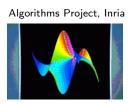
Differential Equations for Algebraic Functions

Bruno Salvy Bruno.Salvy@inria.fr



Joint work with A. Bostan, F. Chyzak, G. Lecerf & É. Schost

I Introduction

Example: Binary-Ternary Trees

 c_N = number of trees with N nodes

Generating series:

$$\alpha = 1 + 2z + 10z^2 + 66z^3 + \dots + c_N z^N + \dots$$

 $\alpha = 1 + z\alpha^2 + z\alpha^3$.

More generally, context-free languages:

- their enumeration;
- their random generation.

Aim

 c_0, \ldots, c_N for large N.

$$\alpha = 1 + z\alpha^2 + z\alpha^3.$$

$$\alpha = 1 + z\alpha^2 + z\alpha^3.$$

Non-linear recurrence

$$c_N = \sum_{i+j=N-1} c_i c_j + \sum_{i+j+k=N-1} c_i c_j c_k, \qquad N \ge 1.$$

Complexity: $O(N^3)$ ops

$$\alpha = 1 + z\alpha^2 + z\alpha^3.$$

• Non-linear recurrence $O(N^3)$

$$\alpha = 1 + z\alpha^2 + z\alpha^3.$$

- Non-linear recurrence $O(N^3)$
- 2 Iterate $\alpha_{k+1} = 1 + z\alpha_k + z\alpha_k^3$

$$\alpha = 1 + z\alpha^2 + z\alpha^3.$$

- **1** Non-linear recurrence $O(N^3)$
- 2 Iterate $\alpha_{k+1} = 1 + z\alpha_k + z\alpha_k^3$

$$\alpha_0 = 1$$
 $\alpha_1 = 1 + 2z$
 $\alpha_2 = 1 + 2z + 10z^2 + 16z^3 + 8z^4$
 $\alpha_3 = 1 + 2z + 10z^2 + 66z^3 + 248z^4 + \dots$
 $\alpha_4 = 1 + 2z + 10z^2 + 66z^3 + 488z^4 + \dots$

Complexity: O(NM(N)) (M(N) for series product)

$$\alpha = 1 + z\alpha^2 + z\alpha^3.$$

- 1 Non-linear recurrence $O(N^3)$
- Iterate O(NM(N))

$$\alpha = 1 + z\alpha^2 + z\alpha^3.$$

- Non-linear recurrence O(N³)
- Iterate O(NM(N))
- Newton iteration [Kung & Traub 78]

$$\alpha_{k+1} = \alpha_k - \frac{\alpha_k - (1 + z\alpha_k^2 + z\alpha_k^3)}{1 - 2z\alpha_k - 3z\alpha_k^2}$$

$$\alpha = 1 + z\alpha^2 + z\alpha^3.$$

- Non-linear recurrence $O(N^3)$
- Iterate O(NM(N))
- Newton iteration [Kung & Traub 78]

$$\alpha_{k+1} = \alpha_k - \frac{\alpha_k - (1 + z\alpha_k^2 + z\alpha_k^3)}{1 - 2z\alpha_k - 3z\alpha_k^2}$$

$$\alpha_0 = 1$$

$$\alpha_1 = 1 + 2z + 10z^2 + 50z^3 + \cdots$$

$$\alpha_2 = 1 + 2z + 10z^2 + 66z^3 + 498z^4 + 4066z^5 + 34970z^6 + 311042z^7 + \cdots$$

Complexity: O(M(N)) (M(N) for series product)

$$\alpha = 1 + z\alpha^2 + z\alpha^3.$$

- **1** Non-linear recurrence $O(N^3)$
- Iterate O(NM(N))
- Newton iteration [Kung & Traub 78] O(M(N))

$$\alpha = 1 + z\alpha^2 + z\alpha^3.$$

- **1** Non-linear recurrence $O(N^3)$
- Iterate O(NM(N))
- Newton iteration [Kung & Traub 78] O(M(N))
- Linear recurrence [Comtet 64, Chudnovsky² 86]
 - linear differential equation [Abel 1827, Cockle 1861]

$$2z(z-2)(z^2+11z-1)\alpha''+(3z^3+12z^2-89z+6)\alpha'-3(z+3)\alpha=z+3,$$

2 translate

$$(2n+6)(2n+7)c_{n+3} = (46n^2 + 227n + 279)c_{n+2} -3(6n^2 + 10n + 3)c_{n+1} - n(2n+1)c_n.$$

