Linear Syzygies and Implicitization

Laurent Busé

Galaad, INRIA Sophia-Antipolis, France

INRIA, November 20th, 2007

• Suppose given a parametrization (K is a field)

$$
\begin{array}{ccc}\mathbb{P}^1_{\mathbb{K}} & \stackrel{\phi}{\longrightarrow} & \mathbb{P}^2_{\mathbb{K}} \\
(X_1:X_2) & \mapsto & (f_1:f_2:f_3)(X_1:X_2)\n\end{array}
$$

of a plane curve $\mathcal C$ in $\mathbb P^2.$ Set $d:=\deg(f_i)\ge 1.$

• Implicitization: find a (homogeneous) polynomial $P \in \mathbb{K}[T_1, T_2, T_3]$ such that $P(f_1, f_2, f_3) \equiv 0$ with the smallest possible degree – it is called an implicit equation of C.

• Degree formula: $deg(\phi)$ deg $(C) = d - deg(gcd(f_1, f_2, f_3))$. \Rightarrow For simplicity, assume gcd $(f_1, f_2, f_3) \in \mathbb{K} \setminus \{0\} \Leftrightarrow$ no base point. • Suppose given a parametrization (K is a field)

$$
\begin{array}{ccc}\mathbb{P}^1_{\mathbb{K}} & \stackrel{\phi}{\longrightarrow} & \mathbb{P}^2_{\mathbb{K}} \\
(X_1:X_2) & \mapsto & (f_1:f_2:f_3)(X_1:X_2)\n\end{array}
$$

of a plane curve $\mathcal C$ in $\mathbb P^2.$ Set $d:=\deg(f_i)\ge 1.$

• Implicitization: find a (homogeneous) polynomial $P \in \mathbb{K}[T_1, T_2, T_3]$ such that $P(f_1, f_2, f_3) \equiv 0$ with the smallest possible degree – it is called an implicit equation of C .

• Degree formula: $deg(\phi)$ deg $(C) = d - deg(gcd(f_1, f_2, f_3))$. \Rightarrow For simplicity, assume gcd(f_1, f_2, f_3) ∈ K \ {0} \Leftrightarrow no base point. • Suppose given a parametrization (K is a field)

$$
\begin{array}{ccc}\mathbb{P}^1_{\mathbb{K}} & \stackrel{\phi}{\longrightarrow} & \mathbb{P}^2_{\mathbb{K}} \\
(X_1:X_2) & \mapsto & (f_1:f_2:f_3)(X_1:X_2)\n\end{array}
$$

of a plane curve $\mathcal C$ in $\mathbb P^2.$ Set $d:=\deg(f_i)\ge 1.$

• Implicitization: find a (homogeneous) polynomial $P \in \mathbb{K}[T_1, T_2, T_3]$ such that $P(f_1, f_2, f_3) \equiv 0$ with the smallest possible degree – it is called an implicit equation of \mathcal{C} .

• Degree formula: $deg(\phi)$ deg $(C) = d - deg(gcd(f_1, f_2, f_3))$. \Rightarrow For simplicity, assume gcd $(f_1, f_2, f_3) \in \mathbb{K} \setminus \{0\} \Leftrightarrow$ no base point.

Linear Syzygies

$$
\mathscr{L}(\mathbf{f}) := \left\{ \sum_{i=1}^{3} a_i(X_1, X_2) T_i \in \mathbb{K}[X_1, X_2][T_1, T_2, T_3] \right\}
$$

such that
$$
\sum_{i=1}^{3} a_i(X_1, X_2) f_i(X_1, X_2) \equiv 0 \right\}
$$

• It is a graded $\mathbb{K}[X_1,X_2]$ -module: $\mathscr{L}(\mathbf{f}) = \bigoplus_{\nu \geq 0} \mathscr{L}(\mathbf{f})_\nu$ \bullet $\mathscr{L}(\mathbf{f})_{\nu} \simeq \mathbb{K}$ -vector space. For any $\mathsf{L} \in \mathscr{L}(\mathbf{f})_{\nu}$ set

$$
L = \sum_{i=0}^{\nu} L_i(T_1, T_2, T_3) X_1^{i} X_2^{\nu - i}
$$

Notice that $L_i(T_1,T_2,T_3)$ is a **linear** form in $\mathbb{K}[T_1,T_2,T_3]$.

