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The Problem

Approximating the roots of a univariate polynomial with
relative precision ε

For a given ε > 0 compute a set of ε-inclusion disks:

the union of the disks contains all the roots
the relative radius of each disk is bounded by ε, i.e.,
(radius)/|center| ≤ ε
Each isolated disk contains only one root each union of k
overlapping disks disjoint from the remaining ones contains k
roots

*

*

* *

*
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Input/Output

for approximate input, the union of the disks contains the
δ-pseudo roots of p(x)

{z ∈ C : p̃(z) = 0, |p̃i − pi | ≤ δ|pi |}

Moreover, centers are pseudoroots
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Available packages:

MPSolve [Bini, Fiorentino 1999]

http://www.dm.unipi.it/cluster-pages/mpsolve

Successfully applied to the partition polynomials of degree up
to 70.000 [R.P Boyer, W.Y. Goh]

www.math.drexel.edu/e rboyer/talks/MIT FINAL.pdf

Included in the library SYNAPS by Bernard Mourrain

EigenSolve [S. Fortune 2001]

http://cm.bell-labs.com/who/sjf/eigensolve.html
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Overview of MPSolve

It generates a sequence of sets of inclusion disks

Disks are shrinked by means of the Ehrlich-Aberth iteration: a
fixed-point iteration which acts simultaneously on the
approximations to all the roots

high-precision arithmetic is used only for shrinking the
overlapping disks (adaptivity)

Double precisionStandard precision quadruple precision

shrink

shrinkshrink
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Overview of MPSolve

cluster analysis is applied for accelerating convergence

the number of iterations depends on clusters

the cost per iteration is O(n2) ops

the required memory is O(n)

the polynomial can be assigned as a black box which given z
provides p(z)
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Overview of Eigensolve

1 The monic polynomial can be assigned as a black box which
given z provides p(z).

2 Given a set of approximations z1, . . . , zn to the roots of p(z),
a generalized companion matrix is constructed

C =


z1 0

z2

. . .

0 zn

 +


u1

u2
...

un

 [
1 1 . . . 1

]

such that the eigenvalues of C are the roots of p(z)
3 New approximation to the roots are obtained by numerically

computing the eigenvalues of C
4 if the approximations are satisfactory then stop; otherwise

repeat from 2
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Overview of Eigensolve

Nice feature: the closer are the approximations to the roots, the
better conditioned are the eigenvalues of C

In the limit, the computation of the eigenvalues of C does not
need high precision.

Higher precision can be needed only to construct C from the
polynomial.
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Overview of Eigensolve

For polynomials given in terms of the coefficients in the monomial
basis, the initial approximations to the roots of p(z) are computed
as eigenvalues of the companion (Frobenius) matrix F

F =


0 . . . 0 −a0

1
. . .

...
. . . 0 −an−2

0 1 −an−1



The QR method of the LAPACK implementation is used for
computing eigenvalues of both F and C
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Overview of Eigensolve

Complexity analysis

O(n2) ops are needed to compute C

the cost of computing eigenvalues is
– O(n3) ops to reduce C to upper Hessenberg form
– O(n2) ops per step to apply QR; moreover, O(n) steps are
usually required
– the overall cost is O(n3) ops

The memory space is O(n2)

Despite this larger complexity Eigensolve is sometimes faster than
MPSolve
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Possible improvements

Eigensolve does not exploit the specific structure of the generalized
companion matrices C and F

There is room to improve Eigensolve by designing new algorithms
for computing the eigenvalues of generalized companion matrices

We will prove that exploiting the structures of C and F allows:

to reduce the complexity from O(n2) ops per step to O(n)
ops per step

to reduce the memory space from O(n2) to O(n).
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Rank structured matrices

Definition

A matrix A is semiseparable of rank (r , s) if there exist matrices L
and U of rank r and s, respectively such that

Tril(A) = Tril(L), Triu(A) = Triu(U),

Definition

A matrix A is quasiseparable of rank (r , s) if the submatrices
contained in the lower triangular part (upper triangular part) have
rank at most r (s, respectively).
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any semiseparable matrix is quasiseparable but not conversely

A tridiagonal matrix is quasiseparable of rank (1, 1) but it is not
semiseparable 

∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
0 ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗



We simply call matrices in these classes rank structured
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Historical notes

Many papers starting from the late 1930s
See [Vandebril, Van Barel, Golub, Mastronardi Calcolo vol. 42,

2005] for a detailed commented bibliography

Partial list: Gantmacher, Krein 37, Asplund 59, Capovani 70,71,

Gohberg, Kailath, Koltracht 85, Fiedler 86, Rozsa 86, Bevilacqua,

Romani, Eidelman, Van Barel, Vandebril, Delvaux, Tyrtyshnikov,

Olshevsky, Mastronardi, Gemignani, Dewilde, van der Veen, Gu,

Chandrasekaran, Fasino, Hackbush,.....

