Approximate implicitization in Computer Aided Geometric Design

Jan B. Thomassen

SINTEF ICT

Nice, June 2, 2006

Work done with: Tor Dokken and Vibeke Skytt Supported by: Aim@Shape (EU Network of Excellence) ...and, before that: GAIA II (EU project – André)

Background

Representation of curves and surfaces in CAD-systems The intersection problem Recursive subdivision

Approximate implicitization

Implicitization as a linear algebra problem Convergence rates

Examples

Separation of surfaces Simple case: Cylinder-plane test Simple case: Monotonicity

 Background
 Representation of curves and surfaces in CAD-systems

 Approximate implicitization
 The intersection problem

 Examples
 Recursive subdivision

Background

Representation of curves and surfaces in CAD-systems The intersection problem Recursive subdivision

Approximate implicitization Implicitization as a linear algebra problem Convergence rates

Examples Separation of surfaces Simple case: Cylinder-plane test Simple case: Monotonicity

Representation of curves and surfaces in CAD-systems The intersection problem Recursive subdivision

Representation of curves and surfaces in CAD-systems

Spline curves:

$$\mathbf{p}(t) = \sum_{i=0}^{n} \mathbf{c}_{i} N_{i,n}(t)$$

Spline surfaces:

$$\mathbf{p}(u,v) = \sum_{i=0}^{n_1} \sum_{j=0}^{n_2} \mathbf{c}_{ij} N_{i,n_1}(u) N_{j,n_2}(v)$$

- Parametric
- Piecewise polynomial
- B-spline basis: N_{i,n}(t)

Representation of curves and surfaces in CAD-systems The intersection problem Recursive subdivision

The intersection problem

Given: Two surfaces $\mathbf{p}_1(u_1, v_1)$ and $\mathbf{p}_2(u_2, v_2)$, and a numerical tolerance ϵ .

Find: All parameters (u_1, v_1, u_2, v_2) such that $|\mathbf{p}_1(u_1, v_1) - \mathbf{p}_2(u_2, v_2)| < \epsilon$.

Background

Approximate implicitization Examples Summary Representation of curves and surfaces in CAD-systems The intersection problem Recursive subdivision

Recursive subdivision

Algorithm:

- Input: Two surfaces, a tolerance
 - Can we rule out intersection?
 - Yes \Rightarrow OK/Stop
 - No ⇒ Continue
 - Do we have simple case
 - Yes ⇒ OK/Stop
 - No ⇒ Continue
 - Subdivide and proceed with each subproblem
- Output: Topology of intersection curves

Implicit representations can help in *both* ruling out intersections and detecting simple cases.

Background Approximate implicitization Examples Summary Background Implicitization as a linear algebra problem Convergence rates

Background

Representation of curves and surfaces in CAD-systems The intersection problem Recursive subdivision

Approximate implicitization

Implicitization as a linear algebra problem Convergence rates

Examples Separation of surfaces Simple case: Cylinder-plane test Simple case: Monotonicity

Implicitization as a linear algebra problem Convergence rates

Implicitization as a linear algebra problem

We have a parametric surface of bi-degree (n_1, n_2) :

$$\mathbf{p}(u,v) = \sum_{ij} \mathbf{c}_{ij} B_{i,n_1}(u) B_{j,n_2}(v)$$

We want an implicit surface of total degree *d*:

$$q(\mathbf{x}) = \sum_{ijkl} b_{ijkl} B_{ijkl,d}(\mathbf{x}) = 0$$

Composition gives the equation:

$$q(\mathbf{p}(u,v)) = \mathbf{B}^{T}(u,v)\mathbf{D}\mathbf{b} = 0$$

Bernstein basis of degree n on an interval, $u \in [0, 1]$:

$$B_{i,n}(u) \equiv {n \choose i} u^i (1-u)^{n-i}$$

Bernstein basis of total degree don a tetrahedron, $\mathbf{x} = (u, v, w, z)$, u + v + w + z = 1:

$$B_{ijkl,d}(\mathbf{x}) \equiv \frac{d!}{i!j!k!l!} u^i v^j w^k z^l$$

• Partitions of unity:

$$\sum_{i} B_{i,n} = 1,$$

$$\sum_{ijkl} B_{ijkl,d} = 1$$

Implicitization as a linear algebra problem Convergence rates

Solving $\mathbf{D}\mathbf{b} = 0$, $\mathbf{b} \neq 0$

The matrix equation $\mathbf{Db} = 0$, $\mathbf{b} \neq 0$, can be solved by SVD of \mathbf{D} ,

$$\mathbf{D} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}, \qquad \mathbf{\Sigma} = \begin{pmatrix} \sigma_1 & & & \\ & \sigma_2 & & \\ & & \ddots & \\ & & & \sigma_N & \\ & & \mathbf{0} & & \end{pmatrix}$$

We choose $\mathbf{b} = \mathbf{v}_N$, where $V = (\mathbf{v}_1, \cdots, \mathbf{v}_N)$

- Exact implicitization: $\sigma_N = 0$, and $\mathbf{Db} = 0$
- Approximate implicitization: σ_N is "small", and $|q(\mathbf{p}(u, v))| \leq \sigma_N$

Implicitization as a linear algebra problem Convergence rates

Convergence rates

A function g(t) approximates a function f(t) on [a, b] with convergence rate k if $|f(t) - g(t)| \le Ch^k$, where C is a constant and h = b - a.

The convergence rates of approximate implicitization, $|q(\mathbf{p}(u, v))| \leq Ch^k$, depends on *choice of basis*, and *choice of degree*.

Algebraic degree	1	2	3	4	5	6
Convergence rate	2	5	9	14	20	27

Table: Convergence rates for curves in 2D

Algebraic degree	1	2	3	4	5	6
Convergence rate	2	3	5	7	10	12

Table: Convergence rates for surfaces in 3D

Background

Representation of curves and surfaces in CAD-systems The intersection problem Recursive subdivision

Approximate implicitization Implicitization as a linear algebra problem Convergence rates

Examples Separation of surfaces Simple case: Cylinder-plane test

Simple case: Monotonicity

Separation of surfaces Simple case: Cylinder-plane test Simple case: Monotonicity

Separation of surfaces

Separation of surfaces Simple case: Cylinder-plane test Simple case: Monotonicity

Simple case: Cylinder-plane test

Parameter planes:

Half-cylinder:

Separation of surfaces Simple case: Cylinder-plane test Simple case: Monotonicity

Simple case: Monotonicity

Background

Representation of curves and surfaces in CAD-systems The intersection problem Recursive subdivision

Approximate implicitization Implicitization as a linear algebra problem Convergence rates

Examples Separation of surfaces Simple case: Cylinder-plane test Simple case: Monotonicity

- In CAGD, surface-surface intersection problems are difficult
- Approximate implicitization is a mathematically and numerically well-defined procedure
- Implicitization is very useful in recursive subdivision algorithms for finding intersections