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Everybody tried that:

Find an ideal I with a simple Gröbner basis G.
Find a few polynomials {fi} = F in I, such
that the Gröbner basis of (fi) is too hard to
find. The public key is F and a finite set M

of canonical monomials (coinciding with their
normal form). The private key is G. A message
is a linear combination of M , and is encoded
adding to it a polynomial combination of F .
Decoding is done through normal form.



This does not work

as explained in the paper∗:

Boo Barkee, Deh Cac Can, Julia Ecks, Theo

Moriarty, R. F. Ree: “Why you cannot even

hope to use Gröbner Bases in Public Key Cryp-

tography? An open letter to a scientist who

failed and a challenge to those who have not

yet failed.” Journal of Symbolic Computation

(18)6, 497 - 501 (1994)

Some of the reasons are good, some are bad,

many have tried since, all have failed.

∗Partially supported by SPECTRE



Barkee’s reasons

There is no need to use Buchberger algorithm,

or even to compute a Gröbner basis: since

the encoding is done with a short process, a

bounded computation of a truncated Gröbner

basis through linear algebra is enough to grant

decoding.

The only possibility is to use very sparse poly-

nomial algebra:



“The high complexity of Gröbner bases is in

fact strictly related with the existence of poly-

nomials in an ideal whose minimal degree rep-

resentation in terms of a given basis is doubly

exponential in the degree of the basis elements.

Since such polynomials cannot be used as en-

coded messages, a cryptographic scheme ap-

plying the complexity of Gröbner basis to an

ideal membership problem is bound to fail.

“Is our reader able to find a scheme which

overcomes this difficulty?

“In particular our reader could think (per-

haps with some reason) that a sparse scheme

could work. We believe (perhaps without

reason) that sparsity will make the scheme

easier to crack. We would be glad to test

our belief on specific sparse schemes.”



Barkee was right!

In a recent work, a new cooperation between

• Franziska Löw ben Bezalel
• Miss M.G. (Mary Grace) Marple
• Theo Moriarty,
• Ludovic Poirot
• C.T. (Cabdulqadir Tariiq) Garweyne

revised all the recent (and even unpublished)
research, and the conclusion remains the same.



To try to get more consideration in the aca-

demic community, they have chosen pseudonyms

matching well-known researchers:

Françoise Levy-dit-Vehel, Maria Grazia Mari-

nari, Teo Mora, Ludovic Perret, Carlo Traverso,

A Survey on Polly Cracker Systems,

to appear in in the Linz workshop volume.



Polly Cracker

Fellows, M. Koblitz, N.

“Combinatorial cryptosystems galore!”

in “Finite Fields: Theory, Applications, and Al-

gorithms”, Contemporary Mathematics, VOL

168, (1994).

3-colouring of graphs

perfect code in graphs

3-SAT (Levy-dit-Vehel, Perret)

EnRoot (Grant, Krastev, Lieman, Shparlinski)

Polly2 (Le Van Ly)

NC-Polly (Tapan Rai)

Monoid rings (Ackermann, Kreutzer)



3-colouring of a graph

Let X = {xi} be the set of vertices of a graph,
and V ⊆ X ×X the set of his edges. Let C =
{R, G, B} a set of colours; X ×C = {xi,c} a set
of indeterminates, a 3-colouring of X is the
assignement to each xi,c of 1 or 0, being 1 iff
xi has colour c, under the condition that each
vertex has a colour, and adjacent vertices have
different colours. In equations,

x2
i,c = xi,c

xi,Rxi,G = xi,Rxi,B = xi,Gxi,B = 0
xi,R + xi,G + xi,B = 1

(i, j) ∈ V, r ∈ C ⇒ xi,rxj,r = 0



Perfect code in a graph

Given a graph {xi} = X with edges V ⊆ X ×
X a subset C ⊆ X is a perfect code if the
minimum distance of C is 3, and any sphere
S(xi) of radius 1 has exactly one element of
C. In equations.

