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Introduction
Example: Binary-Ternary Trees
A”*ﬁ@&* | XA

cny = number of trees with N nodes

Generating series:
a=14+2z+10224+6623+ - +cpz +---

a=1+za? + zad.

More generally, context-free languages:
@ their enumeration;

@ their random generation.

o, - .-, cy for large N.
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Introduction
Computations for Binary-Ternary Trees

a=1+ za? + zal.
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Introduction
Computations for Binary-Ternary Trees

a=1+ za? + za3.

@ Non-linear recurrence

Z c,cj+ Z CiCjCk, N> 1.
i+j=

i+j+k=N-1

1

Complexity: O(N3) ops
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Introduction
Computations for Binary-Ternary Trees

a=1+ za? + zal.

@ Non-linear recurrence O(N?)
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Introduction
Computations for Binary-Ternary Trees

a=1+ za? + zal.

@ Non-linear recurrence O(N?)

Q lterate a1 =14 zayx + zai
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Introduction
Computations for Binary-Ternary Trees

a=1+ za? + zal.

@ Non-linear recurrence O(N?)

Q lterate «ayy1 =1+ zay +za3

ag=1

a; =142z
a2:1+2z+1022+16z3—|—8z4

a3 =1+ 27+ 102% + 662> + 248z% + . ..
s =1+ 27+ 102% + 6623 + 488z% + ...

Complexity: O(NM(N)) (M(N) for series product)
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Introduction
Computations for Binary-Ternary Trees

a=1+ za? + zal.

@ Non-linear recurrence O(N?)
@ lterate O(NM(N))
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Introduction
Computations for Binary-Ternary Trees

a=1+ za? + zal.

@ Non-linear recurrence O(N?)
@ lterate O(NM(N))
© Newton iteration [Kung & Traub 78]

ak — (14 za2 + za})
1—2zay — 3za%

Qg1 = O —
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Introduction
Computations for Binary-Ternary Trees

a=1+ za? + zal.

@ Non-linear recurrence O(N?)
@ lterate O(NM(N))
© Newton iteration [Kung & Traub 78]

ak — (1+ za3 + za3)
1—2zay — 3zai

Ok+1 = Q) —

ag=1
a1 =1+2z+ 102> + 5023 4 - --
ap =1+ 2z +102% + 662° + 4982* 4 40662° + 349702° + 31104227 +- - -

Complexity: O(M(N)) (M(N) for series product)
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Introduction
Computations for Binary-Ternary Trees

a=1+ za? + zal.

@ Non-linear recurrence O(N?)
@ lterate O(NM(N))
© Newton iteration [Kung & Traub 78] O(M(N))
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Introduction
Computations for Binary-Ternary Trees

a=1+ za? + zal.

@ Non-linear recurrence O(N?)
@ lterate O(NM(N))

© Newton iteration [Kung & Traub 78] O(M(N))
@ Linear recurrence [Comtet 64, Chudnovsky? 86]
© linear differential equation [Abel 1827, Cockle 1861]

22(z—2)(2*+11z—1)a” +(32°+122° ~89z+6)a’ —3(z+3)a = z+3,

@ translate

(2n + 6)(2n + 7)cpy3 = (460° 4+ 227n + 279)Cpy2
—3(6n? +10n + 3)cpi1 — n(2n + 1)c,.

Complexity: O(N).



Introduction
Computations for Binary-Ternary Trees

a=1+ za? + zal.

@ Non-linear recurrence O(N?)

@ lterate O(NM(N))

© Newton iteration [Kung & Traub 78] O(M(N))

@ Linear recurrence [Comtet 64, Chudnovsky? 86] O(N)
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Introduction
Computations for Binary-Ternary Trees

a:1+za2+za3.

@ Non-linear recurrence O(N?)

@ Iterate O(NM(N))

© Newton iteration [Kung & Traub 78] O(M(N))

@ Linear recurrence [Comtet 64, Chudnovsky? 86] O(N)

Even faster! (wrt degree)
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Introduction
Algorithms and Complexities

P(z,a) =0, degP =D

© Non-linear recurrence O(NP)

@ lterate if @ = P(z,a): O(vV/DNM(N))
(baby steps/giant steps)

@ Newton iteration O(v/DM(N))

@ Linear recurrence O(D’N).
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Introduction
Algorithms and Complexities

P(z,a) =0, degP =D

© Non-linear recurrence O(NP)

Q lterate if a = P(z,a): O(v/DNM(N))
@ Newton iteration O(v/DM(N))

@ Linear recurrence O(D’N).

Theorem (BoChLeSaSc07)

@ the recurrence computed through Cockle’s differential
equation leads to O(D?M(D)N) ops;
@ there exist other recurrences leading to O(DM(D)N) ops.