Linear Syzygies

$$
\mathscr{L}(\mathbf{f}) := \left\{ \sum_{i=1}^{3} a_i(X_1, X_2) T_i \in \mathbb{K}[X_1, X_2][T_1, T_2, T_3] \right\}
$$

such that
$$
\sum_{i=1}^{3} a_i(X_1, X_2) f_i(X_1, X_2) \equiv 0 \right\}
$$

- It is a graded $\mathbb{K}[X_1,X_2]$ -module: $\mathscr{L}(\mathbf{f}) = \bigoplus_{\nu \geq 0} \mathscr{L}(\mathbf{f})_\nu$
- \bullet $\mathscr{L}(\mathbf{f})_{\nu} \simeq \mathbb{K}$ -vector space. For any $\mathsf{L} \in \mathscr{L}(\mathbf{f})_{\nu}$ set

$$
L = \sum_{i=0}^{\nu} L_i(T_1, T_2, T_3) X_1^{i} X_2^{\nu - i}
$$

Notice that $L_i(T_1,T_2,T_3)$ is a **linear** form in $\mathbb{K}[T_1,T_2,T_3]$.

Linear Syzygies

$$
\mathscr{L}(\mathbf{f}) := \left\{ \sum_{i=1}^{3} a_i(X_1, X_2) T_i \in \mathbb{K}[X_1, X_2][T_1, T_2, T_3] \right\}
$$

such that
$$
\sum_{i=1}^{3} a_i(X_1, X_2) f_i(X_1, X_2) \equiv 0 \right\}
$$

- It is a graded $\mathbb{K}[X_1,X_2]$ -module: $\mathscr{L}(\mathbf{f}) = \bigoplus_{\nu \geq 0} \mathscr{L}(\mathbf{f})_\nu$
- \bullet $\mathscr{L}(\mathbf{f})_{\nu} \simeq \mathbb{K}$ -vector space. For any $\mathsf{L} \in \mathscr{L}(\mathbf{f})_{\nu}$ set

$$
L = \sum_{i=0}^{\nu} L_i(T_1, T_2, T_3) X_1^{i} X_2^{\nu - i}
$$

Notice that $L_i(T_1,T_2,T_3)$ is a **linear** form in $\mathbb{K}[T_1,T_2,T_3]$.

• Following [Sederberg, Chen], given an integer ν one builds the matrix M $(\boldsymbol{\mathsf{f}})_{\nu}$ as follows:

1. Compute a basis $L^{(1)}, \ldots, L^{(n_{\nu})}$ of $\mathscr{L}(\mathbf{f})_{\nu}$ (i.e. solve a linear system) 2. M($\boldsymbol{\mathsf{f}})_\nu$ is the matrix of coefficients of this basis, that is

$$
\left(\begin{array}{cccccc}X_1^{\nu}&X_1^{\nu-1}X_2&\cdots&X_2^{\nu}\end{array}\right)\mathtt{M}(\mathbf{f})_{\nu}=\left(\begin{array}{cccc}L^{(1)}&L^{(2)}&\cdots&L^{(n_{\nu})}\end{array}\right)
$$

 \bullet The entries of M(f) $_{\nu}$ are linear forms in $\mathbb{K}[T_1,T_2,T_3]$:

$$
M(f)_{\nu} := \left(L_i^{(j)}(T_1, T_2, T_3) \right)_{i=0,\dots,\nu; j=1,\dots,n_{\nu}}
$$

• Following [Sederberg, Chen], given an integer ν one builds the matrix M $(\boldsymbol{\mathsf{f}})_{\nu}$ as follows:

1. Compute a basis $L^{(1)}, \ldots, L^{(n_{\nu})}$ of $\mathscr{L}(\mathbf{f})_{\nu}$ (i.e. solve a linear system) 2. M($\boldsymbol{\mathsf{f}})_\nu$ is the matrix of coefficients of this basis, that is

$$
\left(\begin{array}{cccccc}X_1^{\nu}&X_1^{\nu-1}X_2&\cdots&X_2^{\nu}\end{array}\right)\mathtt{M}(\mathbf{f})_{\nu}=\left(\begin{array}{cccc}L^{(1)}&L^{(2)}&\cdots&L^{(n_{\nu})}\end{array}\right)
$$

 \bullet The entries of M($\boldsymbol{\mathsf{f}})_\nu$ are linear forms in $\mathbb{K}[T_1,T_2,T_3]$:

$$
M(f)_{\nu} := \left(L_i^{(j)}(T_1, T_2, T_3) \right)_{i=0,\ldots,\nu; \ j=1,\ldots,n_{\nu}}
$$