Special issue of the journal Calcolo vol. 42 (2005) dedicated
to rank structured matrices

Many research groups and strong competition (Leuven, Delft,
Tel Aviv, Pisa, Bari, Berkley, Santa Barbara, Moskow, ....)
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Companion-like matrices are rank structured

Diagonal plus rank one: representation in the Lagrange basis

Frobenius: representation in the power basis

Modified Frobenius: representation in the Newton basis

Comrade: Representation in orthogonal bases [Barnett 75]
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Companion-like matrices are rank structured

Arrowhead [Golub 73, Fiedler 90]

Unitary Hessenberg [Gragg 86]

Fellow [Calvetti, Kim, Reichel 2002] Representation in
orthogonal bases on the unit circle
Unitary Hessenberg+ rank 1
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Algorithmic aspects of the rank structure

The inverse of a rank-structured matrix is rank structured

Solving systems with rank-structured matrices costs O(n) ops
and O(n) memory

The LU factorization and the QR factorization of a rank
structured matrix has rank-structured factors

Computing these factors costs O(n) ops
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Representing rank structured matrices

There are different O(n) representation of a rank structured matrix
given in terms of the generators, and of Givens rotations [Van
Barel et al].

A suitable representation given by Eidelman and Gohberg is the
quasiseparable representation (for simplicity, assume r = s)

ai ,j =

 p∗i Ei−1Ei−2 · · ·Ej+1qj , for i > j

g∗i Fi+1Fi+2 · · ·Fj−1hj , for i < j

where pi , qj , gi , hj ∈ Rs , Ei ,Fj ∈ Rs×s
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QR factorization and rank structured matrices

QR factorization of a matrix A

A = QR, Q∗Q = I , R upper triangular

The QR iteration

A1 = A
Ak − αk I =: QkRk QR factorization,
Ak+1 := RkQk + αk I

All the matrices Ak are unitarily similar to A

Ak = Q∗
k−1Ak−1Qk−1

Ak = S∗kASk , Sk = Q1Q2 · · ·Qk−1, S∗kSk = I
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The QR iteration

Under mild assumptions Ak converges to (block) triangular form

The diagonal entries of Ak converge to the eigenvalues of A

The computation is backward stable [Tisseur], i.e., the computed
eigenvalues are the exact eigenvalues of a sligthly perturbed matrix

The QR iteration is a robust and stable algorithm for computing
eigenvalues of a matrix

Question

Can the QR iteration take advantage of the rank structure of A?

In general the structure is not maintained by the QR iteration
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QR and rank structure

Theorem

Let A = U + T, be such that

T has rank r

A is quasiseparable of rank (p, q)

U is unitary, i.e., U∗U = I , or Hermitian, i.e. A = A∗.

Then, the matrices Ak generated by the shifted QR iteration are
quasiseparable of rank (p, q + 2r).

Hermitian: [Bini, Gemignani, Pan, Numer Math 2005], [Vandebril, Van
Barel, Mastronardi, 2005], [Eidelman, Gohberg, Olshevsky, LAA 2005]

Unitary: [Bini, Daddi, Gemignani, ETNA 2004], [Bini, Eidelman,
Gemignani, Gohberg, TR 2005, SIMAX to appear], [Bini, Eidelman,
Gemignani, Gohberg, Math Comp 2007], [Delvaux, Van Barel TR TW164
(2006) KU Leuven], [Gemignani, Calcolo 2005]
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Theorem (Bini, Gemignani, Pan, Numer. Math. 2005)

Let A = D + uv∗, where D is real diagonal. Then Ak is
quasiseparable of rank (1, 3), moreover, given the quasiseparable
representation of Ak , the quasiseparable representation of Ak+1

can be computed with 120n + O(1) arithmetic operations and
O(n) memory.