Also, results in terms of D, and D, separately.
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Introduction
Nicer Recurrence on our Example
a=1+za®+za® AﬂHQJrY 2

@ Classical way:
@ Linear differential equation [Abel 1827, Cockle 1861]

22(z—2)(2*4+11z—1)a” +(32°+122° -89z +6)a’ —3(z+3)a = z+3,

@ translate
(2n+6)(2n + 7)c, 3 = (46n° 4 227n + 279)Cpy2

—3(6n? +10n + 3)cpi1 — n(2n + 1)c,.

@ Shorter recurrence:

(n42)(2n45)(5n+3)cp 12 = (110n3+396n%4-445n+150)cy 11
+ n(2n+1)(5n+ 8)cp.

Minimal order for differential equation? for recurrence?
Minimal “size”? Efficiency?
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Introduction
Apparent Singularities Pollution

a=1+za?+ za®

T
2

2

-qﬁ

22(z-2)(2?+11z—-1)a" +(323+1222 -89z +6)a/ —3(z+3)ar = z+3,

@ Cockle’s differential equation:

o differential equation associated to shorter recurrence:

10z(2% + 11z — 1)/ — (22> — 332° — 442z 4+ 25)a” +--- = 0.
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Introduction

Our Results

degree
0(D"3)
Differential equation
corresponding to recurrence of
small order
oD"2)
oD*2)

O(D) O(D) 0(D"2) order
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Our Results

degree
O(D*3)
Differential equation
corresponding to recurrence of
small order
degree .
Corresponding recurrences

o(D"2)
o(Dr2) 0(D*2)

0O(D)

O(D)
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Introduction

Our Results

degree
0O(D"3) .
Computation
Differential equation s
corresponding to recurrence of o>
small order
degree .
Corresponding recurrences
o(D*2)
o(Dr2) 0(D*2)
0O(D)
O(D)
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Introduction

Our Results

degree
O(D*3) . .
‘ Computation Unrolling the recurrence
Differential equation R A
20+ O(M(D)N
corresponding to recurrence of o> (MOIN)
small order
degree .
Corresponding recurrences
o(D*2)
0(D"2) 0(D"2)
O(D)
O(D)
0o(D) O(D) 0O(D"2) order 0O(D"2) O(D"2) O(D*3) order
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Il Algorithms
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Algorithms
Cockle's Algorithm — Example

a(z) — (1 + za?(2) 4 za®(2)) =: P(z,a) =0

. {Py(z, a)a/(z) + P,(z,a) =0
A(z,y)P(z,y)+ B(z,y)P,(z,y) = 1. (Bézout)

o' = —BP, mod P =: uj0”® + via + wil,

Vector space of dimension 3
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Algorithms
Cockle's Algorithm — Example

a(z) — (1 + za?(2) + za®(2)) =: P(z,a) =0

B {Py(z, 0)a(2) + P,(z,0) =0
A(z,y)P(z,y)+ B(z,y)P,(z,y) = 1. (Bézout)

o = —BP, mod P =: ula2 +via+ wil,

o = (uia2 +via+ wy) 4+ Quia + vi)d =: 1a® + v + wol,
o = (u§a2 + véa + Wé) + (2upa + v2)a/ =: 30 + vz + wsl.
0 uy u» us
(a o o o/”) = (on o 1) 1 i v w
0 wip Wy w3

~~

A

V € ker A has for coordinates the coefficients of a differential equation.
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Algorithms
Padé and Padé-Hermite approximants

Definition (Padé-Hermite Approximant)

The vector of polynomials (Pi, ..., Px) with deg P; < d; is a
Padé-Hermite approximant of type (di,. .., dx) for a vector of
power series (fi, ..., fx) when

Pifi+---+ P = O(Xd1+~-~+dk+k—1)‘

Special cases: (given one series y)
e k=2, =-1, f, =y: Padé approximant;
i—1

o fi=y'"% i=1,..., k: algebraic approximants;

o fi=yU=1) =1 ... k: differential approximants.
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Algorithms
Padé and Padé-Hermite approximants

Definition (Padé-Hermite Approximant)

The vector of polynomials (Pi, ..., Px) with deg P; < d; is a
Padé-Hermite approximant of type (di, ..., dx) for a vector of
power series (f, ..., fx) when

Pifi+---+ P = O(xd1+"'+dk+k_1),

Algorithms and complexity (D = di + -+ - + dk):
@ Linear algebra: O(D¥) ops;
e minimal basis in O(k“M(D)) ops [Beckermann-Labahn94];
e genset in O(k“M(D/k)) ops [Storjohann06].
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Algorithms
Cockle's Algorithm via Truncated Series

Algorithm, non-degenerate case

@ Compute alk) = Ul + w0+ -+ + uk’DaD_l with
power series coefficients uy ;, for k =1,...,D;

@ find linear relation (diff. eqn) with power series coefficients
(Newton in the linear algebra stage);

© compute Padé approximants to recover rational coefficients.