Complexity: O(N).

$$\alpha = 1 + z\alpha^2 + z\alpha^3.$$

- Non-linear recurrence $O(N^3)$
- Iterate O(NM(N))
- Newton iteration [Kung & Traub 78] O(M(N))
- Linear recurrence [Comtet 64, Chudnovsky² 86] O(N)

$$\alpha = 1 + z\alpha^2 + z\alpha^3.$$

- Non-linear recurrence $O(N^3)$
- Iterate O(NM(N))
- Newton iteration [Kung & Traub 78] O(M(N))
- Linear recurrence [Comtet 64, Chudnovsky² 86] O(N)

Even faster! (wrt degree)

Algorithms and Complexities

$$P(z,\alpha)=0, \qquad \deg P=D$$

- Non-linear recurrence $O(N^D)$
- ② Iterate if $\alpha = P(z, \alpha)$: $O(\sqrt{D}NM(N))$ (baby steps/giant steps)
- **3** Newton iteration $O(\sqrt{D}M(N))$
- 4 Linear recurrence $O(D^?N)$.

Algorithms and Complexities

$$P(z,\alpha)=0, \qquad \deg P=D$$

- 1 Non-linear recurrence $O(N^D)$
- ② Iterate if $\alpha = P(z, \alpha)$: $O(\sqrt{D}NM(N))$
- 3 Newton iteration $O(\sqrt{D}M(N))$
- 4 Linear recurrence $O(D^?N)$.

Theorem (BoChLeSaSc07)

- the recurrence computed through Cockle's differential equation leads to $O(D^2M(D)N)$ ops;
- 2 there exist other recurrences leading to O(DM(D)N) ops.

Also, results in terms of D_z and D_v separately.

Nicer Recurrence on our Example

$$\alpha = 1 + z\alpha^2 + z\alpha^3$$

- Classical way:
 - 1 Linear differential equation [Abel 1827, Cockle 1861]

$$2z(z-2)(z^2+11z-1)\alpha''+(3z^3+12z^2-89z+6)\alpha'-3(z+3)\alpha=z+3,$$

2 translate $(2n+6)(2n+7)c_{n+3} = (46n^2 + 227n + 279)c_{n+2} - 3(6n^2 + 10n + 3)c_{n+1} - n(2n+1)c_n$

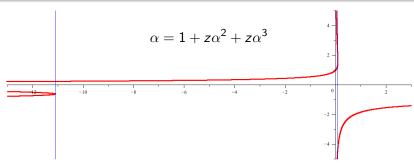
Shorter recurrence:

$$(n+2)(2n+5)(5n+3)c_{n+2} = (110n^3 + 396n^2 + 445n + 150)c_{n+1} + n(2n+1)(5n+8)c_n.$$

Questions

Minimal order for differential equation? for recurrence? Minimal "size"? Efficiency?

Apparent Singularities Pollution

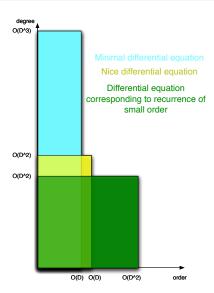


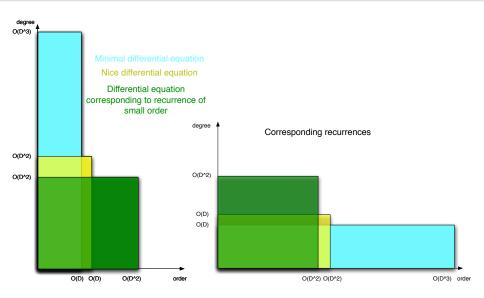
Cockle's differential equation:

