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The block decomposition
Case of conjugated polynomials

The block decomposition

I Let f : Cn → C be a polynomial function.
I There exists a finite minimal set B(f ) such that the restriction

map f | : f −1(C \ B(f )) −→ C \ B(f ) is a locally trivial
fibration.

I Given a geometric basis (γi ) of π1(T \ B(f ); ?) G. B. one has
a direct sum decomposition of H̃q(f

−1(?)) (reduced homology
over Z) which depends essentially on the choice of (γi )
(see [4, 6, 7, 14, 15, 16] for various degrees of generality).

I With this sum decomposition and if f has only isolated
singularities, local monodromy

(hγi )∗ : H̃q(f
−1(?)) −→ H̃q(f

−1(?))

has a block decomposition.
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The block decomposition
Case of conjugated polynomials

The block decomposition

I (hγi )∗ has two kinds of blocks:
I local blocks which only depend on the local Milnor fibers.
I global blocks which depend on the embeddings of the local

Milnor fibers into the fixed regular fiber f −1(?).

I These two invariants allow us to compute the intersection
matrix of f −1(?). Example

I Several papers dealing with the local blocks and how to
compute them:

I Brieskorn singularities by A. Hefez and F. Lazzeri [13].
I Certain singularities and unimodal singularities by

A. M. Gabriélov [8, 9].
I General methods: using real morsifications (N. A’Campo [1, 2]

and S. M. Gusein-Zade [11, 12]) and using an inductive
argument (A. M. Gabriélov [10]).
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Case of conjugated polynomials

The block decomposition

I This is not the situation for the global blocks.
I There are some relations between local and global blocks

(A. Dimca and A. Némethi [6], W. Neumann and
P. Norbury [14]) which can give useful constraints.

I Usually these data are computed depending on the particular
polynomial f .

I A practical complete algorithmic method does not exist in the
literature.
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The block decomposition
Case of conjugated polynomials

Case of conjugated polynomials

I Specially interesting is the case of polynomials with
coefficients in a number field conjugated by a Galois
isomorphism of the field.

I Example:
(
y2x − (y + 1)3

) (
s2 (2 s − 3) y + x − 3 s2

)
with

s ∈ {3 + 2
√

3, 3− 2
√

3} are conjugated by the Galois
isomorphism a + b

√
3 7→ a− b

√
3, a, b ∈ Q.

I Due to the Galois isomorphism both have the same algebraic
properties (degree, number of components, global Milnor
number, type and position of singularities, ...).

I The global blocks reflect how the Milnor fibers sit in the fixed
regular fiber and this need not be invariant under Galois
isomorphims.
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Tame polynomials: reduction to the Morse case
Hyphotesis

Tame polynomials: reduction to the Morse case

I The discriminant method is a practical complete algorithmic
method to compute local monodromies for a tame polynomial
f with n = 2.

I Let f be a tame polynomial (S. A. Broughton [4])
I ⇒ f is good at infinity ⇒ B(f ) = {ti} contains only critical

values coming from affine singularities.
I ⇔ µ(f ) < ∞ and µ(f ) is invariant by morsifications

f (x , y) + ag(x , y), g generic lineal form ⇒ regular fibers are
diffeomorphic.

I To obtain the block decomposition of (hγi )∗ we need to
consider special geometric bases of π1(T \ B(f + ag); ?).
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Tame polynomials: reduction to the Morse casePSfrag repla
ements �T

1
2
s rit0i DiDi

ti ?
ik
morsification

I Order the set B(f + ag) ∩ Di in such a way that the critical
values corresponding to the morsification of the same critical
point in f −1(ti ) are together.
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Tame polynomials: reduction to the Morse casePSfrag repla
ements �T

1
2
s rit0i DiDi

ti ?
ik
morsification

I (γi
k)k=1,...,k(i) a geometric basis of π1(Di \ B(f + ag) ∩ Di ; t

′
i )

which respects this order so that (ri · γi
k · r

−1
i )

i=1,...,#B(f )
k=1,...,k(i) is a

geometric basis of π1(T \ B(f + ag); ?).
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Tame polynomials: reduction to the Morse casePSfrag repla
ements �T

1
2
s rit0i DiDi

ti ?
ik
morsification

I γi = ri · (
∏

k γi
k) · r−1

i ⇒ the ordered product of the
associated local monodromies of f + ag gives the block
decomposition of (hγi )∗.
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Tame polynomials: reduction to the Morse case
Hyphotesis

Hyphotesis

I We can assume f (x , y) to be a tame Morse polynomial
function.

