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on the Occasion of his 60th Birthday

Nice, June 2006

Computational Aspects in the Theory of Singularities

Gert-Martin Greuel

University of Kaiserslautern

Mathematisches Forschungsinstitut Oberwolfach

(Germany)

1. Historical Remarks and a Counterexample
2. A Theorem in Group Theory
3. Curves and Surfaces with many Singularities



Historical remarks and a counterexample

The birth of Singular can be dated back to about 1982, when G. Pfister and
I tried to generalize the following theorem of K. Saito:

Let (X, 0) be the germ of an isolated hypersurface singularity. The following
conditions are equivalent.

(1) (X, 0) is quasi–homogeneous.

(2) µ(X, 0) := dimC C[[x1, . . . , xn]]/〈 ∂f∂x1
, . . . , ∂f

∂xn
〉 =

τ (X, 0) := dimC C[[x1, . . . , xn]]/〈f, ∂f∂x1
, . . . , ∂f

∂xn
〉

(3) The Poincaré complex 0 → C → OX,0 → Ω1
X,0 → . . . → Ωn

X,0 → 0, of
(X, 0) is exact.

It was conjectured that a similar theorem should hold for complete intersections.



If (X, 0) is the germ of a curve singularity we succeeded in proving the equiva-
lence of (1) and (2).

To understand the relationship with (3) we first translated the question about
exactness of the Poincaré complex into a purely algebraic question (note that
the differential is only C–linear but not OX,0–linear). Then we tried to compute
examples which turned out to be rather difficult by hand. In those days there was
no computer algebra system available which could compute Milnor numbers and
Tjurina numbers for non–trivial examples. Such a system would have required
the implementation of algorithms for computing standard bases for ideals
and modules over local rings. Let us consider the following example.

Let f = xy + z4, g = xz + y5 + yz2 and (X, 0) ⊂ (C3, 0) be defined by
f = g = 0. In this case we have,

µ(X, 0) = dimC C [[x, y, z]]/〈f,M1,M2,M3〉 − dimC C[[x, y, z]]/〈∂f∂x,
∂f
∂y ,

∂f
∂z 〉,

τ (X, 0) = dimC C[[x, y, z]]/〈f, g,M1,M2,M3〉,
where M1,M2,M3 are the 2–minors of the Jacobian matrix of (f, g).



In Singular we can compute these numbers as follows:

> ring R = 0, (x,y,z), ds; // localisation Q[x,y,z]_<x,y,z>

> poly f, g = xy+z4, xz+y5+yz2;

> ideal I = f, g;

> matrix J = jacob(I); // Jacobian matrix

> ideal Tjur = I, minor(J,2);

> vdim(std(Tjur)); // compute K-dimension of R/Tjur

12 // the Tjurina number is 12

Alternatively, we can use the built-in command tjurina from sing.lib.

> LIB "sing.lib"; // load the library sing.lib

> tjurina(I);

12

It is known that for quasihomogeneous complete intersections Tjurina and Mil-
nor number coincide.

Computing the Milnor number we see that (X, 0) is not quasihomogeneous:



> milnor(I); // from sing.lib

13 // the Milnor number is 13

However, the Poincaré complex is exact. To see this, we showed that it suffices
to check that µ(X, 0) = dimC Ω2

X,0 − dimC Ω3
X,0. Note that dimC Ω3

X,0 = 1.

Ω2
X,0 = Ω2

C3,0

/

(

〈f, g〉Ω2
C3,0 + df ∧ Ω1

C3,0 + dg ∧ Ω1
C3,0

)

is isomorphic to O3
X,0/M , where M ⊂ O3

X,0 is generated by the six vectors

(

∂f
∂y ,

∂f
∂z , 0

)

,
(

∂f
∂x, 0,−

∂f
∂z

)

,
(

0, ∂f∂x,
∂f
∂y

)

,
(

∂g
∂y ,

∂g
∂z , 0

)

,
(

∂g
∂x, 0,−

∂g
∂z

)

,
(

0, ∂g∂x,
∂g
∂y

)

:

> qring Q = std(I); // quotient ring Q=R/I

> poly f = imap(R,f); // map f from R to Q

> poly g = imap(R,g);

> module M = [diff(f,y),diff(f,z),0], [diff(f,x),0,-diff(f,z)],

. [0,diff(f,x),diff(f,y)], [diff(g,y),diff(g,z),0],

. [diff(g,x),0,-diff(g,z)],[0,diff(g,x),diff(g,y)];

> vdim(std(M));

14



Thus we computed dimC Ω2
X,0 = 14 = µ(X, 0) + dimC Ω3

X,0 showing that the
Poincaré complex is exact.

