, t): w(s, t))
$$

where $x(s, t), y(s, t), z(s, t), w(s, t)$ are homogeneous polynomials of the same degree and without common factor in $\mathbb{K}[s, t]$. Determine the set $\mathcal{C}_{1} \cap \mathcal{C}_{2} \subset \mathbb{P}_{\mathbb{K}}^{3}$

Matrix representation of $\mathcal{C}_{1} \cap \mathcal{C}_{2}$

By replacing the variables x, y, z, w by the homogeneous polynomials $x(s, t), y(s, t), z(s, t), w(s, t)$ respectively, we get the matrix

$$
M\left(\phi_{1}\right)(s, t)=M\left(\phi_{1}\right)(x(s, t), y(s, t), z(s, t), w(s, t)) .
$$

Lemma

For all point $\left(s_{0}: t_{0}\right) \in \mathbb{P}_{\mathbb{K}}^{1}$, rank $M\left(\phi_{1}\right)\left(s_{0}, t_{0}\right)$ drops if and only if the point $\left(x\left(s_{0}, t_{0}\right): y\left(s_{0}, t_{0}\right): z\left(s_{0}, t_{0}\right): w\left(s_{0}, t_{0}\right)\right) \in \mathcal{C}_{1} \cap \mathcal{C}_{2}$.

It follows that the points in $\mathbf{C}_{1} \cap \mathbf{C}_{2}$ associated to points ($s: t$) such that $s \neq 0$, are in correspondence with the set of values $t \in \mathbb{K}$ such that $M\left(\phi_{1}\right)(1, t)$ drops of rank strictly less than its row and column dimensions.

Matrix representation of parameterized space curves

Linearization of a polynomial matrix

Given an $m \times n$-matrix $M(t)=\left(a_{i, j}(t)\right)$ with $a_{i, j}(t) \in \mathbb{K}[t]$.

$$
M(t)=M_{d} t^{d}+M_{d-1} t^{d-1}+\ldots+M_{0}
$$

where $M_{i} \in \mathbb{K}^{m \times n}$ and $d=\max _{i, j}\left\{\operatorname{deg}\left(a_{i, j}(t)\right)\right\}$.

Definition

The generalized companion matrices A, B of the matrix $M(t)$ are the matrices with coefficients in \mathbb{K} of size $((d-1) m+n) \times d m$ that are given by

$$
\begin{aligned}
& A=\left(\begin{array}{ccccc}
0 & I & \ldots & \ldots & 0 \\
0 & 0 & I & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & \ldots & I \\
M_{0}^{t} & M_{1}^{t} & \ldots & \ldots & M_{d-1}^{t}
\end{array}\right) \\
& B=\left(\begin{array}{ccccc}
1 & 0 & \ldots & \ldots & 0 \\
0 & I & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & I & 0 \\
0 & 0 & \ldots & \ldots & -M_{d}^{t}
\end{array}\right)
\end{aligned}
$$

The Algorithm for extracting the regular part

Theorem

$$
\operatorname{rank} M(t)<d r o p s \Leftrightarrow \operatorname{rank}(A-t B)<d r o p s
$$

In the paper (joint work with L. Busé and B. Mourrain (SNC09)), we have given an algorithm allows to remove the singular blocks of the pencil of matrices $A-t B$ and obtain a regular pencil of matrix $A^{\prime}-t B^{\prime}$

Theorem

$$
\operatorname{rank}(A-t B) \text { drops } \Leftrightarrow \operatorname{rank}\left(A^{\prime}-t B^{\prime}\right) \text { drops. }
$$

Remark.

- The idea of using matrix representations for computing the intersection is quite old.
- The novelty of our contribution is to enable non squares matrices.
- Matrix representation of $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ is almost always non square matrix.

Matrix intersection algorithm

Input : Two rational space curves \mathcal{C}_{1} and \mathcal{C}_{2} parameterized by ϕ_{1} and ϕ_{2} respectively.
Output: The intersection points of \mathcal{C}_{1} and \mathcal{C}_{2}.

1. Build the matrix representation $M\left(\phi_{1}\right)_{\nu}$ of \mathcal{C}_{1} for a suitable ν.
2. Build the generalized companion matrices A and B of $M\left(\phi_{1}\right)(1, t)$.
3. Compute the companion regular matrices A^{\prime} and B^{\prime}.
4. Compute the eigenvalues of $\left(A^{\prime}, B^{\prime}\right)$.
5. For each eigenvalue t_{0}, the point $\phi_{2}\left(1: t_{0}\right)$ is one of the intersection points.

