Algorithms for orthogonal polynomials

A. Bostan B. Salvy E. Schost
Algo project Algo project ORCCA
INRIA INRIA UWO

Overview

Conversion algorithms for univariate polynomials
e Monomial basis
e Lagrange basis
e Newton basis

e Orthogonal bases

Goal: asymptotically fast algorithms for all conversions.

This talk:

e O(M(n)log(n)) algorithms for monomial vs. orthogonal bases.
e M(n): cost of multiplying polynomials in degree n.

e We count base field operations.

Previous work

Direct conversion

e Kogge-Stone, Strassen subproduct-tree techniques
e Driscoll-Healy-Rockmore one way, O(M(n)log(n))
e Potts-Steidl-Tasche one way, floating-point O(nlog(n)?)
e Heinig more general, O(M(n)log(n)?)

Transposition
e Shoup, Kaltofen
e Hanrot-Quercia-Zimmermann middle product

e with Bostan, Lecerf Lagrange & Newton interpolation

Orthogonal polynomials

e van Iseghem, Brezinski vector orthogonal polynomials

simultaneous Padé

Orthogonal families

Orthogonal polynomials: orthogonal basis with respect to a weight function w
b
(Drs Dm) = / W ()P (T)pm (x)d.
a

Consequences:

e 3-term recurrence relation p_1 =0, pg = 1 and

Pn+1 = (SE — Cn—|—1)pn — bn—l—lpn—l-

e Writing a polynomial ¢ on the basis (p;) amounts to compute the scalar products

(q, i)
<pz',p7;>.

e Data structure: (b,) and (¢,) (other possible choices, see later).

Structure of the problem

Let A be the n X n matrix of change-of-basis in degree < n:
A, ; = coefficient(p;, x;),
so that

e the direct conversion is multiplication by A;

e the inverse conversion is multiplication by A 1.

This matrix is structured: the 3-term recurrence implies that the matrix
»(A) = A — (A shifted down by one unit) — (A x diagonal, shifted) — - --

has small rank.

The standard structured matrices algorithms seem to be unable to deal with this

structure.

Expansion

The recurrence on the polynomials p; is better written in matrix form:

p] o 0 1 pj—l
I Pj+1] I —bg+1 (33—03+1) 1L P;]
or) i i i
Py _ Mj—l,] Pj—1
Pj+1 Pj
More generally:
b; _ M@',j Di
Pj+1 Pi+1

Expansion: divide and conquer

To compute agpg + - - - + arpr, we compute

Po

([CLO a1]Mo o + |a2 a3]Mg 2 + [as a5]Mo 4 + |ag CL?]MO,6>
P1

and we use

lap a1] Moo + [a2 a3] Mo 2 + [as a5] Mo .4+ [as a7] Moe =

lap a1] Moo + [a2 as] Mg + ([CL4 as] My 4 + [ag ar] M4,6)M0,4

Consequences
e Divide-and-conquer
e Setup a binary tree containing matrices M; ;

e Complexity O(M(n)log(n)).

Going up the tree

Ao o Ao

O
=

Ao A1

XM04

Degrees double as we go towards the root.

X Mo 4

Inversion: some nice cases

Some nice families of orthogonal polynomials p,, admit adjoint families p!, such that

Zaipz wa = Zaw —sz‘pf,

7

where the p also satisfy a linear recurrence, and a} is “nicely related” to a; (e.g.,

*

al = a; or a = a;/i!).
Example: the Hermite polynomials H,, satisty

Hy,y 1 =2xH, —2nH,_1;
the adjoint family satisfies

H, =2xH,+2nH; | with a; = a;.

Consequence:
e we can reuse the direct conversion algorithm;

e complexity O(M(n)log(n)).

What are the nice cases?

These are the families of orthogonal polynomials arise as eigenvalues of operators
p — a(x)p” + b(z)p’ (plus conditions).
The weight w is such that (aw)” = bw; the roots of a give the bounds.

