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Topology of a planar curve

[0 What do we have ?
O f(x,y) € Q[x, y| square-free, defining a curve C.
O A rectangular box D = [a, b] X [c, d].

[J What do we want ?
O A planar graph (points and segments) isotopic to C in D.
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[J Intended for mathematicians as a research tool.

[J Computer Assisted Design:
O Visualization of features.
[0 Computations on parametrized surfaces.

[] Geometric optic analysis, caustics.
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Features and strong points

[1 Certified output (unlike marching cube or spray points methods).
[J Subdivision method = complexity related to geometry.

[J Avoids computation with exact numbers = Fast.

[J New approach to determining the topology of smooth curves.

[J New approach to determining the topology near singular points.
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Example

[0 Works on high degree polynomials with big coefficients.

[J Example of a self-intersection curve of a quartic surface of total
degree 50 :
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Subdivision method

Interesting points:

x-critical points of C: f(x,y) = 0,f(x,y) = 0.
y-critical points of C: f(x,y) = 0xf(x,y) =0.

1 Singular points of C: f(x,y) = 0«f(x,y) = 0,f(x,y) =0.

[0 Extremal points of f: Oxf(x,y) = 0,f(x,y) = 0.

(SO
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Subdividing the box

Types of boxes:

x-regular box: Contains no x-critical points.
y-regular box: Contains no y-critical points.

O Simple singular box: Contains exactly one extremal point and
this point is on C.

AN
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Isolating the points

[J Use of Bernstein basis and sleeve methods

U Univariate solving

0 Multivariate solving in non degenerate cases

O Preconditionning and floating point computations = Fast
O Certified computation (Separation bounds)
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Isolating the points

[J Use of Bernstein basis and sleeve methods

U Univariate solving

0 Multivariate solving in non degenerate cases

O Preconditionning and floating point computations = Fast
O Certified computation (Separation bounds)

[J Univariate Rational Representation and interval arithmetic
U Reduces multivariate case to univariate case
[ Handles degenerate cases
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Handling the regular boxes

We can assume the box to be x-regular wlig.
[J The “x-index” at a point of C on the boundary of the box is
positive if the branch goes to the right and negative otherwise.

N

x-index lemma

If a and b are connected by a branch of C in the box then one has
positive x-index and the other negative x-index.

The one with positive x-index has a lower absciss than the one with
negative x-index.
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Connection algorithm
@ Choose b with negative x-index and minimal absciss.

@ Choose a its neighbor on the boundary that has positive
x-index and absciss lower than b.

@ Connect a and b.

@ lIterate from the first step as many times as necessary.
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Handling the simple singular boxes

Local conic structure theorem

For a sufficiently small box D containing a singular point, the topol-
ogy of C in the box is a cone over C N 0D.

[J We don't know how small the box has to be.

N\

—<
N\

[J Criterion : The box is simple singular and the number of
half-branches at the singular point is the number of points on the
boundary.
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Counting the number of half-branches

Definition of the topological degree

Let F : R2 — R? such that F(x,y) # 0 on the boundary of the
box D. Let p; clockwise-ordered points on the boundary so that F,
or F, has constant sign between two of them. Let o; = 1 if F as
constant sign between p; and pj;1, 0 otherwise.

The topological degree of F in the box is :

sg(fo;(pi))  se(fo;(Pit1))
sg(fo;+1(pi))  se(fo+1(pi+1))

0',—1
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Khimshiashvili's theorem

When there is no other extremal point of f in a box D, the number
of half-branches at the singular point is

2(1 — deg(grad f, D))
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The final algorithm

Topology computation algorithm

@ [solate each singular point from the other extremal points.
@ For each simple singular box
@ Test if the number of half-branches is the same as the number
of points on the boundary.
o If yes, keep this box and move on to the next simple singular
box.
If not, refine the isolation box and test until the test succeeds.
@ Isolate the x-critical points from the y-critical points and the
isolating boxes for the singular points.

@ Partition the rest of the space in boxes (that are thus
x-regular).

@ Apply the relevant connection algorithm in each box.
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Worked examples

Ridge curve of a parametric surface in CAO:

%

A polynomial with degree 50 obtained as the projection of the
self-intersection locus of a quartic surface:

N
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0 Contributors:
@ Chen Liang
@ B. Mourrain
o J.P. Pavone
o J. Wintz

O Tools:

@ SYNAPS: a C++ library for symbolic and numeric
computations. GPL, http://synaps.inria.fr

@ AXEL, an algebraic-geometric modeler, GPL
http://axel.inria.fr
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