[Chudnovsky? 86, Cormier-Singer-Trager-Ulmer 02]
Complexity: O(r“M(n)), n bound on degree coeffs.

Good bound — good algorithm
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Differential Equation by Padé-Hermite Approximants

Algorithm

Input: P irreducible, order r and degree bound d;
Q o =7,
@ Compute a series expansion for « at precision o (Newton);

© Compute a Padé-Hermite approximant (P, ..., P,) of type
(d,...,d) for (a,...,al"));

Q return L-y = Poy +--- + Py(").

Good bounds — good algorithm

Bruno Salvy Differential Equations for Algebraic Functions



Differential Equation by Padé-Hermite Approximants

Algorithm

Input: P irreducible, order r and degree bound d;
Q@ o=,

@ Compute a series expansion for « at precision o (Newton);

© Compute a Padé-Hermite approximant (P, ..., P,) of type
(d,...,d) for (a,...,al"));

Q return L-y = Poy +--- + Py(").

Good bounds — good algorithm

Lemma (Truncated Series — Full Series)
P(x,a) =0,L-a= O(x?),0 > D(4Dr+d —r)=L-a=0.

0 ok = Wk/P}%"_:l — a polynomial Q(z,y) such that L-a =0
iff Q(z, ) = 0, together with degree bounds on Q.

@ The resultant R(z) of P and Q w.r.t. y has degree < 0.

@ R=0(x)= R =0= P|Q (P irreducible).



Bounds

[1l Bounds
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Bounds by Creative Telescoping

a(z) = 1j{yPY(Z’y) d

 2mi P(z,y)
———
F(z.y)

Creative telescoping: an algorithm for differentiation under | and
integration by parts.

O Find A = A(z,0;) + 0yB(2,0;,y,9y) st. N- F =0;
@ return A.

Bruno Salvy Differential Equations for Algebraic Functions



Bounds by Creative Telescoping

nnnnn

alz) = - 7{yPy(zvy)dy

~2ni ] Plz.y)
————
F(z.y)

Creative telescoping: an algorithm for differentiation under [ and
integration by parts.

@ Find A = A(z,8,) + 8,B(2,0;,y,0,) st. N- F=0;

nnnnnnnnnnnn

@ return A.

Bounds by counting dimensions
ik F— -9 _ degQ<i+(j+k+1)D
2005 - F = 5 egQ<i+( .
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Bounds by Creative Telescoping

,,,,,

1 [yP(z,y)
o(z) = 21 j{ P(z,y) d
F(z,y)

op 0P over

Creative telescoping: an algorithm for differentiation under | and
integration by parts.
@ Find A = A(z,0;) + 0,B(z,0;,y,0)) st. N-F=0;

@ return A.
Bounds by counting dimensions
ik = Q o

Taking i < N, j+ k < N,

dim(lhs) = (N,+1) (Na; 2), dim(rhs) = ((Na + 1)D2 N+ 2).
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Bounds by Creative Telescoping

,,,,,

1 [yP/(zy)
o(z) = 21 j{ P(z,y) d
F(z,y)

op 0P over

Creative telescoping: an algorithm for differentiation under | and
integration by parts.
@ Find A = A(z,0;)+ 0,B(z,0;,y,0y) st. N-F=0;

@ return A.
Bounds by counting dimensions
e o
z'agay-F_m, degQ <i+(j+k+1)D.

Taking i < N,, j + k < Ny, N, = 4D?, Ny = 4D,

dim(lhs) = (N, +1) <N62+ 2) ~ dim(rhs) = <(N‘9 * ”g N+ 2).

— Recurrence of order < 4(D? + D), coeffs of deg < 4D.



Conclusion

[V Conclusion
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Conclusion
Conclusion

@ Summary: Good bounds + Newton + Padé or Padé-Hermite
approximants = good algorithms;
@ Also in the paper:
@ Bounds in terms of D, D, D, simultaneously;
@ Fast heuristic algorithms using these bounds;
© Experiments and conjectures on bounds in generic cases;
© Lower bounds;
@ Degenerate cases;
@ Handling of algebraic extensions.

o Future:

@ Other cases of creative telescoping
(smaller certificates? better efficiency?);

@ Bit complexity;

© Positive characteristic.
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Conclusion
Recurrence Unrolling

Problem

Given initial conditions and px(n)upsk + - - + po(n)u, = 0, with
pi's of degree d, compute ug, ..., uy efficiently for N large.

Direct: O(Nkd) ops; Better: O(NkM(d)/d).
— The degree of the coefficients does not matter (much).

Bruno Salvy Differential Equations for Algebraic Functions



Conclusion
Recurrence Unrolling

Problem

Given initial conditions and px(n)upik + - - + po(n)un, = 0, with
pi's of degree d, compute ug, ..., uy efficiently for N large.