The first version of a standard basis algorithm (called BuchMora) was imple-
mented in BASIC on a ZX–Spectrum by K.P. Neudendorf (born Schemmel) and
G. Pfister in 1983. This implementation allowed us to compute first examples.

A serious development started in 1984 with an implementation of Mora’s tan-
gent cone algorithm in Modula-2 on an Atari computer at the Humboldt-
University in Berlin (by G. Pfister and a group of students, including Hans
Schönemann). After a while, a list of counter-examples to the above mentioned
conjecture was produced.

At that time, the system could only compute with coefficients in a small prime
field Fp. However, the experiments showed which examples are candidates for a
counter-example and how the computations in characteristic 0 should look like.
The proof of the following was then given manually.

There are infinitely many counterexamples to the conjectured
generalization of Saito’s theorem.



A Theorem in Group Theory

While the previous application of Singular was an early example of a nowa-
days standard application of computer algebra, the following example is rather
amazing. The problem is formulated in purely group–theoretic
terms.

We first translated it into a problem in algebraic respectively
arithmetic geometry, where we had to show the existence of ra-
tional points on explicitly given varieties defined over finite fields.
To solve the problem we had to apply the well–known Hasse–Weil formula but
also sophisticated versions of the Lefschetz trace formula as conjectured by
Deligne and proved by Fujiwara.

To apply the Hasse–Weil, respectively the Lefschetz trace formula we had to
study the geometric structure of certain algebraic varieties given by explicit
equations, find their irreducible components, their singular loci, etc.



All this was done by using Singular as an indispensable tool. The hardest
part was finally to show that the varieties we ended up with were irreducible
over the algebraic closure of given finite fields. But Singular was not only used
for these computations it was also essential in finding the correct formulation
of the theorem.

As we shall see, parts of the theorem can now be proved without a computer
while other parts (in particular the Suzuki groups) still require Singular

computations. However, since we give explicit solutions, the correctness of the
statements can be verfied by simple (but lengthy) computations either by hand
or (better) by any other computer algebra system.

The diversity of the methods required the collaboration of six authors from
different fields. The final proof may be considered as an example of the unity
of mathematics in our more and more specializing discipline.

The problem in group theory was to characterize the finite solvable
groups by two–variable identities (like xy = yx for abelian groups) as
we explain now.



If G is a group and x, y ∈ G, we inductively define

e1(x, y) := x−2y−1x, en+1(x, y) := [xen(x, y)x
−1, yen(x, y)y

−1]

where the commutator of g, h ∈ G is defined by [g, h] := ghg−1h−1.

The following theorem was proved by T. Bandman, G.-M. Greuel, F. Grunewald,
B. Kunyavski, G. Pfister, and E. Plotkin [Compositio Math. 2006]:

Theorem: A finite Group G is solvable if and only if there is an
n ∈ N such that en(x, y) = 1 for all x, y ∈ G.

We start with the classification of theminimal finite non–solvable groups
G (that is, all subgroups of G are solvable) by J. Thompson in 1968:

1. PSL(2, p), p a prime number, p = 5 or p > 5 and p = ±2 mod 5.
2. PSL(2, 2n), n ≥ 2, a prime number.
3. PSL(2, 3n), n odd, a prime number.
4. PSL(3, 3).
5. Sz(2n), n odd.

Since it is easy to see that the finite solvable groups satisfy the proposed identity
it is enough to show that for each group G in Thompson’s list we have x, y ∈ G



with e1(x, y) = e2(x, y) and y 6= x−1. By the structure of the sequence en, this
implies 1 6= e1(x, y) = en(x, y) for all n.

We shall give an idea on how to prove the theorem for the group
PSL(2,q). The case PSL(3,3) is easy but the case of the Suzuki groups Sz(2n)
is much more difficult.

Proposition: If q = pk for a prime p and q 6= 2, 3, then there are
x, y in PSL(2,Fq) with y 6= x−1 and e1(x, y) = e2(x, y).

