Approximate implicitization in Computer Aided Geometric Design

Jan B. Thomassen
\section*{SINTEF ICT}
Nice, June 2, 2006

Work done with: Tor Dokken and Vibeke Skytt
Supported by: Aim@Shape (EU Network of Excellence)
...and, before that: GAIA II (EU project - André)

Background

Representation of curves and surfaces in CAD-systems
The intersection problem
Recursive subdivision
Approximate implicitization
Implicitization as a linear algebra problem
Convergence rates
Examples
Separation of surfaces
Simple case: Cylinder-plane test
Simple case: Monotonicity
Summary

Background

Background

Representation of curves and surfaces in CAD-systems
The intersection problem
Recursive subdivision
Approximate implicitization
Implicitization as a linear algebra problem
Convergence rates

Examples

Separation of surfaces
Simple case: Cylinder-plane test
Simple case: Monotonicity
Summary

Representation of curves and surfaces in CAD-systems

Spline curves:

$$
\mathbf{p}(t)=\sum_{i=0}^{n} \mathbf{c}_{i} N_{i, n}(t)
$$

Spline surfaces:

$$
\mathbf{p}(u, v)=\sum_{i=0}^{n_{1}} \sum_{j=0}^{n_{2}} \mathbf{c}_{i j} N_{i, n_{1}}(u) N_{j, n_{2}}(v)
$$

- Parametric
- Piecewise polynomial
- B-spline basis: $N_{i, n}(t)$

The intersection problem

Given: Two surfaces $\mathbf{p}_{1}\left(u_{1}, v_{1}\right)$ and $\mathbf{p}_{2}\left(u_{2}, v_{2}\right)$, and a numerical tolerance ϵ.

Find: All parameters $\left(u_{1}, v_{1}, u_{2}, v_{2}\right)$ such that $\left|\mathbf{p}_{1}\left(u_{1}, v_{1}\right)-\mathbf{p}_{2}\left(u_{2}, v_{2}\right)\right|<\epsilon$.

Example: Transversal intersection (easy)

Example: Near tangential intersection (hard)

Recursive subdivision

Algorithm:

- Input: Two surfaces, a tolerance
- Can we rule out intersection?
- Yes \Rightarrow OK/Stop
- No \Rightarrow Continue
- Do we have simple case
- Yes \Rightarrow OK/Stop
- No \Rightarrow Continue
- Subdivide and proceed with each subproblem
- Output: Topology of intersection curves

Implicit representations can help in both ruling out intersections and detecting simple cases.

Background

Representation of curves and surfaces in CAD-systems
The intersection problem
Recursive subdivision
Approximate implicitization
Implicitization as a linear algebra problem
Convergence rates

Examples

Separation of surfaces
Simple case: Cylinder-plane test
Simple case: Monotonicity
Summary

Implicitization as a linear algebra problem

We have a parametric surface of bi-degree $\left(n_{1}, n_{2}\right)$:

$$
\mathbf{p}(u, v)=\sum_{i j} \mathbf{c}_{i j} B_{i, n_{1}}(u) B_{j, n_{2}}(v)
$$

We want an implicit surface of total degree d :

$$
q(\mathbf{x})=\sum_{i j k l} b_{i j k l} B_{i j k l, d}(\mathbf{x})=0
$$

Bernstein basis of degree n on an interval, $u \in[0,1]$:

$$
B_{i, n}(u) \equiv\binom{n}{i} u^{i}(1-u)^{n-i}
$$

Bernstein basis of total degree d on a tetrahedron, $\mathrm{x}=(u, v, w, z)$, $u+v+w+z=1$:

$$
B_{i j k l, d}(\mathbf{x}) \equiv \frac{d!}{i!j!k!!!} u^{i} v^{j} w^{k} z^{\prime}
$$

- Partitions of unity:

$$
\begin{aligned}
& \sum_{i} B_{i, n}=1 \\
& \sum_{i j k l} B_{i j k l, d}=1
\end{aligned}
$$

$$
q(\mathbf{p}(u, v))=\mathbf{B}^{T}(u, v) \mathbf{D} \mathbf{b}=0
$$

Solving $\mathbf{D b}=0, \mathbf{b} \neq 0$

The matrix equation $\mathbf{D b}=0, \mathbf{b} \neq 0$, can be solved by SVD of \mathbf{D},

We choose $\mathbf{b}=\mathbf{v}_{N}$, where $V=\left(\mathbf{v}_{1}, \cdots, \mathbf{v}_{N}\right)$

- Exact implicitization: $\sigma_{N}=0$, and $\mathbf{D b}=0$
- Approximate implicitization: σ_{N} is "small", and $|q(\mathbf{p}(u, v))| \leq \sigma_{N}$

Convergence rates

A function $g(t)$ approximates a function $f(t)$ on $[a, b]$ with convergence rate k if $|f(t)-g(t)| \leq C h^{k}$, where C is a constant and $h=b-a$.

The convergence rates of approximate implicitization, $|q(\mathbf{p}(u, v))| \leq C h^{k}$, depends on choice of basis, and choice of degree.

Algebraic degree	1	2	3	4	5	6
Convergence rate	2	5	9	14	20	27

Table: Convergence rates for curves in 2D

Algebraic degree	1	2	3	4	5	6
Convergence rate	2	3	5	7	10	12

Table: Convergence rates for surfaces in 3D

Background

Representation of curves and surfaces in CAD-systems
The intersection problem
Recursive subdivision
Approximate implicitization
Implicitization as a linear algebra problem
Convergence rates
Examples
Separation of surfaces
Simple case: Cylinder-plane test
Simple case: Monotonicity
Summary

Background

Summary

Separation of surfaces

Simple case: Cylinder-plane test
Simple case: Monotonicity

Separation of surfaces

Background

Simple case: Cylinder-plane test

Parameter planes:
Half-cylinder:

Plane:

Background

Simple case: Monotonicity

Parameter planes:

Sphere 1:

Sphere 2:

Background

Representation of curves and surfaces in CAD-systems
The intersection problem
Recursive subdivision
Approximate implicitization
Implicitization as a linear algebra problem Convergence rates

Examples
Separation of surfaces
Simple case: Cylinder-plane test
Simple case: Monotonicity
Summary

Summary

- In CAGD, surface-surface intersection problems are difficult
- Approximate implicitization is a mathematically and numerically well-defined procedure
- Implicitization is very useful in recursive subdivision algorithms for finding intersections

