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Motivation

Problem 1. Recognize that

y = 1 + 2 x− 1
2
x2 +

5
24

x4 − 3
20

x5 +
67
720

x6 − 73
1260

x7 +
1577
40320

x8 + O
(
x9

)

satisfies (1 + x)y′′ + (1− x)y = 0.

Problem 2. Let P ∈ Q[x, y] of total degree ≤ 2, such that

P (0, 0) = 1, P (0, 1) = 2, P (0, 2) = 1, P (1, 4) = 13, P (1,−1) = −2, P (2, 3) = 36.

Find that
P = 1 + x + 2y + 3x2 + 4xy − y2.

These are linear algebra problems, with a lot of structure!
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Basic algorithms in linear algebra

Classical approach.

• Most questions of linear algebra in size n (matrix product, inverse, system
solving, characteristic polynomial, . . . ) can be solved in O(n3) operations.

Faster algorithms.

• Strassen’69: n× n matrices can be multiplied in O(nω) operations, ω < 3.

• As of now, one can take ω ≤ 2.38, even though the algorithm is quite
impractical (huge logarithmic factors and constants hidden in the O( )).

• Most problems in linear algebra can be solved in time O(nω).

Upcoming: matrix inversion algorithm using fast matrix multiplication.

However, none of these algorithms takes structure into account.
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Toeplitz matrices

A Toeplitz matrix is invariant along its main diagonals:

A =




c d e

b c d

a b c


 .

Then, the Toeplitz displacement operator φ:

φ(A) = A− (A shifted right and down by 1) =




c d e

b 0 0

a 0 0




is such that φ(A) has rank α = 2 (in general).
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Compact representation

The matrix

φ(A) =




c d e

b 0 0

a 0 0




can be represented in a compact way as

φ(A) = GHt, with G =




c d

b 0

a 0


 and H =




1 0

0 1

0 e/d


 .

−→ This feature can be used to obtain algorithms of complexity O (̃n) for solving
the system Ax = b (O˜ means that log. factors are hidden).

• The rank α of φ(A) is called the displacement rank of A;

• G,H ∈ Kn×α are called generators of A, of length α.
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More structure . . .

Toeplitz structure:




c d e

b c d

a b c




Hankel structure:

φ(A) = A− (A shifted left and down by 1)

Vandermonde structure:

φ(A) = A− (diagonal matrix) × (A shifted right by 1)

Cauchy structure:

φ(A) = A− (diagonal matrix) × A × (diagonal matrix)′

The displacement rank of A is the rank of φ(A).
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More structure . . .

Toeplitz structure:

φ(A) = A− (A shifted right and down by 1)

Hankel structure:




e d c

d c b

c b a
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More structure . . .

Toeplitz structure:

φ(A) = A− (A shifted right and down by 1)

Hankel structure:

φ(A) = A− (A shifted left and down by 1)

Vandermonde structure:




1 a a2

1 b b2

1 c c2




Cauchy structure:

φ(A) = A− (diagonal matrix) × A × (diagonal matrix)′

The displacement rank of A is the rank of φ(A).
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More structure . . .

Toeplitz structure:

φ(A) = A− (A shifted right and down by 1)

Hankel structure:

φ(A) = A− (A shifted left and down by 1)

Vandermonde structure:

φ(A) = A− (diagonal matrix) × (A shifted right by 1)

Cauchy structure:




1/(a− x) 1/(a− y) 1/(a− z)

1/(b− x) 1/(b− y) 1/(b− z)

1/(c− x) 1/(c− y) 1/(c− z)




The displacement rank of A is the rank of φ(A).
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More structure . . .

Toeplitz structure:

φ(A) = A− (A shifted right and down by 1)

Hankel structure:

φ(A) = A− (A shifted left and down by 1)

Vandermonde structure:

φ(A) = A− (diagonal matrix) × (A shifted right by 1)

Cauchy structure:

φ(A) = A− (diagonal matrix) × A × (diagonal matrix)′

In all these cases, the displacement rank α of A is the rank of φ(A).

If α ¿ n, the matrix A is called Toeplitz-like, Hankel-like,. . .
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Previous results
Morf, Bitmead & Anderson, Pan, Kaltofen, Gohberg & Olshevsky, . . .

Theorem. Let φ be one of the Toeplitz, Hankel, Vandermonde, Cauchy operators.

Let A be in Kn×n, given by generators of length α, and let b be in Kn.

One can compute det(A) and a random solution to the system Ax = b, or prove
that no such solution exists, in Las Vegas time O (̃α2n).
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Previous results
Morf, Bitmead & Anderson, Pan, Kaltofen, Gohberg & Olshevsky, . . .

Theorem. Let φ be one of the Toeplitz, Hankel, Vandermonde, Cauchy operators.