The proof will use some explicit computations with the following matrices. Let
R = Z or Fq and define

x(t) :=

(

t −1
1 0

)

, y(b, c) :=

(

1 b
c 1 + bc

)

∈ SL(2, R)

for t, b, c ∈ R.

Let I ⊆ Z[b, c, t] be the ideal generated by the four entries of the matrix
e1(x, y)− e2(x, y).

Using Singular we can obtain I as follows:

>LIB"linalg.lib";



>ring R = 0,(b,c,t),dp;

>matrix X[2][2] = t, -1,

1, 0;

>matrix Y[2][2] = 1, b,

c, 1+bc;

>matrix iX = inverse(X);

>matrix iY = inverse(Y);

>matrix M=iX*Y*iX*iY*X*X-Y*iX*iX*iY*X*iY;

>ideal I=flatten(M); I;

I[1]=b3c2t2+b2c2t3-b2c2t2-bc2t3-b3ct+b2c2t+b2ct2+2bc2t2+bct3

+b2c2+b2ct+bc2t-bct2-c2t2-ct3-b2t+bct+c2t+ct2+2bc+c2+bt

+2ct+c+1;

I[2]=-b3ct2-b2ct3+b2c2t+bc2t2+b3t-b2ct-2bct2-b2c+bct+c2t+ct2

-bt-ct-b-c-1;

I[3]=b3c3t2+b2c3t3-b2c2t3-bc2t4-b3c2t+b2c3t+2b2c2t2+2bc3t2

+2bc2t3+b2c2t+2b2ct2+bc2t2-c2t3-ct4-2b2ct+bc2t+c3t+bct2

+2c2t2+ct3-b2c-b2t+bct+c2t +bt2+3ct2+bc-bt-b-c+1;



I[4]=-b3c2t2-b2c2t3+b2c2t2+bc2t3+b3ct-b2c2t-b2ct2-2bc2t2-bct3

-2b2ct+c2t2+ct3+b2t-bct-c2t-ct2+b2-bt-2ct-b-t+1;

To prove the Proposition above, it is enough to prove the following

Lemma: Let q be as in the Proposition, then the variety V (I) ⊂ F3
q is a curve.

The set of Fq–rational points V (q) = V (I) ∩ F3
q is not empty.

We apply the theorem of Hasse–Weil as generalised by Aubry and Perret
to singular curves and use the fact that the affine curve C has, at most, deg(C)
rational points less than the projective closure C:

Theorem: Let C ⊆ An be an absolutely irreducible affine curve defined over
the finite field Fq and C ⊂ Pn the projective closure, then the number of Fq–
rational points of C is at least q+ 1− 2pa

√
q− d with d the degree and pa the

arithmetic genus of C.

Note that the Hilbert function of C, H(t) = dt−pa+1, can be computed from
the homogeneous ideal Ih of C, hence we can compute d and pa without any
knowledge about the singularities of C.



Let L be the algebraic closure of Fq. To apply the proposition, we have to prove
that C is absolutely irreducible, that is, that IL[b, c, t] is a prime ideal. This is
already hard to compute. It turned out that the computation over the function
field L(t) was easier.

Lemma: IL(t)[b, c] = 〈f1, f2〉 with

f1 = t2b4 − t3(t− 2)b3 + (−t5 + 3t4 − 2t3 + 2t + 1)b2

+t2(t2 − 2t− 1)(t− 2)b + (t2 − 2t− 1)2

f2 = t(t2 − 2t− 1)c + t2b3 + (−t4 + 2t3)b2 + (−t5 + 3t4 − 2t3 + 2t + 1)b
+(t5 − 4t4 + 3t3 + 2t2) .

Moreover, we have IL[b, c, t] = 〈f1, f2〉 : h2, h = t(t2 − 2t− 1).