Matrix of linear syzygies (2)

We have a \sf{family} of matrices indexed by ν : $\mathtt{M}(\mathbf{f})_\nu.$

$$
\begin{cases}\n0 \le \nu \le d - 2 & \text{tcolumns} < \text{trows} = \nu + 1 \\
\nu = d - 1 & \text{M(f)}_{d-1} \text{ is a square matrix of size } d = \text{deg}(f_i) \\
\nu \ge d & \text{tcolumns} > \text{trows} = \nu + 1\n\end{cases}
$$

• For all $\nu > d - 1$ we have the two following properties:

- 1. the GCD of the minors of (maximum) size $\nu+1$ of $\texttt{M}(\mathbf{f})_\nu$ is equal to $C(T_1, T_2, T_3)^{\deg(\phi)}$
- 2. M $\left(\mathsf{f}\right)_\nu$ is generically full rank and its rank drops exactly on $\mathcal C$

 $\texttt{M(f)}_{\nu}$ is a representation of the curve $\mathcal C$

Matrix of linear syzygies (2)

We have a \sf{family} of matrices indexed by ν : $\mathtt{M}(\mathbf{f})_\nu.$

$$
\begin{cases}\n0 \le \nu \le d - 2 & \text{tcolumns} < \text{trows} = \nu + 1 \\
\nu = d - 1 & \text{M(f)}_{d-1} \text{ is a square matrix of size } d = \text{deg}(f_i) \\
\nu \ge d & \text{tcolumns} > \text{trows} = \nu + 1\n\end{cases}
$$

Proposition

• For all $\nu > d - 1$ we have the two following properties:

- 1. the GCD of the minors of (maximum) size $\nu+1$ of $\texttt{M}(\textbf{f})_{\nu}$ is equal to $C(T_1, T_2, T_3)^{\deg(\phi)}$
- 2. M $\left(\mathsf{f}\right)_\nu$ is generically full rank and its rank drops exactly on $\mathcal C$

 $\texttt{M(f)}_{\nu}$ is a representation of the curve $\mathcal C$

Matrix of linear syzygies (2)

We have a \sf{family} of matrices indexed by ν : $\mathtt{M}(\mathbf{f})_\nu.$

$$
\begin{cases} 0 \le \nu \le d-2 & \text{ftcolumns} < \text{ftrows} = \nu + 1 \\ \nu = d-1 & \text{M(f)}_{d-1} \text{ is a square matrix of size } d = \text{deg}(f_i) \\ \nu \ge d & \text{ftcolumns} > \text{ftows} = \nu + 1 \end{cases}
$$

Proposition

• For all $\nu > d - 1$ we have the two following properties:

- 1. the GCD of the minors of (maximum) size $\nu+1$ of $\texttt{M}(\textbf{f})_{\nu}$ is equal to $C(T_1, T_2, T_3)^{\deg(\phi)}$
- 2. M $\left(\mathsf{f}\right)_\nu$ is generically full rank and its rank drops exactly on $\mathcal C$

 $\boldsymbol{\tt{M}}(\boldsymbol{\sf f})_{\nu}$ is a representation of the curve $\boldsymbol{\mathcal{C}}$

• $\mathscr{L}(\mathbf{f})$ turns out to be a free $\mathbb{K}[X_1, X_2]$ -module of rank 2: a μ -basis is a basis (P, Q) of $\mathscr{L}(\mathbf{f})$. As a property, there exists an integer μ such that

$$
P\in\mathscr{L}(\mathbf{f})_{\mu}\text{ and }Q\in\mathscr{L}(\mathbf{f})_{d-\mu}.
$$

 \bullet One can reformulate the construction of M(f) $_{\nu}$, for all $\nu \geq$ 0, as the matrix of the multiplication map:

$$
\mathbb{K}[X_1,X_2]_{\nu-\mu}\oplus\mathbb{K}[X_1,X_2]_{\nu-d+\mu}\xrightarrow{(\rho\ q)}\mathbb{K}[X_1,X_2]_{\nu}
$$

 \Rightarrow M(${\sf f})_{d-1}$ is the Sylvester Matrix of P,Q :

$$
\det(\mathrm{M}(\mathbf{f})_{d-1}) = \mathrm{Res}(P, Q) = C^{\deg(\phi)}.
$$

• $\mathscr{L}(\mathbf{f})$ turns out to be a free $\mathbb{K}[X_1, X_2]$ -module of rank 2: a μ -basis is a basis (P, Q) of $\mathscr{L}(\mathbf{f})$. As a property, there exists an integer μ such that

$$
P\in\mathscr{L}(\mathbf{f})_{\mu}\text{ and }Q\in\mathscr{L}(\mathbf{f})_{d-\mu}.
$$