Example: for the Hermite polynomials, a(x) = 1 and b(x) = —=.

Application. In this case, the polynomials p; are given by

iy wle) o,
p”(u)_/l—l—ua’(a)x dx

with o — z + ua(a) = 0.

Using this integral representation, we can then deduce the requested recurrence from

a and b; the relationship between a} and a; is deduced from the norm (p;, p;).

10

Inversion: using the orthogonality

Let A be the n X n matrix of change-of-basis in degree < n:
A, ; = coefficient(p;, x;),
so that the direct conversion is multiplication-by-A.

Orthogonality:
AL A = diagonal(eg,...,en_1),

where
e ¢; = (pi,pi) =b1- by,
e L is the moment matrix L; ; = (z*,27) = (1, 2'7).

Consequence:
A~ = diagonal(eg,...,en_1)" ' AT LY.

11

Inversion

Step 1. Finding the moment matrix.

e Define g7 as the reciprocal polynomial of p;.

e Define h; by
hj_|_1 = (1 — Cj+1£E)hj — QSij_th_l, ho = O, hl = 1.

Then

o = (1,po) + (L,p1)z + (1,pa)z® + -+ mod z*".

Conclusion:

e given n coefficients (b;) and (c;), one can compute the first 2n moments in time

O(M(n)log(n)).

Remark: One can recover the recurrence from the moments using the fast Euclidean

algorithm.

19

Inversion

Step 2. Performing the matrix-vector product.

e Multipication by the matrix L’ M(n).
cf. Hankel matrix.
e Multiplication by the matrix A® O(M(n)log(n)).
cf. transposition principle:

— we have an algorithm of cost O(M(n)log(n)) for multiplication by A;
— we deduce an algorithm of cost O(M(n)log(n)) for multiplication by A®.

Very similar to transposed algorithms for Lagrange interpolation
(Kaltofen-Lakshman, Bostan-Lecerf-Schost) and Newton interpolation
(Bostan-Schost).

e No interpretation (Bernstein, scaled remainder trees for Lagrange).

19

Going up the tree

Ao o Ao

O
=

Ao A1

XM04

Degrees double as we go towards the root.

11

X Mo 4

Going down the tree

Ao 1 Ao 2 Ao s

t
MO 9 X M2,4
Al 1

x 1\/[0,4

Degrees are halved as we go from the root.

1=

In practice

Experiments:
e Pentium M, 1.7 Ghz
e NTL, prime field with 40 bits (ZZ_pX)

25 T
tree
direct —é&—
transpose K
20 -
15 -
(]
£
=
10
5 -

| | | | | |
10000 20000 30000 40000 50000 60000 70000
Degree

1R

Transpose code

Direct
for(long i = depth-2; i >= 0; i--)
for (long j = 0; j <= length_half-1; j++)
mul (tmp0, treeli+1][2%j](0,0), gl2xj+1]1[0]);
mul (tmpl, treel[i+1][2*j](1,0), gl[2*xj+1][1]);
g[2%j+1]1 [0] += tmpO + tmpl;

Transpose
for(long i = 0; i <= depth-2; i++)
for (long j = length_half-1; j >= 0; j--)
tmul (tmpO, alpha, treeli+1][2*j](0,0), argl);
tmul (tmpl, alpha, treeli+1][2%j](0,1), argl);
g[2xj+1] [0] = tmpO + tmpl;

17

Going further

Apart from the (still partly mysterious) adjoint polynomials, the algorithms rely only

on the 3-term recurrence.
Some special cases behave better.

What about other recurrences, such as

Pn+2 = (CL‘ — Cn+2)pn+1 — bn—l—2pn — an+2pn—1?

Such recurrences define vector orthogonal polynomials.

The direct conversion extends easily, but not the inverse one: now, we can find two

moment matrices with
AtLlA:Gl and A.tLQA.:G2,

but the matrices (1 and GGy are hard to exploit.

1Q

