
Algorithms for orthogonal polynomials

A. Bostan B. Salvy É. Schost

Algo project Algo project ORCCA

INRIA INRIA UWO

1

Overview

Conversion algorithms for univariate polynomials

• Monomial basis

• Lagrange basis

• Newton basis

• Orthogonal bases

Goal: asymptotically fast algorithms for all conversions.

This talk:

• O(M(n) log(n)) algorithms for monomial vs. orthogonal bases.

• M(n): cost of multiplying polynomials in degree n.

• We count base field operations.

2

Previous work

Direct conversion

• Kogge-Stone, Strassen subproduct-tree techniques

• Driscoll-Healy-Rockmore one way, O(M(n) log(n))

• Potts-Steidl-Tasche one way, floating-point O(n log(n)2)

• Heinig more general, O(M(n) log(n)2)

Transposition

• Shoup, Kaltofen

• Hanrot-Quercia-Zimmermann middle product

• with Bostan, Lecerf Lagrange & Newton interpolation

Orthogonal polynomials

• van Iseghem, Brezinski vector orthogonal polynomials

simultaneous Padé
3

Orthogonal families

Orthogonal polynomials: orthogonal basis with respect to a weight function w

〈pn, pm〉 =
∫ b

a

w(x)pn(x)pm(x)dx.

Consequences:

• 3-term recurrence relation p−1 = 0, p0 = 1 and

pn+1 = (x− cn+1)pn − bn+1pn−1.

• Writing a polynomial q on the basis (pi) amounts to compute the scalar products

〈q, pi〉
〈pi, pi〉 .

• Data structure: (bn) and (cn) (other possible choices, see later).

4

Structure of the problem

Let A be the n× n matrix of change-of-basis in degree < n:

Ai,j = coefficient(pj , xi),

so that

• the direct conversion is multiplication by A;

• the inverse conversion is multiplication by A−1.

This matrix is structured: the 3-term recurrence implies that the matrix

φ(A) = A− (A shifted down by one unit)− (A× diagonal, shifted)− · · ·

has small rank.

The standard structured matrices algorithms seem to be unable to deal with this
structure.

5

Expansion

The recurrence on the polynomials pj is better written in matrix form:


 pj

pj+1


 =


 0 1

−bj+1 (x− cj+1)





 pj−1

pj




or 
 pj

pj+1


 = Mj−1,j


 pj−1

pj




More generally: 
 pj

pj+1


 = Mi,j


 pi

pi+1




6

Expansion: divide and conquer

To compute a0p0 + · · ·+ a7p7, we compute

(
[a0 a1]M0,0 + [a2 a3]M0,2 + [a4 a5]M0,4 + [a6 a7]M0,6

)

 p0

p1




and we use

[a0 a1] M0,0 + [a2 a3] M0,2 + [a4 a5] M0,4 + [a6 a7] M0,6 =

[a0 a1] M0,0 + [a2 a3] M0,2 +
(
[a4 a5] M4,4 + [a6 a7] M4,6

)
M0,4

Consequences

• Divide-and-conquer

• Setup a binary tree containing matrices Mi,j

• Complexity O(M(n) log(n)).

7

Going up the tree

×M0,2 ×M2,4

×M0,4
A2,0

A1,1

A0,0 A0,1 A0,2 A0,3

A1,0

Degrees double as we go towards the root.

8

Inversion: some nice cases

Some nice families of orthogonal polynomials pn admit adjoint families p′n such that
∑

i

aipi =
∑

i

bix
i ⇐⇒

∑

i

a∗i x
i =

∑

i

bip
∗
i ,

where the p∗n also satisfy a linear recurrence, and a∗i is “nicely related” to ai (e.g.,
a∗i = ai or a∗i = ai/i!).

Example: the Hermite polynomials Hn satisfy

Hn+1 = 2xHn − 2nHn−1;

the adjoint family satisfies

H∗
n+1 = 2xH∗

n + 2nH∗
n−1 with a∗i = ai.

Consequence:

• we can reuse the direct conversion algorithm;

• complexity O(M(n) log(n)).

9

What are the nice cases?

These are the families of orthogonal polynomials arise as eigenvalues of operators

p 7→ a(x)p′′ + b(x)p′ (plus conditions).