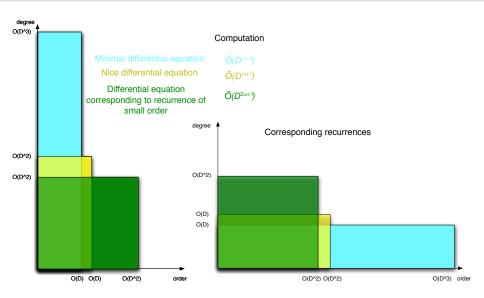
$$2z(z-2)(z^2+11z-1)\alpha''+(3z^3+12z^2-89z+6)\alpha'-3(z+3)\alpha=z+3,$$

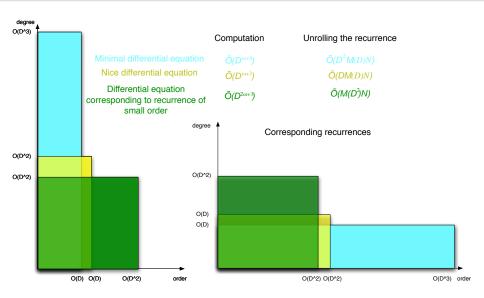
differential equation associated to shorter recurrence:

$$10z(z^2+11z-1)\alpha'''-(2z^3-33z^2-442z+25)\alpha''+\cdots=0.$$









II Algorithms

Cockle's Algorithm — Example

$$\alpha(z) - (1 + z\alpha^{2}(z) + z\alpha^{3}(z)) =: P(z, \alpha) = 0$$

$$\rightarrow \begin{cases} P_{y}(z, \alpha)\alpha'(z) + P_{z}(z, \alpha) = 0 \\ A(z, y)P(z, y) + B(z, y)P_{y}(z, y) = 1. \end{cases}$$
 (Bézout)
$$\alpha' = -BP_{z} \bmod P =: u_{1}\alpha^{2} + v_{1}\alpha + w_{1}1,$$
Vector space of dimension 3

Cockle's Algorithm — Example

$$\alpha(z) - (1 + z\alpha^{2}(z) + z\alpha^{3}(z)) =: P(z, \alpha) = 0$$

$$\rightarrow \begin{cases} P_{y}(z, \alpha)\alpha'(z) + P_{z}(z, \alpha) = 0 \\ A(z, y)P(z, y) + B(z, y)P_{y}(z, y) = 1. \end{cases}$$
 (Bézout)
$$\alpha' = -BP_{z} \bmod P =: u_{1}\alpha^{2} + v_{1}\alpha + w_{1}1,$$

$$\alpha'' = (u'_1\alpha^2 + v'_1\alpha + w'_1) + (2u_1\alpha + v_1)\alpha' =: u_2\alpha^2 + v_2\alpha + w_2\mathbf{1},$$

$$\alpha''' = (u'_2\alpha^2 + v'_2\alpha + w'_2) + (2u_2\alpha + v_2)\alpha' =: u_3\alpha^2 + v_3\alpha + w_3\mathbf{1}.$$

$$(\alpha \quad \alpha' \quad \alpha'' \quad \alpha''') = (\alpha^2 \quad \alpha \quad 1) \underbrace{\begin{pmatrix} 0 & u_1 & u_2 & u_3 \\ 1 & v_1 & v_2 & v_3 \\ 0 & w_1 & w_2 & w_3 \end{pmatrix}}_{\Delta}$$

 $V \in \ker A$ has for coordinates the coefficients of a differential equation.

Padé and Padé-Hermite approximants

Definition (Padé-Hermite Approximant)

The vector of polynomials (P_1, \ldots, P_k) with deg $P_i \leq d_i$ is a Padé-Hermite approximant of type (d_1, \ldots, d_k) for a vector of power series (f_1, \ldots, f_k) when

$$P_1 f_1 + \cdots + P_k f_k = O(x^{d_1 + \cdots + d_k + k - 1}).$$

Special cases: (given one series y)

- k = 2, $f_1 = -1$, $f_2 = y$: Padé approximant;
- $f_i = y^{i-1}$, i = 1, ..., k: algebraic approximants;
- $f_i = y^{(i-1)}$, i = 1, ..., k: differential approximants.