 \bullet One can reformulate the construction of M($\mathsf{f})_\nu$, for all $\nu\geq 0$, as the matrix of the multiplication map:

$$
\mathbb{K}[X_1,X_2]_{\nu-\mu}\oplus\mathbb{K}[X_1,X_2]_{\nu-d+\mu}\xrightarrow{(P\ Q)}\mathbb{K}[X_1,X_2]_{\nu}
$$

 \Rightarrow M(${\sf f})_{d-1}$ is the Sylvester Matrix of P,Q :

$$
\det(\text{M}(\mathbf{f})_{d-1}) = \text{Res}(P, Q) = C^{\deg(\phi)}.
$$

• $\mathscr{L}(\mathbf{f})$ turns out to be a free $\mathbb{K}[X_1, X_2]$ -module of rank 2: a μ -basis is a basis (P, Q) of $\mathscr{L}(\mathbf{f})$. As a property, there exists an integer μ such that

$$
P\in\mathscr{L}(\mathbf{f})_{\mu}\text{ and }Q\in\mathscr{L}(\mathbf{f})_{d-\mu}.
$$

 \bullet One can reformulate the construction of M($\mathsf{f})_\nu$, for all $\nu\geq 0$, as the matrix of the multiplication map:

$$
\mathbb{K}[X_1,X_2]_{\nu-\mu}\oplus\mathbb{K}[X_1,X_2]_{\nu-d+\mu}\xrightarrow[]{(P\ Q)}\mathbb{K}[X_1,X_2]_{\nu}
$$

 \Rightarrow M(${\bf f})_{d-1}$ is the Sylvester Matrix of P,Q :

$$
\det(\texttt{M}(\mathbf{f})_{d-1}) = \text{Res}(P,Q) = C^{\deg(\phi)}.
$$

 \bullet For parametrized curves, the matrix M($\boldsymbol{\mathsf{f}} \}_{d-1}$ is the perfect candidate to represent the curve C : it is a **square** matrix built from **linear syzygies**.

• For parametrized surfaces, such a matrix does not exist in general. So we have two options:

Option 1: only look for a square matrix of syzygies. Require to introduce higher order syzygies. There are many results using quadratic syzygies (assuming proper parametrization, local complete intersection base points and some other technical conditions...)

Option 2: just fill a matrix with a basis of the linear syzygies...

- \bullet For parametrized curves, the matrix M($\boldsymbol{\mathsf{f}} \}_{d-1}$ is the perfect candidate to represent the curve C : it is a **square** matrix built from **linear syzygies**.
- For parametrized surfaces, such a matrix does not exist in general. So we have two options:

Option 1: only look for a square matrix of syzygies. Require to introduce higher order syzygies. There are many results using quadratic syzygies (assuming proper parametrization, local complete intersection base points and some other technical conditions...) **Option 2:** just fill a matrix with a basis of the linear syzygies...

- \bullet For parametrized curves, the matrix M($\boldsymbol{\mathsf{f}} \}_{d-1}$ is the perfect candidate to represent the curve C : it is a **square** matrix built from **linear syzygies**.
- For parametrized surfaces, such a matrix does not exist in general. So we have two options:

Option 1: only look for a square matrix of syzygies. Require to introduce higher order syzygies. There are many results using quadratic syzygies (assuming proper parametrization, local complete intersection base points and some other technical conditions...)

Option 2: just fill a matrix with a basis of the linear syzygies...

- \bullet For parametrized curves, the matrix M($\boldsymbol{\mathsf{f}} \}_{d-1}$ is the perfect candidate to represent the curve C : it is a **square** matrix built from **linear syzygies**.
- For parametrized surfaces, such a matrix does not exist in general. So we have two options:

Option 1: only look for a square matrix of syzygies. Require to introduce higher order syzygies. There are many results using quadratic syzygies (assuming proper parametrization, local complete intersection base points and some other technical conditions...)

Option 2: just fill a matrix with a basis of the linear syzygies...

Linear Syzygies of a parametrized surface

• Consider a surface S parametrized by

$$
\begin{array}{ccc}\mathbb{P}^2_{\mathbb{K}}&\stackrel{\phi}{\longrightarrow}&\mathbb{P}^3_{\mathbb{K}}\\ (X_1:X_2:X_3)&\mapsto&(f_1:f_2:f_3:f_4)(X_1:X_2:X_3)\\ \end{array}
$$

with $d := \deg(f_i) \geq 1$. Assume that $gcd(f_1, \ldots, f_4) \in \mathbb{K} \setminus \{0\}$.