The weight w is such that (aw)′ = bw; the roots of a give the bounds.

Example: for the Hermite polynomials, a(x) = 1 and b(x) = −x.

Application. In this case, the polynomials p∗n are given by

p∗n(u) =
∫

w(α)
1 + ua′(α)

xndx

with α− x + ua(α) = 0.

Using this integral representation, we can then deduce the requested recurrence from
a and b; the relationship between a∗i and ai is deduced from the norm 〈pi, pi〉.

10

Inversion: using the orthogonality

Let A be the n× n matrix of change-of-basis in degree < n:

Ai,j = coefficient(pj , xi),

so that the direct conversion is multiplication-by-A.

Orthogonality:

At LA = diagonal(e0, . . . , en−1),

where

• ei = 〈pi, pi〉 = b1 · · · bi,

• L is the moment matrix Li,j = 〈xi, xj〉 = 〈1, xi+j〉.
Consequence:

A−1 = diagonal(e0, . . . , en−1)−1 At Lt.

11

Inversion

Step 1. Finding the moment matrix.

• Define g?
j as the reciprocal polynomial of pj .

• Define hj by

hj+1 = (1− cj+1x)hj − x2bj+1hj−1, h0 = 0, h1 = 1.

Then
hn

g?
n

= 〈1, p0〉 + 〈1, p1〉x + 〈1, p2〉x2 + · · · mod x2n.

Conclusion:

• given n coefficients (bj) and (cj), one can compute the first 2n moments in time
O(M(n) log(n)).

Remark: One can recover the recurrence from the moments using the fast Euclidean
algorithm.

12

Inversion

Step 2. Performing the matrix-vector product.

• Multipication by the matrix Lt M(n).

cf. Hankel matrix.

• Multiplication by the matrix At O(M(n) log(n)).

cf. transposition principle:

– we have an algorithm of cost O(M(n) log(n)) for multiplication by A;

– we deduce an algorithm of cost O(M(n) log(n)) for multiplication by At.

Very similar to transposed algorithms for Lagrange interpolation

(Kaltofen-Lakshman, Bostan-Lecerf-Schost) and Newton interpolation

(Bostan-Schost).

• No interpretation (Bernstein, scaled remainder trees for Lagrange).

13

Going up the tree

×M0,2 ×M2,4

×M0,4
A2,0

A1,1

A0,0 A0,1 A0,2 A0,3

A1,0

Degrees double as we go towards the root.

14

Going down the tree

×t M0,2 ×t M2,4

×t M0,4

A0,1 A0,2 A0,3A0,0

A1,1A1,0

A2,0

Degrees are halved as we go from the root.

15

In practice

Experiments:

• Pentium M, 1.7 Ghz

• NTL, prime field with 40 bits (ZZ pX)

 0

 5

 10

 15

 20

 25

 0 10000 20000 30000 40000 50000 60000 70000

T
im

e

Degree

tree
direct

transpose

16

Transpose code

Direct

for(long i = depth-2; i >= 0; i--)

for (long j = 0; j <= length_half-1; j++)

mul(tmp0, tree[i+1][2*j](0,0), g[2*j+1][0]);

mul(tmp1, tree[i+1][2*j](1,0), g[2*j+1][1]);

g[2*j+1][0] += tmp0 + tmp1; ...

Transpose

for(long i = 0; i <= depth-2; i++)

for (long j = length_half-1; j >= 0; j--)

tmul(tmp0, alpha, tree[i+1][2*j](0,0), arg0);

tmul(tmp1, alpha, tree[i+1][2*j](0,1), arg1);

g[2*j+1][0] = tmp0 + tmp1; ...

17

Going further

Apart from the (still partly mysterious) adjoint polynomials, the algorithms rely only
on the 3-term recurrence.

Some special cases behave better.

What about other recurrences, such as

pn+2 = (x− cn+2)pn+1 − bn+2pn − an+2pn−1?

Such recurrences define vector orthogonal polynomials.

The direct conversion extends easily, but not the inverse one: now, we can find two

moment matrices with

At L1 A = G1 and At L2 A = G2,

but the matrices G1 and G2 are hard to exploit.

18