X2
i = Xi∑

xj∈S(xi)
Xj = 1

A weakness of these graph systems is that it
is not known how to produce hard solved in-
stances of 3-colourable graphs, or graphs with
perfect codes. Random graphs seem to give
origin to easily solvable systems.



SAT-3

The satifiability problem consists in the fol-
lowing: given a logical formula (composed of
propositional variables Pi, negation ¬ and con-
nectives ∧,∨ find an assignement of truth val-
ues to the variables making the formula to
evaluate to TRUE. SAT-3 means that the for-
mula is

∧
(X ∨Y ∨Z), each X, Y, Z being either

Pi or ¬Pi; it is known how to produce formu-
las that are hard to solve with every known
method.

Fix a field K, two elements T, F 6= 0 and a
variable xi for each propositional variable Pi.
A clause Pi is represented by xi − T , ¬Pi by
xi − F , X ∨ Y ∨ Z by the equation equating
the product to 0, and the whole formula by a
conjunction of the equation. Each equation is
a cubic with 8 terms. Solutions of the system
correspond to solutions of the SAT problem.

(P1 ∨ ¬P2 ∨ P3) ⇔ (x1 − T )(x2 − F )(x3 − T )



EnRoot, Polly Two

EnRoot is a scheme that relies on polynomi-

als with few monomials of high degree, in few

variables, constructed to vanish at a root de-

fined a priori as the private key. It is subject

to standard attacks to the message.

PollyTwo adds a map and the kernel of such

a map to polynomials of high degree in few

variables with few monomials. Although clev-

erly constructed to resist some linear algebra

attacks, still succumbs to standard attacks to

the message.



Non-commutative Polly Cracker

This is an attempt to use non-commutative
polynomials, since Gröbner bases are usually
infinite in non-commutative polynomials.

While this property considerably limits the choice
of the private Gröbner basis (that is hence lim-
ited to principal ideals) does not succeed to
avoid the standard attacks, that can be per-
formed with truncated Gröbner bases.

Moreover, finitely determined infinite Gröbner
bases are also possible (and software exists to
construct them), and additional attacks based
on non-commutative factorisation are possible
too due to the fact that the private key is a
single polynomial.

A non-commuative factorisation algorithm is
present in a long-lost and forgot manuscript of
James H. Davenport, that has been recently
retrieved in the secret archives of T. Moriarty.



Monoid rings polly

P. Ackermann, M. Kreuzer Gröbner basis cyp-

tosystems, J. Appl. Alg. 17 (2006) 173–194

propose to define generalizations of Gröbner

bases and use them to define cryptosystems.

There is however no concrete proposal, only

examples that show that any cryptosystem can

be interprted in this framework, just showing

that the proposal is a pure illusion.



The weakness of Polly Cracker:
differential attack

Even if the underlying problem is NP-hard, it is

possible that the Gröbner basis of I for a ran-

dom item is easy to compute; but the attacks

can be made to the message.

The preparation of a PollyCracker cryptogram

consists in preparing an obscuring element h ∈ I

and if m is the message, c = h+m is the cryp-

togram.

We have h =
∑

φifi, the fi being the public key,

and if we can guess the monomials involved

in the computation then linear algebra can be

used (like in the F4 algorithm).



Usually one can easily find some polynomials
with 1 or 2 monomials in the ideal I (oth-
ers may exist, but harder to find). Assume
that the Gröbner basis of the ideal J generated
by these 2-nomials (the 2-nomial sub-ideal) is
easy to compute: the quotient K[X]/J as vec-
tor space is our playground. This leaves poly-
nomials with at least 3 monomials.

Because of the extreme sparsity, usually adding
a monomial multiple of some polynomial just
cancels one monomial and introduces at least
two. Hence the chain of reductions cannot
be long, and the last one performed has left
at least two monomials. It is hence easy to
identify the element used, and find a mono-
mial that has been removed with the last re-
duction, or a few candidates. Backtracking
the reduction may be exponential (if multiple
guesses are possible), but never substantially
worse than what the encoder has done.



