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Motivation

Problem 1. Recognize that

1 5 3 67 73 1577
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satisfies (1 + z)y” + (1 — x)y = 0.

+ 0 (xg)

Problem 2. Let P € Q|z,y] of total degree < 2, such that
P(0,0) =1, P(0,1) =2, P(0,2) =1, P(1,4) =13, P(1,—1) = —2, P(2,3) = 36.
Find that
P=1+x+2y+3z° + day — y°.

These are linear algebra problems, with a lot of structure!



Basic algorithms in linear algebra

Classical approach.
e Most questions of linear algebra in size n (matrix product, inverse, system
solving, characteristic polynomial, ...) can be solved in O(n?) operations.

Faster algorithms.
e Strassen’69: n x n matrices can be multiplied in O(n*) operations, w < 3.

e As of now, one can take w < 2.38, even though the algorithm is quite

impractical (huge logarithmic factors and constants hidden in the O( )).

e Most problems in linear algebra can be solved in time O(n®).

Upcoming: matrix inversion algorithm using fast matrix multiplication.

However, none of these algorithms takes structure into account.



Toeplitz matrices

A Toeplitz matrix is invariant along its main diagonals:

_C ] i}
A=1|b ¢ d
a b C|

Then, the Toeplitz displacement operator ¢:

»(A) = A — (A shifted right and down by 1) =

is such that ¢(A) has rank o = 2 (in general).




Compact representation

The matrix

c d
o(A)=1b 0 0
a 0 0]
can be represented in a compact way as
¢ d 10|
#(A)=GH', with G=|p 0| and H= |0 1
a 0 0 ¢/d

—— This feature can be used to obtain algorithms of complexity O™(n) for solving

the system Ax =b (O™ means that log. factors are hidden).
e The rank « of ¢(A) is called the displacement rank of A;

o G,H € K" are called generators of A, of length «.



More structure . ..

Toeplitz structure: |[b ¢ d
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More structure . ..

Toeplitz structure:

»(A) = A — (A shifted right and down by 1)

Hankel structure:

»(A) = A — (A shifted left and down by 1)

Vandermonde structure: [1 b 2
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More structure . ..

Toeplitz structure:

»(A) = A — (A shifted right and down by 1)

Hankel structure:

»(A) = A — (A shifted left and down by 1)

Vandermonde structure:

»(A) = A — (diagonal matrix) x (A shifted right by 1)

Cauchy structure: [1/(b—2) 1/(b—y) 1/(b— 2)
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Toeplitz structure:
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Hankel structure:
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More structure . ..

Toeplitz structure:

»(A) = A — (A shifted right and down by 1)

Hankel structure:

»(A) = A — (A shifted left and down by 1)

Vandermonde structure:

»(A) = A — (diagonal matrix) x (A shifted right by 1)

Cauchy structure:

¢(A) = A — (diagonal matrix) x A x (diagonal matrix)’

In all these cases, the displacement rank « of A is the rank of ¢(A).
If « < n, the matrix A is called Toeplitz-like, Hankel-like,. . .
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Previous results
Morf, Bitmead & Anderson, Pan, Kaltofen, Gohberg & Olshevsky, ...
Theorem. Let ¢ be one of the Toeplitz, Hankel, Vandermonde, Cauchy operators.
Let A be in K"*", given by generators of length «, and let b be in K".

One can compute det(A) and a random solution to the system Az = b, or prove

that no such solution exists, in Las Vegas time O™ (a?n).
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Previous results
Morf, Bitmead & Anderson, Pan, Kaltofen, Gohberg & Olshevsky, ...
Theorem. Let ¢ be one of the Toeplitz, Hankel, Vandermonde, Cauchy operators.
Let A be in K"*", given by generators of length «, and let b be in K".

One can compute det(A) and a random solution to the system Az = b, or prove

that no such solution exists, in Las Vegas time O™ (a?n).