I `(x , y) generic linear form. One has the polar map

φf ,` : C2 → C2, (x , y) 7→ (f (x , y), `(x , y)) = (t, `)

Let (x , y) be generic coordenates. We take `(x , y) = x .

I Df := {(t, x) ∈ C2 | discrimy (f (x , y)− t) = 0} the
discriminant curve of φf ,x .
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Tame polynomials: reduction to the Morse case
Hyphotesis

Hyphotesis

I The method needs two data which depend on Df :
I The classical monodromy m of the projection

π| : f −1(?) → C, (x , y) 7→ x

in a geometric basis associated with the ramification points of
π|f−1(?) (the set x? of k points given by Df ∩ {t = ?}).

First datum

I The braid monodromy ∇τ of the discriminant Df in the
geometric basis (γi ). Second datum
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Sketch of the proof
Remarks

The main theorem

Theorem 1 (Discriminant method)

Let f (x , y) ∈ C[x , y ] be a tame Morse polynomial with (x , y)
generic coordinates. Then (hγi )∗ is determined by the following
data:

(m(µτ
1), . . . ,m(µτ

k)) ⊂ Σk
N

(∇τ (γ1), . . . ,∇τ (γµ(f ))) ⊂ Bµ(f )
k

Moreover an explicit method to construct (hγi )∗ exists.

M. Escario Gil Discriminant method
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2. A distinguished basis.

Ψβi

∆i∆j

⋆ ri

π

φf,x

hri

Df
vanishing
path δi

distinguished basis
(∆1, . . . ,∆µ(f ))
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Sketch of the proof.

3. Homological monodromy (hγi )∗.

Ψβ
−1

i
θiβi

Si

∆j

ti
⋆ ri

f

φf,x

(hγi
)∗

Df

(hγi
)∗(∆j)

Picard-Lefschetz

transformation

of δj



Sketch of the proof.

4. Algebraic expression.

I Bk has the following presentation
〈σ1, . . . , σk−1 | [σi , σj ] = 1 if |i − j | ≥ 2, σi+1σiσi+1 = σiσi+1σi 〉 .

I ∇τ (γi ) is a conjugate of any σj . Let βi be an element which
conjugates, for example, σ1.

I Φ : π1(X \ k; ∗)× Bk → π1(X \ k; ∗) such that Basis µi

µσi
j =


µi+1 if j = i

µi+1 · µi · µ−1
i+1 if j = i + 1

µj if j 6= i , i + 1,

I We compute (µ2 · µ1)
βi and (µ2 · µ1)

βj∇τ (γi ) ⇒ The vanishing
path δi and the Picard-Lefschetz transformation of δj are the
image by the Hurwitz move Ψτ , respectively. Hurwitz

I A model of H1(V?(f )) which depends only of
(m(µτ

1), . . . ,m(µτ
k)) ⇒ ∆i and (hγi )∗(∆j). �
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Remarks

I Since our method strongly uses the discriminant curve Df we
call it the discriminant method .

I The computation of first and second data can be done with
the help of computer programs such as [3] and [5]. Since m
and ∇τ are homotopy invariants we can use any
representatives of µτ

i and γi .

I Different elections of βi in ∇τ (γi ) result in the same ∆i and
(hγi )∗(∆j) up to orientation.

I The discriminant method is currently implemented
in MAPLE 8 (-) and SINGULAR 3 (J. Mart́ın).

M. Escario Gil Discriminant method
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Applications

I Global and local homological monodromy of two-variable
singularities can be effectively computed using the
discriminant method.

I The intersection matrix of any Yomdine surface can be
computed using Gabrielov’s [10] and discriminant methods.
This is currently implemented in MAPLE 8 (-)
and SINGULAR 3 (J. Mart́ın).

I Topological properties of polynomial maps can be detected by
means the discriminant method.

Example:
(
y2x − (y + 1)3

) (
s2 (2 s − 3) y + x − 3 s2

)
with

s ∈ {3 + 2
√

3, 3− 2
√

3} are conjugated by the Galois
isomorphism a + b

√
3 7→ a− b

√
3, a, b ∈ Q but they are not

topologically equivalent polynomials.