Direct: O(Nkd) ops; Better: O(NkM(d)/d).
— The degree of the coefficients does not matter (much).

Algorithm: Fast Evaluation of P(x) on O, ..., N [Bostan et alii 07]

Idea: expand generating series P(z Z P(k 1_Q(ZZ))d+1
k>0
@ Compute S(z) := (1 — z)~9 mod z¢;
@ Compute N/d times
A(2)

z9C(2)

_ . d—1
=by+--+by_1z +7(1—z)d+1

B(2)
by B:= AS mod z9;z9C := A — B(1 — z)9**.




Conclusion
Timings

Cockle’s algorithm over F = GFgg73 for random dense polynomials
with D, = D, = N:

ser.  rat. n deg,
.002 .002 2 2
.003 .004 17 10
.02 .03 69 36
10 .16 182 92
A7 98 380 190
186 456 687 342
580 16.5 1127 560
155 499 1724 856
38.0 138 2502 1242
10 72.7 340 3485 1730

© 00 ~NOO P~ WN 2

@ Always faster than Magma's built-in routine (rat.).
@ Bound 7 off by a factor 27
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Conclusion

Better Bound on Order Using y

F =yP,/P, we want: A(z,0;)-F=20,-G, A#0.
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Conclusion

Better Bound on Order Using y

F =yP,/P, we want: A(z,0;)-F=20,-G, A#0.

© Decompose P =: P + R, with deg P =D, deg R < D;
@ Populate Vy :={Q/PI"! | deg @ < Dd + D + d} with
o Fy:=Vect({Z/(z0,Y - F | i,j < d});

P | g

o Hg:= 0, - Vect({ pd | deg H < dD + d}).

© Count dimensions:

dD +d +2
dim Fy = (d + 1)*; dide:< tat )+1—(d+1);
2 N —r
kernel

D D 2
dim V, — ( d+D+d+ >
2
Q@ Conclude: d > D? 4+ D = dim Fg + dim Hy > dim V.
— Recurrence of order < D? + D.
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Conclusion
History

@ Abel (1827): Existence of linear differential equation;

Cockle (1861-1862): Algorithm for linear differential equation
of minimal order;

Harley (1862): Name "Differential resolvent”;
Tannery (1875): Rediscovery of Cockle's method;

Comtet (1964): Application to series expansion (by hand);
Chudnovsky? (1986): Complexity point of view;

e 6 6 o6 o

Cormier, Singer, Trager, Ulmer (2002): ~~ Degree bound
in O(D?) for the differential resolvent;

Nahay (2003-2004): Deg. bound in O(D3) for a* with A ¢ Q;

@ Tsai (2000): Weyl closure ~~ removal of apparent
singularities.
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Conclusion
Degree bounds for the differential resolvent

o

Wr(aq,...,ar, ) =

a1 o «

o) a, o -
) =0.

agr) agr) aln
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Conclusion
Degree bounds for the differential resolvent

Wr(aq,...,ar, ) =

fe%1 - ay o
Wi(z,04) Wi (z,0) o1 T
Py(z,01) T Py(z,ar) —0

_Wi(z,a1) Wilzar) (1)
Py(z7a1)2’_1 U Py(zvar)Qr_l
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Conclusion
Degree bounds for the differential resolvent

Wr(aa, ..., ara)[; Py(z,0i)> L =

Py(z, a1)2r—1a1 - Py(Z, ar)Zr—lar o
Wi(z,a1)Py(z,a1)? 2 ... Wi(z,a,)Py(z,0,)? 2 & N
Wr(Z, O[l) Wr(27 ar) a(r)
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Conclusion
Degree bounds for the differential resolvent

L= ey Wrlas, - an o) IT; Py(z,0i)* ™ = ey @
1<i<j<r 1<i<j<r
Py(z,al)zr_lal Py(z, a,)zr—la, «
Wi(z,01)Py(z,01)* 2 ... WA(z,ar)Py(z,0,)* 2 o .
W, (z,a1) W, (z, o) aln
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Conclusion
Degree bounds for the differential resolvent

L= H(a, o) Wr(oa,...,ar a)]]; Py(z, 04,-)2’*1 = Wﬂj)x
1<i<j<r 1<i<j<r
Py(z,01)* 1oy . Py(z, /) Lo, «
Wi(z, a1)Py(z, a1)> =2 ... Wi(z ar)Py(z, a,)? 2 o 0
W, (z, 1) W, (z, o) alr)
@ L is polynomial and symmetric in aa,...,q,;

o deg,(kth row) = O(D?), deg, (ith col) = O(D?);
o = if r=D,, deg, L = O(D3);
o if r < Dy, symmetrize first wrt as,...,ap,.

Precise bounds (rather than O()) available, and necessary in algorithm
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