Remarks.

e For a = 2 (or more generally a constant), this is O7(n), which is optimal, up to

logarithmic factors — quasi-optimal gcd, resultant, Padé approximation,. . .

e For large a, not so good: when a ~ n, cost O7(n?), worse than the cost O(n“)

of generic linear algebra algorithms.
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Our main result

Theorem. Let ¢ be one of the Toeplitz, Hankel, Vandermonde, Cauchy operators.
Let A be in K"*", given by generators of length «, and let b be in K".

One can compute det(A) and a random solution to the system Az = b, or prove

that no such solution exists, in Las Vegas time O™ (a*~!n).
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Our main result

Theorem. Let ¢ be one of the Toeplitz, Hankel, Vandermonde, Cauchy operators.
Let A be in K"*", given by generators of length «, and let b be in K".

One can compute det(A) and a random solution to the system Az = b, or prove

that no such solution exists, in Las Vegas time O™ (a*~!n).

Remarks.
e With w ~ 2.38, this is O (a!%®n), compared to an optimal O (an).
e When « is constant, same cost as before O™ (n).
e Improvement for large a: for o ~ n, cost O™ (n¥).

—— QOur contribution consists in re-introducing fast matrix multiplication in

structured matrices algorithms.
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Some application examples

Hermite-Padé approximation. Given power series fi,..., [, known at precision o,
degree bounds d;, one can find in time O™ (m“~'o) polynomials pi, ..., p,, such that

deg(p;) < d; and szfz = 0(2?) with o= Z(d@ +1)—1

e Beckermann & Labahn (1994) O (m“o)
e Lecerf, normal cases (2001) O (m“~1o)

e Storjohann (2007) O~ (m“ o)
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Some application examples

Hermite-Padé approximation. Given power series fi,..., [, known at precision o,
degree bounds d;, one can find in time O™ (m“~'o) polynomials pi, ..., p,, such that

deg(p;) < d; and szfz = 0(2?) with o= Z(d@ +1)—1

e Beckermann & Labahn (1994) O (m“o)
e Lecerf, normal cases (2001) O (m“~1o)
e Storjohann (2007) O~ (m“~1o)

Generalized simultaneous Hermite-Padé approximation. Given a vector of polynomials
P € K[z]® of degree < /s and m vectors fi, ..., f,, of polynomials in K[x|* of

degree < o/s, one can find in time O”(m* 1) polynomials py,...,p,, such that

deg(p;) < o/m and sz‘fv; =0 mod P.
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Some application examples

Bivariate interpolation. Given the values of a degree-d polynomial P(x,y) at points

one can recover its coefficients in time O™ (d“*1), which is sub-quadratic in the

number of terms (generally, interpolation problems whose monomial support indexes the

sample points).

Toeplitz-block-Toeplitz systems.
Let n = pq and let A be block-Toeplitz, with p? blocks of size ¢ that are Toeplitz.

One can solve the system Az = b in O~(an+1) operations.
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Inversion of dense matrices
[Strassen, 1969]

A1 Ao
As1 Ao

)

To invert a dense matrix A = e Knxn.

1. Invert Ay ; (recursively).
2. Compute the Schur complement A := Ay 5 — A271A1_,%A1,2.
3. Invert A (recursively).

4. Recover the inverse of A as

I —A7;A
A_l _ 1,1441,2 } v

I

Complexity: C(n) = 2C (%) + O(n®).

Corollary: A™1b in time O(n®).
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Inversion of Toeplitz-like matrices
[Morf, 1980], [Bitmead & Anderson, 1980], [Kaltofen 1994], [Pan 2001]

A A
To compute generators of the inverse of a Toeplitz-like A = b e } c Krxn

A1 Az

1. Compute generators of the inverse of A; ; (recursively).
2. Compute generators of A.
3. Compute generators of the inverse of A (recursively).