Theorem (Bini, Daddi, Gemignani, ETNA 2004, Chandrasekaran,
Gu, Xia, Zhu, TR 2006)

Let A be a Frobenius matrix. Then Ak is quasiseparable of rank
(1, 3), moreover, given the quasiseparable representation of Ak , the
quasiseparable representation of Ak+1 can be computed with O(n)
arithmetic operations and O(n) memory.
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Theorem (Bini, Eidelman, Gemignani, Gohberg, SIMAX to appear)

Let A = H + uv∗ where A is upper Hesenberg, H is unitary. Then
Ak is quasiseparable of rank (1, 3) and there exists an algorithm
which computes a quasiseparable representation of Ak+1 given a
quasiseparable representation of Ak in 180n + O(1) ops.

An implicit QR algorithm for Frobenius matrices is given in
Chandrasekaran, Gu, Xia, Zhu, TR 2006.
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Outline of the proof technique

The case of Frobenius:
0 . . . 0 −a0

1
. . .

...
. . . 0 −an−2

0 1 −an−1

 =


0 . . . 0 1

1
. . . 0
. . .

. . .
...

0 1 0

+


0 . . . 0 −a0 − 1
...

... −a1

...
...

...
0 . . . 0 −an−1


A = U + V

U unit circulant (unitary), V rank-one

Since Ak = S∗kASk then

Ak = S∗kUSk + S∗kVSk = Uk + Vk

Uk unitary, Vk rank-one
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Recall
Ak = Uk + Vk

therefore
A−1

k = U∗
k + Rank-one

Since, Ak is upper Hessenberg, its inverse has rank-one matrices in
the lower triangular part

That is, the submatrices in the upper triangular part of Uk have
rank at most 2.

The submatrices in the upper triangular part of Ak have rank at
most 3.

D.A. Bini Rank structured matrices and polynomial rootfinders



Outline
Polynomial rootfinders: the available algorithms

Rank structured matrices and rootfinders

Rank structured matrices
QR iteration and the rank structure
Algorithmic proposals

Algorithms

O(n) complexity algorithms for the QR iteration applied to a rank
structured matrix have been designed for

unitary plus low rank matrices, say, Frobenius

Hermitian plus low rank, say, diagonal plus rank one

They include

the linear/quadratic shift

the (optional) reduction to Hessenberg form

the implicit QR (partially implemented and still under
investigation)

the deflation of computed roots

Available implementation in matlab or fortran

No multiprecision implementation yet available.
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Algorithms

Numerical experiments show

very good numerical stability

better performances w.r.t the customary QR if n ≥ n0 for
n0 ≈ 100 in theory, and for n0 ∈ [200, 300] in practice,
depending on the compiler.

Some results: [Bini, Daddi, Gemignani 2004]
Computing the smallest 40 roots of

p(x) =
∏40

i=1(x − 2−i )
∑n−40

i=0 x i .

n cpu n cpu
100 0.00 16000 1.56
200 0.01 32000 3.38
400 0.02 64000 6.78
800 0.04 125000 13.02
1600 0.08 250000 28.02
3200 0.16 500000 52.51
6400 0.36 1000000 116.02
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Algorithms

Computing all the roots of p(z) = zn − 1, n = 2m+1

D.A. Bini Rank structured matrices and polynomial rootfinders



Outline
Polynomial rootfinders: the available algorithms

Rank structured matrices and rootfinders

Rank structured matrices
QR iteration and the rank structure
Algorithmic proposals

Computing all the roots of p(z) = zn − 1, n = 2m+1
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Algorithms

Computing all the roots of a polynomial of degree 2m+3
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Algorithms

Computing all the roots of a polynomial of degree 2m+3
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Algorithmic proposal

In the package Eigensolve, replace the customary QR algorithm for
computing the eigenvalues of the Diagonal plus rank-one matrix with
the fast version

Advantage 1: reduction of the complexity from O(n2) ops per
step to O(n) ops per step

Advantage 2: reduction of the memory space from O(n2) to O(n)

Drawback: The fast QR is fast if the diagonal entries are real; if
there are h complex roots out of n then Ak is quasiseparable of
rank (h, 3h + 1) and the cost per step grows to O(h2n)
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The rank structure is not preserved by QR applied to Diagonal plus
rank one if the diagonal is complex.

In fact, the structure is preserved for Hermitian plus low rank or
Unitary plus low rank.