Example

Let \mathcal{C}_{1} be the rational space curve given by the parameterization

$$
\begin{aligned}
& f_{0}(s, t)=3 s^{4} t^{2}-9 s^{3} t^{3}-3 s^{2} t^{4}+12 s t^{5}+6 t^{6} \\
& f_{1}(s, t)=-3 s^{6}+18 s^{5} t-27 s^{4} t^{2}-12 s^{3} t^{3}+33 s^{2} t^{4}+6 s t^{5}-6 t^{6}, \\
& f_{2}(s, t)=s^{6}-6 s^{5} t+13 s^{4} t^{2}-16 s^{3} t^{3}+9 s^{2} t^{4}+14 s t^{5}-6 t^{6} \\
& f_{3}(s, t)=-2 s^{4} t^{2}+8 s^{3} t^{3}-14 s^{2} t^{4}+20 s t^{5}-6 t^{6} .
\end{aligned}
$$

and \mathcal{C}_{2}, the twisted cubic, is parameterized by

$$
x(t)=1, y(t)=t, z(t)=t^{2}, w(t)=t^{3} .
$$

$$
M\left(\phi_{1}\right)=\left(\begin{array}{cccccc}
x+y & 0 & 3 y-3 z & 0 & 2 z-2 w & 0 \\
-3 x & x+y & -y-3 z & 3 y-3 z & -2 w & 2 z-2 w \\
x & -3 x & y+3 z & -y-3 z & w & -2 w \\
0 & x & 0 & y+3 z & 0 & w
\end{array}\right)
$$

Substitute : $x(t)=1, y(t)=t, z(t)=t^{2}, w(t)=t^{3}$

$$
M\left(\phi_{1}\right)(t)=\left(\begin{array}{cccccc}
1+t & 0 & 3 t-3 t^{2} & 0 & 2 t^{2}-2 t^{3} & 0 \\
-3 & 1+t & -t-3 t^{2} & 3 t-3 t^{2} & -2 t^{3} & 2 t^{2}-2 t^{3} \\
1 & -3 & t+3 t^{2} & -t-3 t^{2} & t^{3} & -2 t^{3} \\
0 & 1 & 0 & t+3 t^{2} & 0 & t^{3}
\end{array}\right)
$$

We have $M\left(\phi_{1}\right)(t)=M_{3} t^{3}+M_{2} t^{2}+M_{1} t+M_{0}$ and the generalized companion matrices of $M(t)$ are

$$
A=\left(\begin{array}{ccc}
0 & I & 0 \\
0 & 0 & I \\
M_{0}^{t} & M_{1}^{t} & M_{2}^{t}
\end{array}\right), B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & I & 0 \\
0 & 0 & -M_{3}^{t}
\end{array}\right) .
$$

$$
A^{\prime}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), B^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Then, we compute the following eigenvalues : $t=0$ and thus \mathcal{C}_{1} intersect \mathcal{C}_{2} at the only point ($1: 0: 0: 0$).

Conclusion

- Introduce new matrix- based representation of rational space curves.
- The detection of singularities points via matrix-based representation of rational space curves.
- Transfer the solving of the curve/curve intersection problem into the eigenvalues computing problems.

Computer algebraic system

- Maple 12.
- Mathemagix (Packtage MMX).
- Macaulay 2.

References

1. Busé, L., D'Andrea, C., 2009. Singular factors of rational plane curves, preprint arXiv:0912.2723.
2. Busé, L., Jouanolou, J.-P., 2003. On the closed image of a rational map and the implicitization problem. J. Algebra 265 (1), 312-357.
3. Chen, F., Wang, W., Liu, Y., 2008. Computing singular points of plane rational curves. J. Symbolic Comput. 43 (2), 92-117.
4. Jia, X., Wang, H., Goldman, R., 2010. Set-theoretic generators of rational space curves. Journal of Symbolic Computation 45 (4), 414-433.
5. Luu Ba, T., Busé, L., Mourrain, B., 2009. Curve/surface intersection problem by means of matrix representations. In : SNC '09: Proceedings of the 2009 conference on Symbolic numeric computation. ACM, New York, USA, pp. 71-78.
6. Song, N., Goldman, R., 2009. μ-bases for polynomial systems in one variable. Comput. Aided Geom. Design 26 (2), 217-230.
7. Wang, H., Jia, X., Goldman, R., 2009. Axial moving planes and singularities of rational space curves. Comput. Aided Geom. Design 26 (3), 300-316.

Thank you for your attention