4. Compute generators of the inverse of A (by Strassen’s formula).

Complexity: If A is given by generators of length «,
C(n,a) =2C (g, oz) + O(K(n,a)) + O (a*"1n),

where K(n, «) is the cost of Toeplitz-like matrix multiplication, for n x n matrices

w—1

given by generators of size a. Upcoming: K(n,a) = O™ (a“ "n)
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> LU formula for Toeplitz-like matrices

¢(A) = A — (A shifted right and down by 1), A e KM,
e The displacement rank of A is the rank «a of ¢(A).

e Generators (of length «) are matrices G, H € K"*“ such that ¢(A) = GH".

e > LU formula: one can recover A from its generators:

A= Z L(gj)U(hj), with
7=1

m 95,1 - hi,; ha ; P
gj,2 9gj,1 .
Ligi)=1{ . . - and  U(h;) = hig e hnoi
_gj.,n gj,n.—l gj,1 )
- hij; U

Remark. If v € K", then L(g)U(h)v = g(z) (h(x)v(z) mod z™) div 2" 1.

— the matrix-vector product Av can be computed by FFT in O™ (an) operations.
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Matrix operations in compact representation

Let A and B be Toeplitz-like, given by generators (1, U) and (G, H) of length «.
e ([T'| G], [U | H)) is a generator of length 2« for A+ B.

e ([T"| W ]a], [V|H| —Db]) is a generator of length 2« + 1 for A x B, where
— V:=B'xU
— W := (A shifted right and down by 1) x G
— a (resp. b) is the down-shift of the last column of A (resp. B?).

Thus, in compact representation, one can compute:
e the sum A + B in O(an) operations.

e the product A x B in K(n,a) = O (a?n) operations, using the > LU formula.

— Our main result is based on improving the cost K(n, «) of x.
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Faster product in compact representation

Through the X LU formula, K(n, «) is seen as the time of computing

Ag:ZGj(Hngmod:U"), 1</<a

g=1

with G, H;,V, in K|x| of degree < n.

Remark: the inner modulo prevents us from factoring out the V.

Matrix reformulation: Given H € K[z]**!, V € K[z]'** and G € K[z]**!, all of
degree < n, compute (HV mod z™) G.

— Using short-product techniques (Schénhage’94, Mulders’00), we recast this into

a polynomial matrix multiplication in size o and degree n/c.

— We get the bound K(n,a) = O™ (a®~!n), which is the basis of our main result.
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Short-product techniques

Idea: compute (HV mod z"™)G by divide-and-conquer, as

((Ho —+ x%Hl) (VO + ZIZ’%Vl) mod x") (GO + ZC%Gl) = H()V()GO +

|3

ZC% (H()V()Gl —+ (H()Vl —+ H1V0 mod l'%)Go) —+ Zl?n ((H()Vl + H1V0 Il’lOd €T )Gl)

The desired quantities for the recursive step read off

[Ho Hl} mod z"/? [Go Gl}

Let K(d, a, /) be the cost of: given A € K[z]**¢, B € K[z]**® and C € K[z]***, of
degree < d, compute (AB mod az‘w) C. Thus

K(n,a) =K(n,a,1) < Kn/2,0,2) <Kn/4,a,4) < ... <Kn/o,a,a) = 0 (a® 'n)

Here K (ﬂ, a, a) = cost of polynomial matrix multiplication in size a and degree -.
(87 (8
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Vandermonde and Cauchy
[Pan 1990] [Gohberg-Olshevsky 1994]

One can reduce the study of Vandermonde operators

»(A) = A — (diagonal matrix) x (A shifted right by 1)
and Cauchy operators

¢(A) = A — (diagonal matrix) x A x (diagonal matrix)’

to that of Toeplitz operators.

e The reduction involves a question similar to the one before: multiply a
Vandermonde-like or Cauchy-like matrix, given by « generators, by « vectors.

e Similar techniques apply.
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Conclusion

e Positive aspects: we can speed up the resolution for systems with large

displacement rank (at least, theoretically).
e [o do: make it automatic (Pan & Wang).

e Loose ends: often, a large displacement rank hides a multi-level structure.
— Toeplitz-block-Toeplitz;
— Multivariate interpolation: multilevel Vandermonde structure;

— Algebraic / differential approximants (Hermite-Padé for powers / derivatives

of a single power series).

For these questions, we are far from exploiting the structure as much as we

would want.
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