• The graded $\mathbb{K}[X_1, X_2, X_3]$ -module of linear syzygies is

$$
\mathscr{L}(\mathbf{f}) := \left\{ \sum_{i=1}^{4} a_i(X_1, X_2, X_3) T_i \in \mathbb{K}[X_1, X_2, X_3][T_1, T_2, T_3, T_4] \right\}
$$

such that
$$
\sum_{i=1}^{4} a_i(X_1, X_2, X_3) f_i(X_1, X_2, X_3) \equiv 0 \right\}
$$

Linear Syzygies of a parametrized surface

• Consider a surface S parametrized by

$$
\mathbb{P}^2_{\mathbb{K}} \xrightarrow{\phi} \mathbb{P}^3_{\mathbb{K}} (X_1: X_2: X_3) \mapsto (f_1: f_2: f_3: f_4)(X_1: X_2: X_3)
$$

with $d := \deg(f_i) \geq 1$. Assume that $gcd(f_1, \ldots, f_4) \in \mathbb{K} \setminus \{0\}$.

• The graded $\mathbb{K}[X_1, X_2, X_3]$ -module of linear syzygies is

$$
\mathscr{L}(\mathbf{f}) := \left\{ \sum_{i=1}^{4} a_i(X_1, X_2, X_3) T_i \in \mathbb{K}[X_1, X_2, X_3][T_1, T_2, T_3, T_4] \right\}
$$

such that
$$
\sum_{i=1}^{4} a_i(X_1, X_2, X_3) f_i(X_1, X_2, X_3) \equiv 0 \right\}
$$

Matrices of linear syzygies (1)

- \bullet For all $\nu \geq 0$ one builds the matrix $\texttt{M}(\mathbf{f})_{\nu}$ as follows:
	- 1. Compute a basis $L^{(1)}, \ldots, L^{(n_{\nu})}$ of $\mathscr{L}(\mathbf{f})_{\nu}$
	- 2. M($\boldsymbol{\mathsf{f}})_\nu$ is the matrix of coefficients of this basis, that is

$$
\left(\begin{array}{cccc}\nX_1^{\nu} & X_1^{\nu-1}X_2 & \cdots & X_3^{\nu}\n\end{array}\right) M(\mathbf{f})_{\nu} = \left(\begin{array}{cccc}\nL^{(1)} & L^{(2)} & \cdots & L^{(n_{\nu})}\n\end{array}\right)
$$

The matrix $M(f)_{\nu}$ is a representation of the homogeneous polynomial $P \in \mathbb{K}[T_1, \ldots, T_4]$ if

- i) $\texttt{M}(\textbf{f})_{\nu}$ is generically full rank
- ii) the rank of $\texttt{M(f)}_{\nu}$ drops exactly on the surface $P=0$
- ii) the gcd of the maximal minors of $\texttt{M}(\textbf{f})_{\nu}$ is equal to P.

Matrices of linear syzygies (1)

- \bullet For all $\nu \geq 0$ one builds the matrix $\texttt{M}(\mathbf{f})_{\nu}$ as follows:
	- 1. Compute a basis $L^{(1)}, \ldots, L^{(n_{\nu})}$ of $\mathscr{L}(\mathbf{f})_{\nu}$
	- 2. M($\boldsymbol{\mathsf{f}})_\nu$ is the matrix of coefficients of this basis, that is

$$
(X_1^{\nu} X_1^{\nu-1} X_2 \cdots X_3^{\nu}) M(f)_{\nu} = (L^{(1)} L^{(2)} \cdots L^{(n_{\nu})})
$$

Definition

The matrix $M(f)$, is a representation of the homogeneous polynomial $P \in \mathbb{K}[T_1, \ldots, T_4]$ if

- i) $M(f)_{\nu}$ is generically full rank
- ii) the rank of $\texttt{M}(\textbf{f})_{\nu}$ drops exactly on the surface $P=0$
- ii) the gcd of the maximal minors of $\texttt{M}(\textbf{f})_{\nu}$ is equal to P.