Padé and Padé-Hermite approximants

Definition (Padé-Hermite Approximant)

The vector of polynomials (P_1, \ldots, P_k) with deg $P_i \leq d_i$ is a Padé-Hermite approximant of type (d_1, \ldots, d_k) for a vector of power series (f_1, \ldots, f_k) when

$$P_1 f_1 + \cdots + P_k f_k = O(x^{d_1 + \cdots + d_k + k - 1}).$$

Algorithms and complexity $(D = d_1 + \cdots + d_k)$:

- Linear algebra: $O(D^{\omega})$ ops;
- minimal basis in $O(k^{\omega}M(D))$ ops [Beckermann-Labahn94];
- genset in $O(k^{\omega}M(D/k))$ ops [Storjohann06].

Cockle's Algorithm via Truncated Series

Algorithm, non-degenerate case

- Compute $\alpha^{(k)} = u_{k,1} \mathbf{1} + u_{k,2} \alpha + \cdots + u_{k,D} \alpha^{D-1}$ with power series coefficients $u_{k,i}$, for $k = 1, \dots, D$;
- find linear relation (diff. eqn) with power series coefficients (Newton in the linear algebra stage);
- 3 compute Padé approximants to recover rational coefficients.

[Chudnovsky² 86, Cormier-Singer-Trager-Ulmer 02]

Complexity: $O(r^{\omega}M(\eta))$, η bound on degree coeffs.

Good bound \rightarrow good algorithm

Differential Equation by Padé-Hermite Approximants

Algorithm

Input: P irreducible, order r and degree bound d;

- \bullet $\sigma := ?$;
- **2** Compute a series expansion for α at precision σ (Newton);
- **3** Compute a Padé-Hermite approximant (P_0, \ldots, P_r) of type (d, \ldots, d) for $(\alpha, \ldots, \alpha^{(r)})$;

Good bounds → good algorithm

Differential Equation by Padé-Hermite Approximants

Algorithm

Input: *P* irreducible, order *r* and degree bound *d*;

- \bullet $\sigma := ?$
- **2** Compute a series expansion for α at precision σ (Newton);
- **3** Compute a Padé-Hermite approximant $(P_0, ..., P_r)$ of type (d, ..., d) for $(\alpha, ..., \alpha^{(r)})$;

Good bounds \rightarrow good algorithm

Lemma (Truncated Series → Full Series)

$$P(x,\alpha) = 0, L \cdot \alpha = O(x^{\sigma}), \sigma \ge D(4Dr + d - r) \Rightarrow L \cdot \alpha = 0.$$

- $\alpha^{(k)} = W_k/P_y^{2k-1} \to \text{a polynomial } Q(z,y) \text{ such that } L \cdot \alpha = 0$ iff $Q(z,\alpha) = 0$, together with degree bounds on Q.
- 2 The resultant R(z) of P and Q w.r.t. y has degree $< \sigma$.
- 3 $R = O(x^{\sigma}) \Rightarrow R = 0 \Rightarrow P|Q$ (*P* irreducible).

III Bounds

$$\alpha(z) = \frac{1}{2\pi i} \oint \underbrace{\frac{y P_y(z, y)}{P(z, y)}}_{F(z, y)} dy.$$

Creative telescoping: an algorithm for differentiation under ∫ and integration by parts.

- Find $\Lambda = A(z, \partial_z) + \partial_v B(z, \partial_z, y, \partial_v)$ s.t. $\Lambda \cdot F = 0$;
- \bigcirc return A.

$$\alpha(z) = \frac{1}{2\pi i} \oint \underbrace{\frac{y P_y(z, y)}{P(z, y)}}_{F(z, y)} dy.$$

Creative telescoping: an algorithm for differentiation under ∫ and integration by parts.