The basic setting is described in D. Hofheinz,
R. Steinwandt A “Differential” Attack on Polly
Cracker. Int. J. Inf. Secur. 1 (2002) 143–148.
This is a more elaborate version:

Let c be the cryptogram to decode, F = {fi}
the public key, T the set of monomials that
can compose a message.

If S is a set of monomials, let
FS = {Xαfi | Supp(Xαfi) ⊆ S ∪ T}

Let S = Supp(c)
LOOP:

IF ∃ a linear combination L of FS
such that Supp(c− L) ⊆ T

THEN return c− L;
ADD to S the support of all the Xαfi

that meet S in at least two monomials;
IF S has not increased,

THEN return FAIL

“Monomials” here can be “standard monomi-
als for the 2-nomial sub-ideal J” and the com-
putations made mod J.



Toric Polly Cracker

The reasoning breaks for ideal generated only

by binomials. Here every reduction replaces

one monomial with another, the encoder can

perform long chains of reductions without ex-

ponential growth. The decoder for backtrack-

ing has always multiple choices, hence an ex-

ponential growth.

Hence binomials ideals are the remaining hope

for a successfull Polly Cracker.

The step from binomial ideals to toric ideals,

and from these to lattices is short.

Lattice cryptosystems have been studied, and

are the last resort to meet the Barkee chal-

lenge. Unfortunalely, most of them have been

broken.



Toric ideals and lattices

A toric ideal is an ideal generated by binomials,

and saturated by the variables.

The correspondence Xα − Xβ ⇔ α − β trans-

forms toric ideals into lattices. Differences/sums

correspond to S-Poly/tail reductions. One can

compute a Gröbner basis of a lattice, via lat-

tice operations.

Open problem: how can lattice tools (lattice

reductions, LLL) and ideal tools (Gröbner bases)

interact?

There are current investigations in course (M.

Caboara, F. Caruso, C.T.) on this and in the

rest of the talk.



Toric Polly

Reduction through binomials always transforms
monomials into monomials; hence one has to
encode monomials.

This means that a message is a vector, and
encoding means adding to it a random lattice
element.

The set of allowed messages is a set of vec-
tors in Zn (uniquely represented modulo the
lattice).

The public key is a set of lattice vectors (not
necessarily generating the lattice).

The private key is a set of vectors of the lattice,
possibly a Gröbner basis, but a subset of a
Gröbner basis, sufficient to decode (most of)
the messages might be enough.



GGH

Consider the Goldreich-Goldwasser-Halevi cryp-

tosystem, as described in the paper

“Public-Key Cryptosystems from Lattice Re-

duction Problems”, Advances in Cryptology -

CRYPTO ’97.

The private key is a reduced (= almost orthog-

onal) basis of a lattice. It allows to solve the

CVP (closest vector problem) for the lattice.

The public key is a different basis of the lattice.

Recovering a reduced basis is hard, and the

CVP is hard.



Encoding is done through the sum of a lattice

vector V and a small vector E (the message

can be either V or E, the other being random).

This is like McEliece cryptosystem, that allows

using either the codeword or the error as mes-

sage.

GGH fits in our definition of toric Polly

Cracker. Unfortunately, the system is con-

siderd broken, due to improvements of lattice

reduction techniques. It is however much more

robust than any other Polly Cracker ever de-

signed.

However the decoding is not done through poly-

nomial reduction.



NTRU

Following Nguyen, P. Q. Stern, J. Lattice Re-

duction in Cryptology: An Update ANTS-IV

LNCS 1838 (2000) the only lattice-based cryp-

tosystem still resisting is NTRU,

J. Hoffstein, J. Pipher, J. H. Silverman, NTRU:

A Ring-Based Public Key Cryptosystem, ANTS

III (1998),

and looking at the recent LLL+25 conference:

Nick Howgrave-Graham, Practical lattice-based

cryptography: NTRUEncrypt and NTRUSign

(and http://www.ntru.com) it is still resisting.

So it is worth considering.



NTRU (cont.)