Proposition (-, Chardin, Jouanolou)

For all $\nu \geq 2(d-1)$ we have:

- $\bullet\,$ if the base points are local complete intersections then M($\mathsf{f})_\nu$ represents $S^{\text{deg}(\phi)}$, S being an implicit equation of S
- $\bullet\,$ if the base points are almost local complete intersections then $\texttt{M}(\mathbf{f})_{\nu}$ represents

$$
S^{\deg(\phi)}\times\prod_{\mathfrak{p}\in V(f_1,\ldots,f_4)\subset\mathbb{P}^2_{\mathbb{K}}}L_{\mathfrak{p}}(T_1,\ldots,T_4)^{e_{\mathfrak{p}}-d_{\mathfrak{p}}}
$$

• One can improve the bound $2(d-1)$ by taking into account the geometry of the base points. • the $L_p(T_1, \ldots, T_4)$ are linear forms that can be determined.

Proposition (-, Chardin, Jouanolou)

For all $\nu \geq 2(d-1)$ we have:

- $\bullet\,$ if the base points are local complete intersections then M($\mathsf{f})_\nu$ represents $S^{\text{deg}(\phi)}$, S being an implicit equation of S
- $\bullet\,$ if the base points are almost local complete intersections then $\texttt{M}(\mathbf{f})_{\nu}$ represents

$$
\mathcal{S}^{\text{deg}(\phi)}\times\prod_{\mathfrak{p}\in\mathcal{V}(f_1,\ldots,f_4)\subset\mathbb{P}^2_{\mathbb{K}}}L_{\mathfrak{p}}(\mathcal{T}_1,\ldots,\mathcal{T}_4)^{e_{\mathfrak{p}}-d_{\mathfrak{p}}}
$$

• One can improve the bound $2(d-1)$ by taking into account the geometry of the base points.

• the $L_p(T_1, \ldots, T_4)$ are linear forms that can be determined.

Surface parametrized by $\mathbb{P}^1_{\mathbb{K}}\times \mathbb{P}^1_{\mathbb{K}}$ K

Suppose given a surface parametrized by

$$
\begin{array}{ccc}\mathbb{P}^1_{\mathbb{K}}\times\mathbb{P}^1_{\mathbb{K}}&\stackrel{\phi}{\to}&\mathbb{P}^3_{\mathbb{K}}\\ (X_1:X_2)\times(Y_1:Y_2)&\mapsto&(f_1:f_2:f_3:f_4)(X_1,X_2,Y_1,Y_2)\end{array}
$$

with the f_i 's of **bi-degree** (d, d) and $gcd(f_1, \ldots, f_4) \in \mathbb{K} \setminus \{0\}.$

 \bullet For all $\nu\geq 0$, one can consider the matrix $\texttt{M}(\texttt{f})_{\nu}$ of the bi-homogeneous linear syzygies of bi-degree (ν, ν) .

For all $\nu \geq 2d-1$ then $\texttt{M}(\mathbf{f})_\nu$ is a representation of

- $\bullet \;\mathcal{S}(\mathcal{T}_1,\dots,\mathcal{T}_4)^{\deg(\phi)}$ if the base points are l.c.i.
- $S^{deg(\phi)} \times \prod_{p \in base \ points} L_p(T_1, \ldots, T_4)^{e_p d_p}$ if the base points are almost l.c.i.

• same remarks as in the previous case.

Suppose given a surface parametrized by

$$
\begin{array}{ccc}\mathbb{P}^1_{\mathbb{K}}\times\mathbb{P}^1_{\mathbb{K}}&\stackrel{\phi}{\to}&\mathbb{P}^3_{\mathbb{K}}\\ (X_1:X_2)\times(Y_1:Y_2)&\mapsto&(f_1:f_2:f_3:f_4)(X_1,X_2,Y_1,Y_2)\end{array}
$$

with the f_i 's of **bi-degree** (d, d) and $gcd(f_1, \ldots, f_4) \in \mathbb{K} \setminus \{0\}.$

 \bullet For all $\nu \geq 0$, one can consider the matrix $\texttt{M}(\textbf{f})_{\nu}$ of the bi-homogeneous linear syzygies of bi-degree (ν, ν) .

For all $\nu \geq 2d-1$ then $\texttt{M}(\mathbf{f})_\nu$ is a representation of

- $\bullet \;\mathcal{S}(\mathcal{T}_1,\dots,\mathcal{T}_4)^{\deg(\phi)}$ if the base points are l.c.i.
- $S^{deg(\phi)} \times \prod_{p \in base \ points} L_p(T_1, \ldots, T_4)^{e_p d_p}$ if the base points are almost l.c.i.
- same remarks as in the previous case.