This can be tested in Singular as follows:



>ring S=(0,t),(c,b),lp;

>ideal I=imap(R,I);

>ideal J=std(I); J;

J[1]=(t2)*b4+(-t4+2t3)*b3+(-t5+3t4-2t3+2t+1)*b2+(t5-4t4+3t3+2t2)

*b+(t4-4t3+2t2+4t+1)

J[2]=(t3-2t2-t)*c+(t2)*b3+(-t4+2t3)*b2+(-t5+3t4-2t3+2t+1)

*b+(t5-4t4+3t3+2t2)

Now IL(t)[b, c] ∩ L[b, c, t] = 〈f1, f2〉 : h2 = IL[b, c, t]. Therefore, it is enough
to prove that IL(t)[b, c] is a prime ideal which is equivalent to prove that f1

is irreducible in L(t)[b]. By the lemma of Gauß we have to prove that f1 is
irreducible in L[t, b].

Let P (x) := t2f1(x/t), then

P (x) = x4 − t2(t− 2)x3 + (−t5 + 3t4 − 2t3 + 2t + 1)x2 + t3(t− 2)(t2 − 2t− 1)x
+t2(t2 − 2t− 1)2 .

Clearly it suffices to prove that P ∈ L[x, t] is irreducible.



To show that P is not divisible by any factor of degree 2 in x we make the
following ”Ansatz”:

(*) p = (x2 + ax + b) (x2 + gx + d),

a, b, g, d polynomials in t with indeterminates a(i), b(i), g(i), d(i) as
coefficient. It is easy to see that we can assume

deg(b) ≤ 5, deg(a) ≤ 3, deg(d) ≤ 3, deg(g) ≤ 2 .

Then a decomposition (*) with a(i), b(i), g(i), d(i) ∈ Fp does not exist
if and only if the ideal C of the coefficients in x, t of P−(x2+ax+b)(x2+gx+d)
has no solution in Fp. This is equivalent to the fact that a Gröbner basis of C
contains 1 ∈ Fp.
The ideal C of coefficients from our Ansatz:

C[1]=-b(5)*d(3)

C[2]=-b(5)*g(2)

C[3]=-b(4)*d(3)-b(5)*d(2)

C[4]=-b(4)*g(2)-b(5)*g(1)-d(3)-1

C[5]=-b(3)*d(3)-b(4)*d(2)-b(5)*d(1)+1



C[6]=-b(5)-g(2)-1

C[7]=a(0)*b(5)-a(2)*d(3)-b(3)*g(2)-b(4)*g(1)-d(2)+4

...

C[24]=-a(0)^2*b(0)+b(0)^2-b(0)

For a given prime p it is easy to compute the Gröbner basis of C and to verify
that 1 ∈ C. However, we cannot check infinitely many primes. What we do is
to use that the polynomials generating C have integer coefficients.

Hence, if we can express some integer m as a polynomial combi-
nation of the generators of C where all polynomials have integer
coefficients, then for any prime p, p - m, 1 ∈ Fp is contained in C
(mod p).



We use the lift command of Singular to show that (over Z) m = 4 ∈ C:

>matrix M=lift(C,4); M;

M[1,1]=-a(0)+8*b(0)*b(3)-8*b(0)*b(4)-16*b(0)*g(1)*g(2)-...

M[2,1]=-a(0)^2+6*a(0)*b(3)-30*a(0)*b(5)*d(1)+200*a(0)*b(5)*d(2)-...

M[3,1]=-8*b(0)*g(1)-8*b(0)*g(2)+8*b(1)*g(2)+8*b(1)-...

M[4,1]=-16*b(0)*g(2)*d(3)-18*b(0)*g(2)+8*b(0)*d(2)-8*b(0)*d(3)-...

M[5,1]=8*a(2)*b(0)+142*a(2)*d(1)*d(3)+41*a(2)*d(1)-...

M[6,1]=a(0)^2*g(2)+8*a(0)*b(0)*d(3)-6*a(0)*b(3)*g(2)+5*a(0)*b(3)+...

M[7,1]=8*b(0)*d(3)+5*b(3)-15*b(5)*d(1)+100*b(5)*d(2)-...

...

M[24,1]=0

The computation shows that
(∗
∗
)

4 =
∑24

i=1 M [i, 1] · C [i].

Note that it is difficult to find the polynomials M [i, j] but once they are found
it is easy to check that the relation

(∗
∗
)

holds.



(∗
∗
)

implies that over Fp, p 6= 2, P has no quadratic factor. Similarly, it has no
linear factor. Thus P is absolutely irreducible in Fp[t, x] for all p 6= 2 (p = 2 is
treated by a direct computation).

Now we can apply the theorem of Hasse–Weil to prove Lemma 7.3.