M. Escario Gil Discriminant method



Introduction
Hyphotesis of the discriminant method

The main theorem and sketch of the proof
Applications
References

Applications

I Global and local homological monodromy of two-variable
singularities can be effectively computed using the
discriminant method.

I The intersection matrix of any Yomdine surface can be
computed using Gabrielov’s [10] and discriminant methods.
This is currently implemented in MAPLE 8 (-)
and SINGULAR 3 (J. Mart́ın).

I Topological properties of polynomial maps can be detected by
means the discriminant method.
Example:

(
y2x − (y + 1)3

) (
s2 (2 s − 3) y + x − 3 s2

)
with

s ∈ {3 + 2
√

3, 3− 2
√

3} are conjugated by the Galois
isomorphism a + b

√
3 7→ a− b

√
3, a, b ∈ Q but they are not

topologically equivalent polynomials.

M. Escario Gil Discriminant method



Introduction
Hyphotesis of the discriminant method

The main theorem and sketch of the proof
Applications
References

N. A’Campo, Le groupe de monodromie du déploiement des
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Funkcional. Anal. i Priložen. 7 (1973), no. 3, 18–32.

, Dynkin diagrams of unimodal singularities,
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Example

(
y2x − (y + 1)3

) (
s2 (2 s − 3) y + x − 3 s2

)
with s = 3− 2

√
3.

(hγ1)∗ =

 1 0 1 -1 0 0
0 1 0 1 2 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



(hγ2)∗ =

 1 0 0 0 0 0
0 1 0 0 0 0

-1 0 1 0 0 0
1 1 0 0 -1 0
0 -1 0 0 0 -1
0 -1 0 1 1 1



I =

 0 0 -1 1 0 0
0 0 0 -1 -2 -1
1 0 0 0 0 0

-1 1 0 0 1 1
0 2 0 -1 0 1
0 1 0 -1 -1 0

 ⋆0t

T

γ1 γ2

A1
A1

A1
A3



Geometric basis

Let T ⊂ C be a geometric disk such that B(f ) = {ti} ⊂ Int(T ) and
? ∈ ∂T .

Definition 1
A geometric basis of the group π1(T \ B(f ); ?) is an ordered list
(γ1, γ2, . . . , γ#B(f )) such that:

I γi is a simple meridian in T \ B(f ) based at ?.

I Supp(γi ) ∩ Supp(γj) = {?} for all i , j with i 6= j .

I γ#B(f ) · . . . · γ1 is homotopic to ∂T which is positively oriented
(product from left to right).

∂T

γ1

γ2

γ#B(f)

γi

⋆



First datum

I Let X be a big geometric disk such that

x?, k := {1, . . . , k} ⊂ Int(X ).

I Let (µ1, . . . , µk) be the following geometric basis of
π1(X \ k; ∗):

PSfrag repla
ements
1 2

345
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I Let us fix τ ∈ B(k, x?).



First datum

The Hurwitz move Ψτ : π1(X \ k; ∗) −→ π1(X \ x?; ∗) gives us the
geometric basis (µτ

1 , . . . , µ
τ
k) of π1(X \ x?; ∗).
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The first datum is: (m(µτ
1), . . . , m(µτ

k)) ∈ Σk
N
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Second datum

I Consider the projection map

π : (C2,Df ) −→ C, (t, x) 7→ t

I The second member of the pair is a k-fold covering ramified
on a finite set of points T .

I The fundamental group of the base, π1(C \ T ; ?), induces the
braid monodromy ∇τ of the pair (C2,Df ) with respect to the
projection π:

∇τ : π1(C \ T ; ?) −→ B(x?, x?) −→ Bk

γ 7→ π|−1
Df

(γ) =: γ? 7→ τ · γ? · τ−1

(recall x? = Df ∩ {t = ?} and τ ∈ B(k, x?))



Second datum

∇τ : π1(C \ T ; ?) −→ B(x?, x?) −→ Bk

γ 7→ π|−1
Df

(γ) =: γ? 7→ τ · γ? · τ−1

I Remark: Since f is good at infinity, its discriminant curve has
no vertical asymptotes ⇒ T = f (P) ∪ π(Sing(Df )) (disjoint
since (x , y) generic).

I We can assume that Supp(γi ) ∩ π(Sing(Df )) = ∅.

The second datum is

(∇τ(γ1), . . . ,∇τ(γµ(f ))) ∈ Bµ(f )
k .
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