Visualization of algebraic curves.

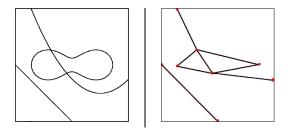
L. Alberti, B. Mourrain, GALAAD INRIA Sophia Antipolis

November 2, 2007

✓What do we have ?
□ $f(x,y) \in \mathbb{Q}[x,y]$ square-free, defining a curve C.
□ A rectangular box $\mathcal{D} = [a,b] \times [c,d]$.

What do we want ?

 \square A planar graph (points and segments) isotopic to $\mathcal C$ in $\mathcal D.$



Intended for mathematicians as a research tool.

Computer Assisted Design:

- □ Visualization of features.
- □ Computations on parametrized surfaces.

Geometric optic analysis, caustics.

«Certified output (unlike marching cube or spray points methods).

 \ll Avoids computation with exact numbers \implies Fast.

The way approach to determining the topology of smooth curves.

The way approach to determining the topology near singular points.

Example

Works on high degree polynomials with big coefficients.

Example of a self-intersection curve of a quartic surface of total degree 50 :

Subdivision method

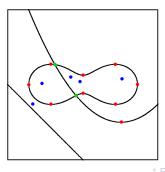
Interesting points:

٢

x-critical points of
$$C$$
: $f(x, y) = \partial_y f(x, y) = 0$.
y-critical points of C : $f(x, y) = \partial_x f(x, y) = 0$.

I Singular points of C: $f(x, y) = \partial_x f(x, y) = \partial_y f(x, y) = 0$.

D Extremal points of $f: \partial_x f(x, y) = \partial_y f(x, y) = 0$.

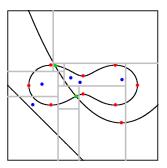


Types of boxes:

x-regular box: Contains no *x*-critical points.

y-regular box: Contains no y-critical points.

 \square Simple singular box: Contains exactly one extremal point and this point is on $\mathcal{C}.$



☞Use of Bernstein basis and sleeve methods

- Univariate solving
- \square Multivariate solving in non degenerate cases
- \square Preconditionning and floating point computations \Longrightarrow Fast
- □ Certified computation (Separation bounds)

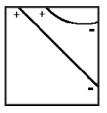
☞Use of Bernstein basis and sleeve methods

- Univariate solving
- \square Multivariate solving in non degenerate cases
- \square Preconditionning and floating point computations \Longrightarrow Fast
- Certified computation (Separation bounds)

Univariate Rational Representation and interval arithmetic
 Reduces multivariate case to univariate case
 Handles degenerate cases

We can assume the box to be x-regular wlg.

The "x-index" at a point of C on the boundary of the box is positive if the branch goes to the right and negative otherwise.

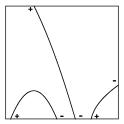


x-index lemma

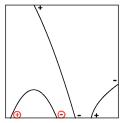
If a and b are connected by a branch of C in the box then one has positive x-index and the other negative x-index.

The one with positive *x*-index has a lower absciss than the one with negative *x*-index.

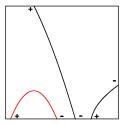
- Choose *b* with negative *x*-index and minimal absciss.
- Choose *a* its neighbor on the boundary that has positive *x*-index and absciss lower than *b*.
- Connect *a* and *b*.
- Iterate from the first step as many times as necessary.



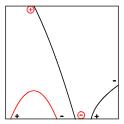
- Choose *b* with negative *x*-index and minimal absciss.
- Choose *a* its neighbor on the boundary that has positive *x*-index and absciss lower than *b*.
- Connect *a* and *b*.
- Iterate from the first step as many times as necessary.



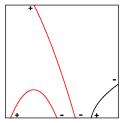
- Choose *b* with negative *x*-index and minimal absciss.
- Choose *a* its neighbor on the boundary that has positive *x*-index and absciss lower than *b*.
- Connect *a* and *b*.
- Iterate from the first step as many times as necessary.