- Find $\Lambda = A(z, \partial_z) + \partial_v B(z, \partial_z, y, \partial_v)$ s.t. $\Lambda \cdot F = 0$;
- \bigcirc return A.

Bounds by counting dimensions

$$z^i \partial_z^j \partial_y^k \cdot F = \frac{Q}{P^{j+k+1}}, \qquad \deg Q \leq i + (j+k+1)D.$$

Bounds by Creative Telescoping

$$\alpha(z) = \frac{1}{2\pi i} \oint \underbrace{\frac{y P_y(z, y)}{P(z, y)}}_{F(z, y)} dy.$$

Creative telescoping: an algorithm for differentiation under \int and integration by parts.

- Find $\Lambda = A(z, \partial_z) + \partial_y B(z, \partial_z, y, \partial_y)$ s.t. $\Lambda \cdot F = 0$;
- 2 return A.

Bounds by counting dimensions

$$z^{i}\partial_{z}^{j}\partial_{y}^{k}\cdot F=rac{Q}{P^{j+k+1}},\qquad \deg Q\leq i+(j+k+1)D.$$

Taking $i \leq N_z, j + k \leq N_{\partial}$,

$$\dim(\mathsf{Ihs}) = (\mathit{N}_z + 1) \binom{\mathit{N}_\partial + 2}{2}, \quad \dim(\mathsf{rhs}) = \binom{(\mathit{N}_\partial + 1)D + \mathit{N}_z + 2}{2}.$$

15 / 17

Bounds by Creative Telescoping

$$\alpha(z) = \frac{1}{2\pi i} \oint \underbrace{\frac{y P_y(z, y)}{P(z, y)}}_{F(z, y)} dy.$$

Creative telescoping: an algorithm for differentiation under \int and integration by parts.

- Find $\Lambda = A(z, \partial_z) + \partial_y B(z, \partial_z, y, \partial_y)$ s.t. $\Lambda \cdot F = 0$;
- 2 return A.

Bounds by counting dimensions

$$z^i \partial_z^j \partial_y^k \cdot F = \frac{Q}{P^{j+k+1}}, \qquad \deg Q \le i + (j+k+1)D.$$

Taking $i \leq N_z$, $j + k \leq N_\partial$, $N_z = 4D^2$, $N_\partial = 4D$,

$$\dim(\mathsf{lhs}) = (\mathit{N}_z + 1) \binom{\mathit{N}_\partial + 2}{2} > \dim(\mathsf{rhs}) = \binom{(\mathit{N}_\partial + 1)D + \mathit{N}_z + 2}{2}.$$

 \rightarrow Recurrence of order $\leq 4(D^2 + D)$, coeffs of deg $\leq 4D$.

IV Conclusion

Conclusion

- Summary: Good bounds + Newton + Padé or Padé-Hermite approximants = good algorithms;
- Also in the paper:
 - **1** Bounds in terms of D, D_x, D_y simultaneously;
 - Past heuristic algorithms using these bounds;
 - Experiments and conjectures on bounds in generic cases;
 - 4 Lower bounds;
 - Degenerate cases;
 - Mandling of algebraic extensions.
- Future:
 - Other cases of creative telescoping (smaller certificates? better efficiency?);
 - ② Bit complexity;
 - Positive characteristic.

Recurrence Unrolling

Problem

Given initial conditions and $p_k(n)u_{n+k} + \cdots + p_0(n)u_n = 0$, with p_i 's of degree d, compute u_0, \ldots, u_N efficiently for N large.

Direct: O(Nkd) ops; Better: O(NkM(d)/d).

→ The degree of the coefficients does not matter (much).

Recurrence Unrolling

Problem

Given initial conditions and $p_k(n)u_{n+k} + \cdots + p_0(n)u_n = 0$, with p_i 's of degree d, compute u_0, \ldots, u_N efficiently for N large.

Direct: O(Nkd) ops; Better: O(NkM(d)/d).