Suppose given a surface parametrized by

$$
\begin{array}{ccc}\mathbb{P}^1_{\mathbb{K}}\times\mathbb{P}^1_{\mathbb{K}}&\stackrel{\phi}{\to}&\mathbb{P}^3_{\mathbb{K}}\\(X_1:X_2)\times(Y_1:Y_2)&\mapsto&(f_1:f_2:f_3:f_4)(X_1,X_2,Y_1,Y_2)\end{array}
$$

with the f_i 's of **bi-degree** (d, d) and $gcd(f_1, \ldots, f_4) \in \mathbb{K} \setminus \{0\}.$

 \bullet For all $\nu \geq 0$, one can consider the matrix $\texttt{M}(\textbf{f})_{\nu}$ of the bi-homogeneous linear syzygies of bi-degree (ν, ν) .

Proposition (-,Dohm)

For all $\nu \geq 2d-1$ then $\texttt{M}(\mathbf{f})_\nu$ is a representation of

- $S(T_1,\ldots,T_4)^{\deg(\phi)}$ if the base points are l.c.i.
- $S^{\deg(\phi)} \times \prod_{p \in base \ points} L_p(T_1, \ldots, T_4)^{e_p d_p}$ if the base points are almost l.c.i.
- same remarks as in the previous case.

\bullet Given a parametrized surface, it is easy to compute M($\mathsf{f})_\nu$ which is a very compact representation in many cases.

• Questions: How can we perform basic operations at the level of matrices such as:

- space curve/surface intersections
- surface/surface intersections
- detection of singular locus
- . . .
- Example: Given $P \in \mathbb{P}^3$, one can test if $P \in \mathcal{S}$ as follows:
	- i) After computing S, evaluate $S(P)$ and check that $|S(P)| < \epsilon$.
	- ii) Compute an SVD of M $(\mathbf{f})_\nu(\mathsf{P})$ and check its ϵ -rank.

 \bullet Given a parametrized surface, it is easy to compute M($\mathsf{f})_\nu$ which is a very compact representation in many cases.

• Questions: How can we perform basic operations at the level of matrices such as:

- space curve/surface intersections
- surface/surface intersections
- detection of singular locus
- \bullet ...
- Example: Given $P \in \mathbb{P}^3$, one can test if $P \in \mathcal{S}$ as follows:
	- i) After computing S, evaluate $S(P)$ and check that $|S(P)| < \epsilon$.
	- ii) Compute an SVD of M $(\mathbf{f})_\nu(\mathsf{P})$ and check its ϵ -rank.

 \bullet Given a parametrized surface, it is easy to compute M($\mathsf{f})_\nu$ which is a very compact representation in many cases.

• Questions: How can we perform basic operations at the level of matrices such as:

- space curve/surface intersections
- surface/surface intersections
- detection of singular locus
- \bullet ...
- Example: Given $P \in \mathbb{P}^3$, one can test if $P \in \mathcal{S}$ as follows:
	- i) After computing S, evaluate $S(P)$ and check that $|S(P)| < \epsilon$.
	- ii) Compute an SVD of M($\mathbf{f})_{\nu}(P)$ and check its ϵ -rank.

• Given $f_1, \ldots, f_4 \in \mathbb{K}[X_1, X_2, X_3]$ that parametrizes a surface, $\mathscr{L}(\mathbf{f})$ is not free in general. BUT, it becomes free of rank 3 after dehomogenization $(X_3 = 1)$.

• Set
$$
\tilde{f}_i(X_1, X_2) = f_i(X_1, X_2, 1)
$$
 for all $i = 1, 2, 3, 4$.

A μ -basis is a basis (P, Q, R) of the linear syzygies $\mathbb{K}[X_1, X_2]$ -module $\mathscr{L}(\tilde{f}_1,\ldots,\tilde{f}_4)$

• Contrary to the case of curves, the degrees of P, Q, R are difficult to determine in general.

• Given $f_1, \ldots, f_4 \in \mathbb{K}[X_1, X_2, X_3]$ that parametrizes a surface, $\mathscr{L}(\mathbf{f})$ is not free in general. BUT, it becomes free of rank 3 after dehomogenization $(X_3 = 1)$.

• Set $\tilde{f}_i(X_1, X_2) = f_i(X_1, X_2, 1)$ for all $i = 1, 2, 3, 4$.