Let A be in Kn×n, given by generators of length α, and let b be in Kn.

One can compute det(A) and a random solution to the system Ax = b, or prove
that no such solution exists, in Las Vegas time O (̃α2n).

Remarks.

• For α = 2 (or more generally α constant), this is O (̃n), which is optimal, up to
logarithmic factors −→ quasi-optimal gcd, resultant, Padé approximation,. . .

• For large α, not so good: when α ' n, cost O (̃n3), worse than the cost O(nω)
of generic linear algebra algorithms.
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Our main result
Morf, Bitmead & Anderson, Pan, Kaltofen, Gohberg & Olshevsky, . . .

Theorem. Let φ be one of the Toeplitz, Hankel, Vandermonde, Cauchy operators.

Let A be in Kn×n, given by generators of length α, and let b be in Kn.

One can compute det(A) and a random solution to the system Ax = b, or prove
that no such solution exists, in Las Vegas time O (̃αω−1n).
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Our main result
Morf, Bitmead & Anderson, Pan, Kaltofen, Gohberg & Olshevsky, . . .

Theorem. Let φ be one of the Toeplitz, Hankel, Vandermonde, Cauchy operators.

Let A be in Kn×n, given by generators of length α, and let b be in Kn.

One can compute det(A) and a random solution to the system Ax = b, or prove
that no such solution exists, in Las Vegas time O (̃αω−1n).

Remarks.

• With ω ' 2.38, this is O (̃α1.38n), compared to an optimal O (̃αn).

• When α is constant, same cost as before O (̃n).

• Improvement for large α: for α ' n, cost O (̃nω).

−→ Our contribution consists in re-introducing fast matrix multiplication in
structured matrices algorithms.
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Some application examples

Hermite-Padé approximation. Given power series f1, . . . , fm known at precision σ,
degree bounds di, one can find in time O (̃mω−1σ) polynomials p1, . . . , pm such that

deg(pi) ≤ di and
∑

pifi = O(xσ) with σ =
∑

(di + 1)− 1

• Beckermann & Labahn (1994) O (̃mωσ)

• Lecerf, normal cases (2001) O (̃mω−1σ)

• Storjohann (2007) O (̃mω−1σ)
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Hermite-Padé approximation. Given power series f1, . . . , fm known at precision σ,
degree bounds di, one can find in time O (̃mω−1σ) polynomials p1, . . . , pm such that

deg(pi) ≤ di and
∑

pifi = O(xσ) with σ =
∑

(di + 1)− 1

• Beckermann & Labahn (1994) O (̃mωσ)

• Lecerf, normal cases (2001) O (̃mω−1σ)

• Storjohann (2007) O (̃mω−1σ)

Generalized simultaneous Hermite-Padé approximation. Given a vector of polynomials
P ∈ K[x]s of degree ≤ σ/s and m vectors f1, . . . , fm of polynomials in K[x]s of
degree < σ/s, one can find in time O (̃mω−1σ) polynomials p1, . . . , pm such that

deg(pi) < σ/m and
∑

pifi = 0 mod P.
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Some application examples

Bivariate interpolation. Given the values of a degree-d polynomial P (x, y) at points

(ai, bj) 0 ≤ i + j ≤ d,

one can recover its coefficients in time O (̃dω+1), which is sub-quadratic in the
number of terms (generally, interpolation problems whose monomial support indexes the

sample points).

Toeplitz-block-Toeplitz systems.

Let n = pq and let A be block-Toeplitz, with p2 blocks of size q that are Toeplitz.
One can solve the system Ax = b in O (̃n

ω+1
2 ) operations.
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Inversion of dense matrices
[Strassen, 1969]

To invert a dense matrix A =


 A1,1 A1,2

A2,1 A2,2


 ∈ Kn×n:

1. Invert A1,1 (recursively).

2. Compute the Schur complement ∆ := A2,2 −A2,1A
−1
1,1A1,2.

3. Invert ∆ (recursively).

4. Recover the inverse of A as

A−1 =

2
4 I −A−1

1,1A1,2

I

3
5×

2
4 A−1

1,1

∆−1

3
5×

2
4 I

−A2,1A
−1
1,1 I

3
5

Complexity: C(n) = 2C(n
2 ) + O(nω).