 \rightarrow The degree of the coefficients does not matter (much).

Algorithm: Fast Evaluation of P(x) on 0, ..., N [Bostan et alii 07]

Idea: expand generating series $\mathcal{P}(z) = \sum P(k)z^k = \frac{Q(z)}{(1-z)^{d+1}}$.

- **1** Compute $S(z) := (1-z)^{-d-1} \mod z^d$;
- ② Compute N/d times

$$\frac{A(z)}{(1-z)^{d+1}} = \underbrace{b_0 + \dots + b_{d-1}z^{d-1}}_{B(z)} + \frac{z^d C(z)}{(1-z)^{d+1}}$$

by $B := AS \mod z^d$; $z^d C := A - B(1-z)^{d+1}$.

Timings

Cockle's algorithm over $F = \mathsf{GF}_{9973}$ for random dense polynomials with $D_z = D_y = N$:

Ν	ser.	rat.	η	\deg_z
1	.002	.002	2	2
2	.003	.004	17	10
3	.02	.03	69	36
4	.10	.16	182	92
5	.47	.98	380	190
6	1.86	4.56	687	342
7	5.80	16.5	1127	560
8	15.5	49.9	1724	856
9	38.0	138	2502	1242
10	72.7	340	3485	1730

- Always faster than Magma's built-in routine (rat.).
- Bound η off by a factor 2?

Better Bound on Order Using y

Aim

$$F = yP_y/P$$
, we want: $A(z, \partial_z) \cdot F = \partial_y \cdot G$, $A \neq 0$.

Better Bound on Order Using y

Aim

$$F = yP_y/P$$
, we want: $A(z, \partial_z) \cdot F = \partial_y \cdot G$, $A \neq 0$.

- ① Decompose $P =: \tilde{P} + R$, with deg $\tilde{P} = D$, deg R < D;
- 2 Populate $V_d := \{Q/P^{d+1} \mid \deg Q < Dd + D + d\}$ with
 - $F_d := \text{Vect}(\{z^i(z\partial_z)^j \cdot F \mid i, i < d\});$
 - $H_d := \partial_y \cdot \text{Vect}(\{\frac{cz^{d+1}\tilde{P}^d + H}{P^d} \mid \text{deg } H \leq dD + d\}).$
- Count dimensions:

$$\dim F_d = (d+1)^2; \quad \dim H_d = \binom{dD+d+2}{2} + 1 - \underbrace{(d+1)}_{\text{kernel}};$$

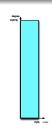
$$\dim V_d = \binom{Dd + D + d + 2}{2}.$$

- Occide: $d > D^2 + D \Rightarrow \dim F_d + \dim H_d > \dim V_d$.
 - \rightarrow Recurrence of order $< D^2 + D$.

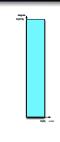
History

- Abel (1827): Existence of linear differential equation;
- Cockle (1861–1862): Algorithm for linear differential equation of minimal order;
- Harley (1862): Name "Differential resolvent";
- Tannery (1875): Rediscovery of Cockle's method;
- Comtet (1964): Application to series expansion (by hand);
- Chudnovsky² (1986): Complexity point of view;
- Cormier, Singer, Trager, Ulmer (2002): \leadsto Degree bound in $O(D^5)$ for the differential resolvent;
- Nahay (2003–2004): Deg. bound in $O(D^3)$ for α^{λ} with $\lambda \notin \overline{\mathbb{Q}}$;
- Tsai (2000): Weyl closure → removal of apparent singularities.