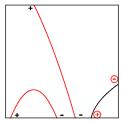
- Choose *b* with negative *x*-index and minimal absciss.
- Choose *a* its neighbor on the boundary that has positive *x*-index and absciss lower than *b*.
- Connect *a* and *b*.
- Iterate from the first step as many times as necessary.



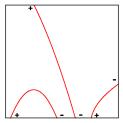
- Choose *b* with negative *x*-index and minimal absciss.
- Choose *a* its neighbor on the boundary that has positive *x*-index and absciss lower than *b*.
- Connect *a* and *b*.
- Iterate from the first step as many times as necessary.



- Choose *b* with negative *x*-index and minimal absciss.
- Choose *a* its neighbor on the boundary that has positive *x*-index and absciss lower than *b*.
- Connect *a* and *b*.
- Iterate from the first step as many times as necessary.



- Choose *b* with negative *x*-index and minimal absciss.
- Choose *a* its neighbor on the boundary that has positive *x*-index and absciss lower than *b*.
- Connect a and b.
- Iterate from the first step as many times as necessary.

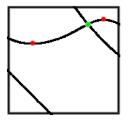


Handling the simple singular boxes

Local conic structure theorem

For a sufficiently small box \mathcal{D} containing a singular point, the topology of \mathcal{C} in the box is a cone over $\mathcal{C} \cap \partial \mathcal{D}$.

We don't know how small the box has to be.



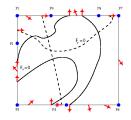
Criterion : The box is simple singular and the number of half-branches at the singular point is the number of points on the boundary.

Counting the number of half-branches

Definition of the topological degree

Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ such that $F(x, y) \neq 0$ on the boundary of the box \mathcal{D} . Let p_i clockwise-ordered points on the boundary so that F_x or F_y has constant sign between two of them. Let $\sigma_i = 1$ if F_x as constant sign between p_i and p_{i+1} , 0 otherwise. The topological degree of F in the box is :

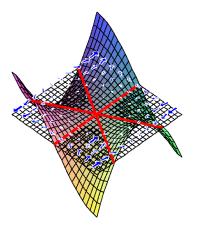
$$\operatorname{deg}(F, \mathcal{D}) = \frac{1}{8} \sum_{i=1}^{g} (-1)^{\sigma_i - 1} \left| \begin{array}{c} \operatorname{sg}(f_{\sigma_i}(p_i)) & \operatorname{sg}(f_{\sigma_i}(p_{i+1})) \\ \operatorname{sg}(f_{\sigma_i + 1}(p_i)) & \operatorname{sg}(f_{\sigma_i + 1}(p_{i+1})) \end{array} \right|$$



Khimshiashvili's theorem

When there is no other extremal point of f in a box D, the number of half-branches at the singular point is

 $2(1 - \deg(\operatorname{grad} f, \mathcal{D}))$



Topology computation algorithm

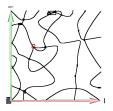
- Isolate each singular point from the other extremal points.
- For each simple singular box
 - Test if the number of half-branches is the same as the number of points on the boundary.
 - If yes, keep this box and move on to the next simple singular box.

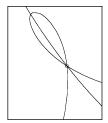
If not, refine the isolation box and test until the test succeeds.

- Isolate the *x*-critical points from the *y*-critical points and the isolating boxes for the singular points.
- Partition the rest of the space in boxes (that are thus *x*-regular).
- Apply the relevant connection algorithm in each box.

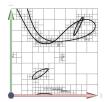
Worked examples

Ridge curve of a parametric surface in CAO:





A polynomial with degree 50 obtained as the projection of the self-intersection locus of a quartic surface:



Contributors:

- Chen Liang
- B. Mourrain
- J.P. Pavone
- J. Wintz

Tools:

- SYNAPS: a C++ library for symbolic and numeric computations. GPL, http://synaps.inria.fr
- AXEL, an algebraic-geometric modeler, GPL http://axel.inria.fr

□ Acknowledgements:

AIM@Shape (IST Network of Excellence 506766) ACS (IST FET Open 006413).