Definition (Chen,Cox,Liu)

A μ -basis is a basis (P, Q, R) of the linear syzygies $\mathbb{K}[X_1, X_2]$ -module $\mathscr{L}(\tilde{f}_1,\ldots,\tilde{f}_4)$

• Contrary to the case of curves, the degrees of P, Q, R are difficult to determine in general.

• The fact that Res(P, Q, R) is equal to zero or not does depend on the choice of the μ -basis.

• L_n and l_n are linear forms that can be described from (P, Q, R) , as well as the the fact that Res (P, Q, R) is zero or not.

Proposition (-,Chardin,Jouanolou) If Res(P, Q, R) \neq 0 then it is equal to $S^{\deg(\phi)} \times \prod$ $p\in BP\backslash V(X_3)$ $L_{\mathfrak{p}}(T_1,\ldots,T_4)^{e_{\mathfrak{p}}-d_{\mathfrak{p}}} \times \Box$ p a.l.c.i BP of (P^h, Q^h, R^h, X_3) $l_{p}(T_1, ..., T_4)^{\mu_p}$

• The fact that Res(P, Q, R) is equal to zero or not does depend on the choice of the μ -basis.

• L_p and l_p are linear forms that can be described from (P, Q, R) , as well as the the fact that Res (P, Q, R) is zero or not.

Link with μ -bases (3)

Consider of the surface parametrized by (taken from [CCL05])

$$
f_1=2X_1X_2,\ f_2=2X_2X_3,\ f_3=2X_1X_3,\ f_4=X_1^2+X_2^2+X_3^3.
$$

By dehomogenizing with respect to X_3 we get

$$
\tilde{f}_1=2X_1X_2, \tilde{f}_2=2X_2, \tilde{f}_3=2X_1, \tilde{f}_4=X_1^2+X_2^2+1
$$

and a basis of the linear syzygy module of the \tilde{f}_i 's is given by the matrix

$$
M = \left(\begin{array}{cccc} 0 & 0 & 1 \\ X_1 X_2 & 1 + X_2^2 & -X_1 \\ 1 + X_1^2 & X_1 X_2 & 0 \\ -2X_1 & -2X_2 & 0 \end{array}\right).
$$

• Res(P, Q, R) = $T_2^4 H(T_1, T_2, T_3, T_4)$

• The extraneous factor T_2^4 is associated to the almost local complete intersection base point $X_1 = X_3 = 0$ (it is the unique base point).

Link with μ -bases (3)

Consider of the surface parametrized by (taken from [CCL05])

$$
f_1=2X_1X_2,\ f_2=2X_2X_3,\ f_3=2X_1X_3,\ f_4=X_1^2+X_2^2+X_3^3.
$$

By dehomogenizing with respect to X_3 we get

$$
\tilde{f}_1=2X_1X_2, \tilde{f}_2=2X_2, \tilde{f}_3=2X_1, \tilde{f}_4=X_1^2+X_2^2+1
$$

and a basis of the linear syzygy module of the \tilde{f}_i 's is given by the matrix

$$
M=\left(\begin{array}{cccc}0&0&1\\X_1X_2&1+X_2^2&-X_1\\1+X_1^2&X_1X_2&0\\-2X_1&-2X_2&0\end{array}\right).
$$

• Res(P, Q, R) = $T_2^4 H(T_1, T_2, T_3, T_4)$

• The extraneous factor T_2^4 is associated to the almost local complete intersection base point $X_1 = X_3 = 0$ (it is the unique base point).

Link with μ -bases (3)

Consider of the surface parametrized by (taken from [CCL05])

$$
f_1=2X_1X_2,\ f_2=2X_2X_3,\ f_3=2X_1X_3,\ f_4=X_1^2+X_2^2+X_3^3.
$$

By dehomogenizing with respect to X_3 we get

$$
\tilde{f}_1=2X_1X_2, \tilde{f}_2=2X_2, \tilde{f}_3=2X_1, \tilde{f}_4=X_1^2+X_2^2+1
$$

and a basis of the linear syzygy module of the \tilde{f}_i 's is given by the matrix

$$
M = \left(\begin{array}{cccc} 0 & 0 & 1 \\ X_1 X_2 & 1 + X_2^2 & -X_1 \\ 1 + X_1^2 & X_1 X_2 & 0 \\ -2X_1 & -2X_2 & 0 \end{array}\right).
$$

• Res(P, Q, R) = T_2^4 H(T₁, T₂, T₃, T₄)

 \bullet The extraneous factor \mathcal{T}_2^4 is associated to the almost local complete intersection base point $X_1 = X_3 = 0$ (it is the unique base point).