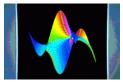
Common Multiples of Linear Differential and Difference Operators

Frédéric Chyzak (joint work in progress with A. Bostan, Z. Li & B. Salvy)

Algorithms Project, INRIA



November 21, 2007

Motivation: Iterated LCLMs are bad!

 $\begin{array}{l} \mathcal{A} = \mathbb{Q}\langle x, \partial; \partial x = x\partial + 1 \rangle \qquad (\text{differential op., polynomial coeffs.}) \\ \text{LCLM} = \text{common left multiple with least order, with no content} \\ \mathcal{L} = \text{LCLM}(L_1, \dots, L_k) = C_i L_i \text{ for given } L_i \in \mathcal{A} \end{array}$

$$\deg_{\partial} L_i = r_i, \quad \deg_{x} L_i = d_i \quad \rightarrow \quad \deg_{\partial} L \leq R, \quad \deg_{x} L \leq B$$

k	R	В	generic	Fuchsian
1	3	9		
2	6	72	72 / 1.2s	63 / <1s
3	9	189	189 / 42s	162 / 23s
4	12	360	360 / 519s	306 / 267s

 $\begin{array}{c} \mathsf{LCLM}(\mathsf{LCLM}(L_1,L_2),\mathsf{LCLM}(L_3,L_4)) \text{ takes } 1120\text{s} \ / \ 796\text{s},\\ \mathsf{LCLM}(\mathsf{LCLM}(L_1,L_2),L_3) \text{ takes } 61\text{s} \ / \ 53\text{s},\\ \mathsf{LCLM}(\mathsf{LCLM}(\mathsf{LCLM}(L_1,L_2),L_3),L_4) \text{ takes } 978\text{s} \ / \ 677\text{s}.\\ (\mathsf{Maple } 11\text{'s } \mathsf{DEtools}[\mathsf{LCLM}] \text{ by Van Hoeij; } -100 < \operatorname{coeffs.} < 100.) \end{array}$

Related Works for LCLMs in Specific Classes

LCLMs of first-order operators in Van Hoeij's DEtools[DFactor] (1997).

LCLMs of two operators by A subresultant theory for linear ordinary differential polynomials, Z. Li (1998).

LCLMs of the form LCLM({ $L(\omega x, \omega^{-1}\partial); \omega^k = 1$ }) appear for the extraction of *k*-sections in multisummable D-finite series in *Remarques algorithmiques liées au rang d'un opérateur différentiel linéaire*, Barkatou, C., Loday-Richaud (2003).

LCLMs of telescopers are used for the summation of rational functions, after a partial fraction decomposition, in *A direct algorithm to construct the minimal Z-pairs for rational functions*, H. Q. Le (2003).

Contributions

- Analysis of worst-case arithmetic complexity of several existing algorithms for computing LCLMs.
- A tight bound $B \approx k^2 r d$ on the degree in x of the LCLM.
- A first algorithm, asymptotically better for large r.
- A bound B' ≈ 2kr on the total degree in (x, ∂) in which common left multiples exist.
- A faster algorithm which computes the LCLM as the GCRD of two common multiples of small size.

Inspired by our work on algebraic series (ISSAC'07): by allowing orders twice as large as the LCLM, $B' \approx 2R$, the total size is much reduced, $B'^2/2 \approx 2k^2r^2 \ll RB \approx k^3r^2d$.

Poole's Method (k = 2)

1 Set
$$R = r_1 + r_2$$
 and $D = \max\{d_1, d_2\}$.

- 2 Compute $M_{i,j,1} = x^i \partial^j L_1$ for $0 \le i \le (R+2)D$, $0 \le j \le r_2$.
- 3 Compute $M_{i,j,2} = x^i \partial^j L_2$ for $0 \le i \le (R+2)D$, $0 \le j \le r_1$.
- **④** Find a suitable linear combination of the $M_{i,j,k}$ over \mathbb{Q} .

$$\begin{split} \# \mathsf{unkowns} &= (R+2)\big((R+2)D+1\big),\\ \# \mathsf{equations} &= (R+1)\big((R+2)D+D+1\big),\\ \mathsf{dim} \,\mathsf{kernel} \geq D+1. \end{split}$$

Complexity at least $O(R^{2\omega}D^{\omega})$ for k = 2. Iterative LCLMs in $O(kR^{3\omega}D^{\omega})$; by balancing inputs in $O(R^{3\omega}D^{\omega})$.

Ore's Method: Extended GCRD Algorithm (k = 2)

- **(1)** Set $R_0 = L_1$, $R_1 = L_2$, $U_0 = 1$, $V_0 = 0$, $U_1 = 0$, $V_1 = 1$.
- Perform right Euclidean divisions R_{i-1} = Q_iR_i + R_{i+1} and compute U_{i+1} = Q_iU_i - U_{i-1}, V_{i+1} = Q_iV_i - V_{i-1}, to ensure R_i = U_iL₁ + V_iL₂.
- 3 Let *m* be the index of the last non-zero remainder R_m (a GCRD). Output $U_{m+1}L_1 = -V_{m+1}L_2$.

Generically, $\deg_{\partial} Q_i = 1$, $\deg_x Q_i = \deg_x R_i = (i+1)D$, so the *i*th Euclidean division costs $\tilde{O}((r-i)iD)$, if $r = \max\{r_1, r_2\}$.

Total complexity is $\tilde{O}(R^3D)$ for k = 2. Iterative LCLMs in $\tilde{O}(kR^4D)$; by balancing inputs in $\tilde{O}(R^4D)$.

