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Plane curve implicitization

• Suppose given a parametrization (K is a field)

P1
K

φ−→ P2
K

(X1 : X2) 7→ (f1 : f2 : f3)(X1 : X2)

of a plane curve C in P2. Set d := deg(fi ) ≥ 1.

• Implicitization: find a (homogeneous) polynomial P ∈ K[T1, T2, T3]
such that P(f1, f2, f3) ≡ 0 with the smallest possible degree – it is called
an implicit equation of C.
• Degree formula: deg(φ) deg(C) = d − deg(gcd(f1, f2, f3)).
⇒ For simplicity, assume gcd(f1, f2, f3) ∈ K \ {0} ⇔ no base point.
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Linear Syzygies

L (f) :=

{
3∑

i=1

ai (X1,X2)Ti ∈ K[X1, X2][T1, T2, T3]

such that
3∑

i=1

ai (X1,X2)fi (X1, X2) ≡ 0

}

• It is a graded K[X1, X2]-module: L (f) =
⊕

ν≥0 L (f)ν

• L (f)ν ' K-vector space. For any L ∈ L (f)ν set

L =
ν∑

i=0

Li (T1,T2,T3)X
i
1X

ν−i
2

Notice that Li (T1, T2,T3) is a linear form in K[T1, T2, T3].
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Laurent Busé Linear Syzygies and Implicitization



Linear Syzygies

L (f) :=

{
3∑

i=1

ai (X1,X2)Ti ∈ K[X1, X2][T1, T2, T3]

such that
3∑

i=1

ai (X1,X2)fi (X1, X2) ≡ 0

}

• It is a graded K[X1, X2]-module: L (f) =
⊕

ν≥0 L (f)ν

• L (f)ν ' K-vector space. For any L ∈ L (f)ν set

L =
ν∑

i=0

Li (T1,T2,T3)X
i
1X

ν−i
2

Notice that Li (T1, T2,T3) is a linear form in K[T1, T2, T3].
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Matrix of linear syzygies (1)

• Following [Sederberg, Chen], given an integer ν one builds the matrix
M(f)ν as follows:

1. Compute a basis L(1), . . . , L(nν) of L (f)ν (i.e. solve a linear system)

2. M(f)ν is the matrix of coefficients of this basis, that is

(
X ν

1 X ν−1
1 X2 · · · X ν

2

)
M(f)ν =

(
L(1) L(2) · · · L(nν)

)

• The entries of M(f)ν are linear forms in K[T1, T2,T3]:

M(f)ν :=
(
L

(j)
i (T1, T2, T3)

)
i=0,...,ν; j=1,...,nν
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Matrix of linear syzygies (2)

We have a family of matrices indexed by ν : M(f)ν .





0 ≤ ν ≤ d − 2 ]columns < ]rows = ν + 1

ν = d − 1 M(f)d−1 is a square matrix of size d = deg(fi )

ν ≥ d ]columns > ]rows = ν + 1

Proposition

• For all ν ≥ d − 1 we have the two following properties:

1. the GCD of the minors of (maximum) size ν + 1 of M(f)ν is equal to
C (T1, T2,T3)

deg(φ)

2. M(f)ν is generically full rank and its rank drops exactly on C

M(f)ν is a representation of the curve C
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Link with µ-bases (Cox, Sederberg, Chen)

• L (f) turns out to be a free K[X1, X2]-module of rank 2: a µ-basis is a
basis (P, Q) of L (f). As a property, there exists an integer µ such that

P ∈ L (f)µ and Q ∈ L (f)d−µ.

• One can reformulate the construction of M(f)ν , for all ν ≥ 0, as the
matrix of the multiplication map:

K[X1, X2]ν−µ ⊕K[X1, X2]ν−d+µ
(P Q)−−−−→ K[X1, X2]ν

⇒ M(f)d−1 is the Sylvester Matrix of P,Q:

det(M(f)d−1) = Res(P, Q) = C deg(φ).
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Laurent Busé Linear Syzygies and Implicitization



How to generalize to parametrized surfaces in P3
K ?

• For parametrized curves, the matrix M(f)d−1 is the perfect candidate to
represent the curve C: it is a square matrix built from linear syzygies.

• For parametrized surfaces, such a matrix does not exist in general. So
we have two options:

1 Option 1: only look for a square matrix of syzygies. Require to
introduce higher order syzygies. There are many results using
quadratic syzygies (assuming proper parametrization, local complete
intersection base points and some other technical conditions...)

2 Option 2: just fill a matrix with a basis of the linear syzygies. . .
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Linear Syzygies of a parametrized surface

• Consider a surface S parametrized by

P2
K

φ−→ P3
K

(X1 : X2 : X3) 7→ (f1 : f2 : f3 : f4)(X1 : X2 : X3)

with d := deg(fi ) ≥ 1. Assume that gcd(f1, . . . , f4) ∈ K \ {0}.
• The graded K[X1,X2,X3]-module of linear syzygies is

L (f) :=

{
4∑

i=1

ai (X1,X2,X3)Ti ∈ K[X1, X2,X3][T1, T2,T3, T4]

such that
4∑

i=1

ai (X1, X2, X3)fi (X1, X2, X3) ≡ 0

}
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Matrices of linear syzygies (1)

• For all ν ≥ 0 one builds the matrix M(f)ν as follows:

1. Compute a basis L(1), . . . , L(nν) of L (f)ν

2. M(f)ν is the matrix of coefficients of this basis, that is

(
X ν

1 X ν−1
1 X2 · · · X ν

3

)
M(f)ν =

(
L(1) L(2) · · · L(nν)

)

Definition

The matrix M(f)ν is a representation of the homogeneous polynomial
P ∈ K[T1, . . . , T4] if

i) M(f)ν is generically full rank

ii) the rank of M(f)ν drops exactly on the surface P = 0

ii) the gcd of the maximal minors of M(f)ν is equal to P.
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Matrices of linear syzygies (2)

Proposition (-, Chardin, Jouanolou)

For all ν ≥ 2(d − 1) we have:

• if the base points are local complete intersections then M(f)ν

represents Sdeg(φ), S being an implicit equation of S
• if the base points are almost local complete intersections then M(f)ν

represents

Sdeg(φ) ×
∏

p∈V (f1,...,f4)⊂P2
K

Lp(T1, . . . , T4)
ep−dp

• One can improve the bound 2(d − 1) by taking into account the
geometry of the base points.
• the Lp(T1, . . . , T4) are linear forms that can be determined.
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Surface parametrized by P1
K × P1

K

Suppose given a surface parametrized by

P1
K × P1

K
φ−→ P3

K
(X1 : X2)× (Y1 : Y2) 7→ (f1 : f2 : f3 : f4)(X1, X2, Y1, Y2)

with the fi ’s of bi-degree (d , d) and gcd(f1, . . . , f4) ∈ K \ {0}.
• For all ν ≥ 0, one can consider the matrix M(f)ν of the
bi-homogeneous linear syzygies of bi-degree (ν, ν).

Proposition (-,Dohm)

For all ν ≥ 2d − 1 then M(f)ν is a representation of

• S(T1, . . . , T4)
deg(φ) if the base points are l.c.i.

• Sdeg(φ) ×∏
p∈base points Lp(T1, . . . , T4)

ep−dp if the base points are
almost l.c.i.

• same remarks as in the previous case.
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How to manipulate these representations of surfaces ?

• Given a parametrized surface, it is easy to compute M(f)ν which is a
very compact representation in many cases.

• Questions: How can we perform basic operations at the level of
matrices such as:

• space curve/surface intersections

• surface/surface intersections

• detection of singular locus

• . . .

• Example: Given P ∈ P3, one can test if P ∈ S as follows:

i) After computing S , evaluate S(P) and check that |S(P)| < ε.

ii) Compute an SVD of M(f)ν(P) and check its ε-rank.
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Link with µ-bases (1)

• Given f1, . . . , f4 ∈ K[X1, X2, X3] that parametrizes a surface, L (f) is
not free in general. BUT, it becomes free of rank 3 after
dehomogenization (X3 = 1).

• Set f̃i (X1,X2) = fi (X1, X2, 1) for all i = 1, 2, 3, 4.

Definition (Chen,Cox,Liu)

A µ-basis is a basis (P, Q, R) of the linear syzygies K[X1,X2]-module
L (f̃1, . . . , f̃4)

• Contrary to the case of curves, the degrees of P,Q,R are difficult to
determine in general.
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Link with µ-bases (2)

Proposition (-,Chardin,Jouanolou)

If Res(P,Q, R) 6= 0 then it is equal to

Sdeg(φ)×
∏

p∈BP\V (X3)

Lp(T1, . . . , T4)
ep−dp ×

∏

p a.l.c.i BP
of (Ph,Qh,Rh,X3)

lp(T1, . . . , T4)
µp

• The fact that Res(P,Q,R) is equal to zero or not does depend on the
choice of the µ-basis.

• Lp and lp are linear forms that can be described from (P, Q,R), as well
as the the fact that Res(P, Q, R) is zero or not.
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Link with µ-bases (3)

Consider of the surface parametrized by (taken from [CCL05])

f1 = 2X1X2, f2 = 2X2X3, f3 = 2X1X3, f4 = X 2
1 + X 2

2 + X 3
3 .

By dehomogenizing with respect to X3 we get

f̃1 = 2X1X2, f̃2 = 2X2, f̃3 = 2X1, f̃4 = X 2
1 + X 2

2 + 1

and a basis of the linear syzygy module of the f̃i ’s is given by the matrix

M =




0 0 1
X1X2 1 + X 2

2 −X1

1 + X 2
1 X1X2 0

−2X1 −2X2 0


 .

• Res(P,Q, R) = T2
4 H(T1, T2, T3,T4)

• The extraneous factor T 4
2 is associated to the almost local complete

intersection base point X1 = X3 = 0 (it is the unique base point).
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Consider of the surface parametrized by (taken from [CCL05])

f1 = 2X1X2, f2 = 2X2X3, f3 = 2X1X3, f4 = X 2
1 + X 2

2 + X 3
3 .

By dehomogenizing with respect to X3 we get

f̃1 = 2X1X2, f̃2 = 2X2, f̃3 = 2X1, f̃4 = X 2
1 + X 2

2 + 1

and a basis of the linear syzygy module of the f̃i ’s is given by the matrix

M =




0 0 1
X1X2 1 + X 2

2 −X1

1 + X 2
1 X1X2 0

−2X1 −2X2 0


 .

• Res(P,Q, R) = T2
4 H(T1, T2, T3,T4)

• The extraneous factor T 4
2 is associated to the almost local complete

intersection base point X1 = X3 = 0 (it is the unique base point).
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