Corollary: A−1b in time O(nω).
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Inversion of Toeplitz-like matrices
[Morf, 1980], [Bitmead & Anderson, 1980], [Kaltofen 1994], [Pan 2001]

To compute generators of the inverse of a Toeplitz-like A =

2
4 A1,1 A1,2

A2,1 A2,2

3
5 ∈ Kn×n

1. Compute generators of the inverse of A1,1 (recursively).

2. Compute generators of ∆.

3. Compute generators of the inverse of ∆ (recursively).

4. Compute generators of the inverse of A (by Strassen’s formula).

Complexity: If A is given by generators of length α,

C(n, α) = 2C
(n

2
, α

)
+ O(K(n, α)) + O (̃αω−1n),

where K(n, α) is the cost of Toeplitz-like matrix multiplication, for n× n matrices
given by generators of size α. Upcoming: K(n, α) = O (̃αω−1n)
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∑
LU formula for Toeplitz-like matrices

φ(A) = A− (A shifted right and down by 1), A ∈ Kn×n.

• The displacement rank of A is the rank α of φ(A).

• Generators (of length α) are matrices G,H ∈ Kn×α such that φ(A) = GHt.

• ∑
LU formula: one can recover A from its generators:

A =
α∑

j=1

L(gj)U(hj), with

L(gj) =




gj,1
gj,2 gj,1

...
. . . . . .

gj,n gj,n−1 ... gj,1


 and U(hj) =




h1,j h2,j ··· hn,j

h1,j

. . . hn−1,j

. . .
...

h1,j




Remark. If v ∈ Kn, then L(g)U(h)v ≡ g(x) (h(x)v(x) mod xn) div xn−1.

−→ the matrix-vector product Av can be computed by FFT in O (̃αn) operations.
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Matrix operations in compact representation

Let A and B be Toeplitz-like, given by generators (T , U) and (G,H) of length α.

• (
[T | G], [U | H]

)
is a generator of length 2α for A + B.

• (
[T | W | a], [V | H | − b]

)
is a generator of length 2α + 1 for A×B, where

– V := Bt × U

– W := (A shifted right and down by 1)×G

– a (resp. b) is the down-shift of the last column of A (resp. Bt).

Thus, in compact representation, one can compute:

• the sum A + B in O(αn) operations.

• the product A×B in K(n, α) = O (̃α2n) operations, using the
∑

LU formula.

−→ Our main result is based on improving the cost K(n, α) of ×.
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Faster product in compact representation

Through the ΣLU formula, K(n, α) is seen as the time of computing

A` =
α∑

j=1

Gj (HjV` mod xn), 1 ≤ ` ≤ α

with Gj , Hj , V` in K[x] of degree < n.

Remark: the inner modulo prevents us from factoring out the V`.

Matrix reformulation: Given H ∈ K[x]α×1, V ∈ K[x]1×α and G ∈ K[x]α×1, all of
degree < n, compute (HV mod xn)G.

−→ Using short-product techniques (Schönhage’94, Mulders’00), we recast this into
a polynomial matrix multiplication in size α and degree n/α.

−→ We get the bound K(n, α) = O (̃αω−1n), which is the basis of our main result.
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Short-product techniques

Idea: compute (HV mod xn)G by divide-and-conquer, as
((

H0 + x
n
2 H1

) (
V0 + x

n
2 V1

)
mod xn

) (
G0 + x

n
2 G1

)
= H0V0G0 +

x
n
2

(
H0V0G1 + (H0V1 + H1V0 mod x

n
2 )G0

)
+ xn

(
(H0V1 + H1V0 mod x

n
2 )G1

)

The desired quantities for the recursive step read off



[
H0 H1

]

V1

V0


 mod xn/2




[
G0 G1

]

Let K(d, α, `) be the cost of: given A ∈ K[x]α×`, B ∈ K[x]`×α and C ∈ K[x]α×`, of
degree < d, compute

(
AB mod xd`

)
C. Thus

K(n, α) = K(n, α, 1) ≤ K(n/2, α, 2) ≤ K(n/4, α, 4) ≤ . . . ≤ K(n/α, α, α) = O (̃αω−1n)

Here K
(

n
α , α, α

)
= cost of polynomial matrix multiplication in size α and degree n

α .
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Vandermonde and Cauchy
[Pan 1990] [Gohberg-Olshevsky 1994]

One can reduce the study of Vandermonde operators

φ(A) = A− (diagonal matrix) × (A shifted right by 1)

and Cauchy operators

φ(A) = A− (diagonal matrix) × A × (diagonal matrix)′

to that of Toeplitz operators.

• The reduction involves a question similar to the one before: multiply a
Vandermonde-like or Cauchy-like matrix, given by α generators, by α vectors.

• Similar techniques apply.
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Conclusion

• Positive aspects: we can speed up the resolution for systems with large
displacement rank (at least, theoretically).

• To do: make it automatic (Pan & Wang).

• Loose ends: often, a large displacement rank hides a multi-level structure.

– Toeplitz-block-Toeplitz;

– Multivariate interpolation: multilevel Vandermonde structure;

– Algebraic / differential approximants (Hermite-Padé for powers / derivatives
of a single power series).

For these questions, we are far from exploiting the structure as much as we
would want.

29


