The packages in MATHEMAGIX

21 November 2007

The packages in MATHEMAGIX

The structure of a package

- Autonomous software component.
- Installation ./configure && make; with options:

enable-glue	compile glue for interpreter [yes]
enable-debug	install a debugging enable executable [-ggdb]
enable-optimize	compile with optimizations [guessed]
enable-verify	verify correctness of low-level operations [no]
enable-test	compile additional test programs [no]
enable-bench	compile additional benchmark programs [no]

- Usually, it provides
 - a library libpackage.so of the exported functions,
 - a library libmmxpackage.so for the interaction with the interpreter based on libpackage.so.
- Same general structure (to simplify the maintenance).

```
-- LICENSE
l-- Makefile
1-- ...
|-- build
    I-- Makefile
    ·-- ...
I-- doc
   l-- Makefile
   -- doxyfile
     |-- basix.tm
    |-- ...
    '-- html
    ·-- ...
-- glue
    |-- basix_glue.cpp
    ·-- ...
-- include
    '-- basix
    ·-- ...
-- macros
    1-- ...
    '-- mmx_module.m4
|-- script
   -- basix-config
    '-- basix-config.in
I-- src
   ·-- ...
'-- test
·-- ...
```

^{Sea} Place where the compilation is run

The documentation part (TEXMACS and DOXYGEN files)

The connection to the interpreter

🖼 The header files

The macros which specify the behavior of configure

The files to be compiled

📽 The test files

D basix: strings, lists, vectors, tables, symbols, generics, ...

numerix: extended arithmetic based on GMP integer, rational, MPFR floating with rounding modes.

d algebrix/algebramix: vectors & matrices, dense univariate polynomials with fast arithmetic, skew polynomials, univariate series, multivariate polynomials, dual/inverse systems, Sturm sequence, univariate resultant, ...

symbolix: arithmetic trees for symbolic manipulations.

subdivix: Bernstein basis representation of univariate and multivariate polynomials; subdivision solvers with sleeve approximations in 1D, ND; continued fraction expansion of roots of univariate polynomials.

realroot: manipulation of real roots of univariate polynomials, sign evaluation, static Sturm sequence for small degree (E. Tsigaridas).

mps: Approximation of complex roots of univariate polynomials based on Aberth method (G. Fiorentino & D. Bini).

□ nla: numerical linear algebra, connections to LAPACK: LU, QR, SVD, eigenvalues and eigenvectors.

□ analyzit: basic algebraic structures with error bounds (ball).

□ shape: curves and surfaces of different type: parameterised, implicit, polygonal with algorithms to compute topology, intersection, self-intersection, ...

pack: package to install and use packages (R. Soum).

☞ Help to install precompiled or source versions of packages

- > search "algebrix"
- > install "algebrix"
- > remove "algebrix"
- Take into account dependancies.

Use external servers (defined in sources.mmx) with a joomla interface.

Ipgrade index.mmx to get information on how to install packages (version, architecture, dependancies, url, ...)

How to write your own module MYMOD

- ☞ use "mymod" evaluates the function
 - void(*define_mymod) (void) ...;
- Service (parameterised) types:
 - define_type<always,cpp_type>("mmx_type")
 - define_type<always,cpp_ptype<C>>(gen("A_type",NAME(C)))
- Export functions:
 - define<always>("eval",my_cpp_eval_function);
- Export operators:
 - define_binary<always,cpp_type,add_op>();
- Section 2017 Export implicit converters:
 - define_caster<Cond,cpp_type1,cpp_type2>(...);
- Export general signatures under conditions:
 - lift_scalar_field_ops<IsField,polynomial<C>,C> ();