$$Wr(\alpha_1, \dots, \alpha_r, \alpha) = \begin{vmatrix} \alpha_1 & \dots & \alpha_r & \alpha \\ \alpha'_1 & \dots & \alpha'_r & \alpha' \\ \vdots & & \vdots & \vdots \\ \alpha_1^{(r)} & \dots & \alpha_r^{(r)} & \alpha^{(r)} \end{vmatrix} = 0.$$



$$\begin{aligned}
Wr(\alpha_1, \dots, \alpha_r, \alpha) &= \\
\begin{vmatrix}
\alpha_1 & \dots & \alpha_r & \alpha \\
\frac{W_1(z, \alpha_1)}{P_y(z, \alpha_1)} & \dots & \frac{W_1(z, \alpha_r)}{P_y(z, \alpha_r)} & \alpha' \\
\vdots & & \vdots & & \vdots \\
\frac{W_r(z, \alpha_1)}{P_y(z, \alpha_1)^{2r-1}} & \dots & \frac{W_r(z, \alpha_r)}{P_y(z, \alpha_r)^{2r-1}} & \alpha^{(r)}
\end{vmatrix} &= 0.$$



$$Wr(\alpha_{1}, \dots, \alpha_{r}, \alpha) \prod_{i} P_{y}(z, \alpha_{i})^{2r-1} =$$

$$\begin{vmatrix} P_{y}(z, \alpha_{1})^{2r-1}\alpha_{1} & \dots & P_{y}(z, \alpha_{r})^{2r-1}\alpha_{r} & \alpha \\ W_{1}(z, \alpha_{1})P_{y}(z, \alpha_{1})^{2r-2} & \dots & W_{1}(z, \alpha_{r})P_{y}(z, \alpha_{r})^{2r-2} & \alpha' \\ \vdots & & \vdots & \vdots \\ W_{r}(z, \alpha_{1}) & \dots & W_{r}(z, \alpha_{r}) & \alpha^{(r)} \end{vmatrix} = 0.$$

$$L := \frac{1}{\prod (\alpha_{i} - \alpha_{j})} \operatorname{Wr}(\alpha_{1}, \dots, \alpha_{r}, \alpha) \prod_{i} P_{y}(z, \alpha_{i})^{2r-1} = \frac{1}{\prod (\alpha_{i} - \alpha_{j})} \times$$

$$\begin{vmatrix} P_{y}(z, \alpha_{1})^{2r-1} \alpha_{1} & \dots & P_{y}(z, \alpha_{r})^{2r-1} \alpha_{r} & \alpha \\ W_{1}(z, \alpha_{1}) P_{y}(z, \alpha_{1})^{2r-2} & \dots & W_{1}(z, \alpha_{r}) P_{y}(z, \alpha_{r})^{2r-2} & \alpha' \\ \vdots & & \vdots & & \vdots \\ W_{r}(z, \alpha_{1}) & \dots & W_{r}(z, \alpha_{r}) & \alpha^{(r)} \end{vmatrix} = 0.$$

$$L := \prod_{\substack{1 \le i < j \le r}} \operatorname{Wr}(\alpha_1, \dots, \alpha_r, \alpha) \prod_i P_y(z, \alpha_i)^{2r-1} = \prod_{\substack{1 \le i < j \le r}} \prod_{\alpha_i = i \le j \le r} X_i$$

$$\begin{vmatrix} P_y(z,\alpha_1)^{2r-1}\alpha_1 & \dots & P_y(z,\alpha_r)^{2r-1}\alpha_r & \alpha \\ W_1(z,\alpha_1)P_y(z,\alpha_1)^{2r-2} & \dots & W_1(z,\alpha_r)P_y(z,\alpha_r)^{2r-2} & \alpha' \\ \vdots & & \vdots & & \vdots \\ W_r(z,\alpha_1) & \dots & W_r(z,\alpha_r) & \alpha^{(r)} \end{vmatrix} = 0.$$

- L is polynomial and symmetric in $\alpha_1, \ldots, \alpha_r$;
- $\deg_z(k\text{th row}) = O(D^2)$, $\deg_{\alpha_i}(i\text{th col}) = O(D^2)$;
- \Rightarrow if $r = D_v$, deg_z $L = O(D^3)$;
- if $r < D_{\nu}$, symmetrize first wrt $\alpha_1, \ldots, \alpha_{D_{\nu}}$.

Precise bounds (rather than O()) available, and necessary in algorithm