Van Hoeij's Method Revisited ($k \ge 2$)

② Compute the $v_{i,j} = \operatorname{rem}(\partial^i, L_j)$ for $0 \le i \le R = kr$, $1 \le j \le k$, keeping lc $(L_j)^i$ as denominators, by the formula

$$v_{i,j} = \operatorname{rem}(\partial v_{i-1,j}, L_j).$$

- ② Write the numerator of each $v_{i,j}$ as a row vector $n_{i,j}$ in $\mathbb{Q}[x]^{r_j}$ and determine the rank ρ of $N = (n_{i,j})$ by Storjohann and Villard's 2005 algorithm.
- **3** Extract (randomly) an invertible submatrix of *N* from the first ρ rows, and prolong it consistently with the next row to get a $(\rho + 1) \times \rho$ matrix *M*.
- ④ Determine the (rank 1) polynomial kernel of *M* by Storjohann and Villard's 2005 algorithm.
- Simplify the (single) basis element so as to take the denominators into account.

Complexity: $\tilde{O}(R^3D)$ for filling in V; $\tilde{O}(R^{\omega+1}D)$ for computing the kernel; $\tilde{O}(R^3D)$ for simplifying.

Our Linear-Algebraic Approach to Computing LCLMs

Setting: $\partial a = \sigma(a)\partial + \delta(a)$ where σ and δ do not increase the degrees in x and can be computed in linearly-many operations.

$$S_{N}(P) = \begin{pmatrix} \partial^{N-\deg_{\partial} P} P \\ \vdots \\ \partial P \\ P \end{pmatrix}, \quad M_{N} = \begin{pmatrix} S_{N}(L_{1}) & & \\ & \ddots & \\ & & S_{N}(L_{k}) \\ -S_{N+1}(1) & \dots & -S_{N+1}(1) \end{pmatrix}$$

Left kernel of $M_N \quad \longleftrightarrow$ Common multiples and their cofactors.

Fast polynomial-kernel algorithm for solving (Storjohann–Villard). Tight degree bound for the analysis (from Hadamard's bound).

Degree Bound for Common Multiples of Minimal Order

 L_i of order r_i and degree d_i , $R = r_1 + \cdots + r_k$, $D = \max_{1 \le i \le k} d_i$. $L = \text{LCLM}(L_1, \ldots, L_k)$ or order $\ell \le R$.

 M_N has size $m_N \times n_N$ and rank ρ_N given by:

$$m_N = (k+1)(N+1) - R,$$
 $n_N = k(N+1),$
 $m_N - n_N = N + 1 - R \le 1,$
 $(k+1)(N+1) - R = (N - \ell + 1) + \rho_N.$

All coefficients in M_N have degree $\leq D$.

Hadamard's bound is $B = (k\ell + k - R)D$, where $\ell = \rho_R + R - k(R + 1)$.

Algorithm for Common Multiples of Minimal Order

- (1) Compute M_R and determine its rank ρ by S. & V.'s algorithm.
- ② Set $\ell = \rho + R k(R+1)$ and extract M_{ℓ} from M_R by suppressing rows and columns.
- 3 Compute the kernel of M_{ℓ} by S. & V.'s algorithm, that is, find one polynomial solution (C_1, \ldots, C_k, L) , and return it.

Complexity: $O(k^2 R^2 \rho^{\omega-2} D) = O(k^{\omega} R^{\omega} D)$

Towards Common Multiples of Small Total Degree

In the spirit of Poole's method:

$$S'_{N}(P) = (x^{i}\partial^{j}P)_{i+j=0}^{N-\deg_{x,\partial}P}, \quad M'_{N} = \begin{pmatrix} S'_{N}(L_{1}) & & \\ & \ddots & \\ & & S'_{N}(L_{k}) \\ -S'_{N+1}(1) & \dots & -S'_{N+1}(1) \end{pmatrix}$$

For deg_{x, ∂} $L_i \leq \delta$, a left kernel is ensured by the bound

$$N \ge B' = \left\lceil k\delta + rac{\left(4k(k-1)\delta^2 + 1
ight)^{1/2} - 3}{2}
ight
ceil pprox 2k\delta.$$

Matrix of size $O(k^3\delta^2) \rightarrow$ linear algebra in $O(k^{3\omega}\delta^{2\omega})$?

Final Algorithm for Common Multiples of Minimal Order

Series of size $O(B'^2) \subset O(k^2\delta^2)$ instead of operators of size $O(k^3r^2d) \subset O(k^3\delta^3)$!

- (1) Compute truncated series solutions of the L_i at order $B'^2 + B'$ $O(kB'^2) \subset O(k^3\delta^2)$
- ② Take a random linear combination of them(same)③ Derive its first B' derivatives $O(k^3\delta^3)$
- Compute a Hermite–Padé approximant

$$Oig(B'^\omega M(B')ig) \subset ilde O(k^{\omega+1}\delta^{\omega+1})$$

Solution Take any two CLMs and compute their GCRD $O(r^{\omega}M(d)) \subset \tilde{O}(\delta^{\omega+1})$

Conclusions

Algorithm	Complexity	Best for
Poole's	$k^{3\omega}r^{3\omega}D$	
Ore's	$k^4 r^4 D$	
Van Hoeij's	$k^{\omega+1}r^{\omega+1}D$	large (k, D) , fixed r
Ours by S.V.	$k^{2\omega}r^{\omega}D$	large r , fixed (k, D)
Ours by P.H.	$k^{\omega+1}\delta^{\omega+1}$	large δ when $\delta \approx r \approx D$

 $r, D \leq \delta \leq r + D$

When k = 2, Li's subresultants give LCLM in $O(r^{\omega}D)$.

For comparison's sake: product in $O(\delta^{\omega})$.

Eigenrings in same complexity?