In the case of complex roots, one may consider a generalized
companion matrix of the form

A = B + uv t

where B is block diagonal with diagonal blocks of size

1 for real eigenvalues
2 for complex eigenvalues

The 2× 2 blocks are of the kind

[
a b
−b a

]
D.A. Bini Rank structured matrices and polynomial rootfinders
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The block diagonal matrix B is not Hermitian nor unitary, however,
observe that[

a b
−b a

]
=

[
a− b 0

0 a + b

]
+

[
b b
−b −b

]

therefore, A can be viewed as a real diagonal plus a rank h + 1
matrix, where h is the number of complex conjugate pairs

The QR iteration preserves the rank structure; each step costs
O(nh2) operations.
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A better approach

The block diagonal matrix B is not generally Hermitian nor
unitary. However, there exists a sign matrix D = diag(±1) such
that DB is real symmetric.

DQR iteration [Uhlig, Numer. Math. 1997]

Ak − αk I = DQkRk

Ak+1 := RkDQk + αk I

Under mild assumptions the sequence Ak converges to a block
upper triangular matrix.
The DQR algorithm can break down due to the use of
D-orthogonal factorizations.
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Theorem (Gemignani 2007)

The sequence Ak is such that Ak is quasiseparable of rank (1, 4).
An algorithm exists for computing the quasiseparable
representation of Ak+1 given the quasiseparable representation of
Ak in O(n) ops.

The analysis of this algorithm is still work in place
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A different approach

We may construct a new generalized companion matrix A with the
following features:

A = S + wyT + uvT

S is real symmetric semiseparable of rank (1,1)

S + wyT is in block triangular form with blocks of size at
most 2× 2. The role of this matrix is the same as the role of
D in the diagonal plus rank-one representation of C

S + wyT has given eigenvalues

u and v are computed such that det(λI − A) = p(λ) at the
cost O(n2)
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A different approach

We may construct a new generalized companion matrix A with the
following features:

A = S + wyT + uvT

S is real symmetric semiseparable of rank (1,1)

S + wyT is in block triangular form with blocks of size at
most 2× 2. The role of this matrix is the same as the role of
D in the diagonal plus rank-one representation of C

S + wyT has given eigenvalues

u and v are computed such that det(λI − A) = p(λ) at the
cost O(n2)

D.A. Bini Rank structured matrices and polynomial rootfinders



Outline
Polynomial rootfinders: the available algorithms

Rank structured matrices and rootfinders

Rank structured matrices
QR iteration and the rank structure
Algorithmic proposals

S =



a1 b1 0 2b1 0 2b1 0 2b1

b1 a1 0 0 0 0 0 0

0 0 a2 b2 0 2b2 0 2b2

2b1 0 b2 a2 0 0 0 0

0 0 0 0 a3 b3 0 2b3

2b1 0 2b2 0 b3 a3 2b4 0

0 0 0 0 0 0 a4 b4

2b1 0 2b2 0 2b3 0 b4 a4


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S =



a1 b1 0 2b1 0 2b1 0 2b1

b1 a1 0 0 0 0 0 0

0 0 a2 b2 0 2b2 0 2b2

2b1 0 b2 a2 0 0 0 0

0 0 0 0 a3 b3 0 2b3

2b1 0 2b2 0 b3 a3 2b4 0

0 0 0 0 0 0 a4 b4

2b1 0 2b2 0 2b3 0 b4 a4



wyT = −


0
2
...
0
2


[

b1 0 b2 0 b3 0 b4 0
]
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A different approach

S + wyT =



a1 b1 0 2b1 0 2b1 0 2b1

−b1 a1 −2b2 0 −2b3 0 −2b4 0

0 0 a2 b2 0 2b2 0 2b2

0 0 −b2 a2 −2b3 0 −2b4 0

0 0 0 0 a3 b3 0 2b3

0 0 0 0 −b3 a3 −2b4 0

0 0 0 0 0 0 a4 b4

0 0 0 0 0 0 −b4 a4


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A different approach

The QR iteration generates quasiseparable matrices of rank (4, 8) at
the cost O(n) per step

The Fortune algorithm can be fully implemented in a fast way

Experimentally, the eigenvalues of the matrix S + wyT are not well
conditioned with respect to general perturbations. On the other
hand they are very well conditioned for structured perturbations. Is
this enough to make this approach effective?

The algorithm is still work in place
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Future work

implementation of the Fortune algorithm with fast QR for
polynomials with real roots;

implementation of the Fortune algorithm with fast DQR for
polynomials with complex roots;

analysis of the numerical stability of DQR;

analysis and implementation of the method based on the
block triangular companion;
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