Strictly speaking, NTRU is not a lattice cryp-

tosystem, it is a polynomial algebra cryptosys-

tem, but it can be attacked by lattice algo-

rithms (and resists to these attacks).

The basic connection is: an ideal I ⊆ Z[X]/φ(X),

where φ is a monic polynomial, is a lattice, in-

variant under multiplication by X. In partic-

ular, if φ(X) = Xn − 1 it is a lattice invari-

ant under cyclic permutation of variables. Let

A = Z[X]/XN − 1.

It is fun that and ideal can be seen as a lattice, that

in turn can be seen as a toric ideal. We are unable to

exploit this remark.



NTRU (cont.)

NTRU requires to fix two modules, q and p (to

fix ideas, take q prime and p = 3, p, q coprime).

Encoding is done in A/q, decoding partly in

A/q, partly in A/p.

A polynomial is small if its coefficients are in

{0,1,−1)} and its support is small (size to be

determined). It is moderate if its coefficients

are smaller than q/2

The private key is a pair (f, g) of small polyno-

mials, f, g invertible mod q, f invertible mod p

too.

The public key is h = f−1
q g

(f−1
q is the inverse mod q).



The public key is h = f−1
q g

The message is a small polynomial m, and is

encoded as c = phr+m, r being a small random

polynomial.

To decode, first compute fc.

We have fc = pgr + fm mod q, see it as an

element of A, (not A/q).

Reduce fc = pgr + fm mod p and multiply by

f−1
p . This is m mod p, and since m is small,

the message is recovered.

The decoding works correctly if pgr + fm is

moderate, that is ensured, at least probabilis-

tically, by the bounds on f, g, r, m.

(If p = 2, the message is the support of m, the

signs are random).



Attacks to NTRU

Since h = f−1
q g is not moderate, one needs

f to decode (indeed, any small f ′ such that
hf ′ mod q is small is OK). Finding f ′ breaks
the key.

Or one can solve a CVP (closest vector prob-
lem) to recover m without recovering the pri-
vate key.

There are three conflicting needs:

a) protect the private key
b) protect the message
c) allow decoding with the private key.

Key security requires that the supports of f
and g are large, message security requires that
the supports of r and c are large, and the size
of pgr + fm (that we need to bound) depends
on the sizes of g, r, f, m: we can increase r, m
only decreasing f, g.



Lattice attacks to the NTRU key

Consider A⊕A. It can be seen as ZN⊕ZN Con-

sider the sub-A-module M generated by (q,0)

and (h,1). It is a lattice that contains (g, f)

since hf = g mod q.

(g, f) is a small vector in the lattice, and can

be found by LLL or a variant, if it is too small.

If it is sufficiently large, it will be difficult to

find, if it is even larger it will be impossible to

find through SVP, not being a small vector in

the lattice.



Lattice attacks to the NTRU
message

If the private key is robust, one can try to at-

tack the message. Consider the vector (c,0);

the lattice contains the vector (prh mod q, pr)

that might be the closest vector to (c,0), since

the difference is (m,−pr) and is small. We

need to solve a CVP.

For this, one can try to solve a SVP (shorter

vector problem) in the lattice (M,0)+(c,0,1) ⊆
A⊕A⊕ Z.

If (m,−pr,1) is sufficiently large the answer will

be difficult, if it is not the shortest vector it will

not be found.

Because of the various constraints it is impos-

sible to unconditionally protect key, message

and decoding, but a compromise is possible.

And ntru.com asserts that it is safe.



Our plans concerning NTRU

We have three objectives in studying NTRU:

1) develop attacks to NTRU improving mixed

Gröbner-LLL methods

2) develop a Toric Polly Cracker using the NTRU

lattice

3) improve NTRU protecting the key, while al-

lowing very small f and g (hence allowing to

increase r and m, i.e. message security).

While 2) might obviously respond to Barkee’s

challenge†, 3) might respond to it too in a

more surprising way.

†“Why you cannot even hope to use Gröbner Bases in
Public Key Cryptography: an open letter to a scientist
who failed and a challenge to those who have not yet
failed.”