We compute the Hilbert polynomial H(t) of the projective curve corresponding
to I . We obtain H(t) = 10t− 11. The corresponding Singular session is:

>ring S=0,(b,c,t,w),dp;

>option(contentSB);

>ideal I=imap(R,I);

>ideal J=std(I); J;

J[1]=bct-t2+2t+1

J[2]=bt3-ct3+t4-b2t+bct-c2t-2bt2+2ct2-3t3+bc+t2+t+1

J[3]=b2c2-b2ct+bc2t-bct2+b2+2bc+c2-b+c-t+2

J[4]=c2t3-ct4+c3t-2c2t2+3ct3-t4-bc2+bt2-2ct2+4t3-2bt+ct-3t2-b-2t

It can easily be seen that J induces a Gröbner basis in Fp[b, c, t, w] for all p,
because option(contentSB) forces Singular to avoid division by integers.



We homogenise J with respect to w and obtain again a Gröbner basis, with
respect to the degree reverse lexicographical ordering. Since the leading coeffi-
cients of J have all coefficient 1 and since J and the leading ideal of J have the
same Hilbert polynomial, the Hilbert polynomial is the same in any character-
istic.

J=homog(J,w);

hilbPoly(J);

-11,10 // H(t) = 10t - 11

From the the result we see that the degree d = 10 and the arithmetic genus
pa = 12. Using theorem 7.4, we obtain:

#V (q) ≥ q + 1− 24
√
q − 10.

This implies that V (q) is not empty if q > 593.

For the remaining prime powers q, we check directly by computer that V (q) is
not empty.



Curves and Surfaces with many Singularities

We describe now a typical example how Singular was used to support
research in algebraic geometry by creating interesting examples.

Let X ⊂ PnC be a projective hypersurface being the zero set of f (z0, . . . , zn) ∈
C[z0, . . . , zn], a homogeneous polynomial of degree d > 0.

Bezout’s theorem: If the intersection of n hypersurfaces in Pn consist of
finitely many points then the number of intersection points (counted with ap-
propriate multiplicities) is equal to the product of the degrees of the hypersur-
faces.

In particular, if p is a singular point of X and if L is a line in general position
then the intersection number of X and L at p is equal to the multiplicity mult
(X, p), hence X cannot have any singularity of multiplicity bigger than its de-
gree. To get an estimate for the number of singularities we can use another local
invariant, the Milnor number µ(X, p) = dimC C [[x1, . . . , xn]] /〈 ∂f∂x1

, . . . , ∂f
∂xn
〉



(x1, . . . , xn local coordiantes and f = 0 a local analytic equation of X). If
X has only isolated singularities, then µ(X, p) < ∞ for all p ∈ X and,
by choosing general projective coordinates, we may assume that no singular-
ity of X lies on {z0 = 0}. Considering the intersection of the hypersurfaces
∂f
∂zi

= 0, i = 1, . . . , n, we obtain from Bezout’s theorem the following nec-
essary condition for the existence of X .

(d− 1)n ≥
∑

p∈Sing(X)

µ(X, p). (∗)

Since µ(X, p) = 0 if p is nonsingular and µ(X, p) = 1 iff p is a node we get
that the number of singularities of X is bounded by dn+O(dn−1) and that the
number of non–nodes is bounded by 1

2d
n + O(dn−1).

(An Ak–singularity has the local analytic equation x2
1 + · · · + xk+1

n = 0.
A1–singularities are called nodes , A2-singularities cusps .)



Figure 1: A 4–nodal plane curve of degree 5,

with equation

x5 − 5
3x

3 + 5
16x − 1

4y
3 + 3

16y = 0, which is a

deformation of E8 : x5 − y3 = 0.

Figure 2: A plane curve of degree 5 with

5 cusps, the maximal possible number. The

equation is 129
8 x4y − 85

8 x2y357
32y

5 − 20x4 −
21
4 x2y233

8 y4 − 12x2y + 73
8 y3 + 32x2 = 0.

From the very beginning of algebraic geometry, the existence of hyper-
surfaces with many singularities has been a problem of constant
importance and interest, from Descartes, Pascal, Newton over Plücker and
Severi to Zariski and Harris until nowadays.



Except for the simplest case, the number of nodes on a plane curve settled
by Severi in 1921, no general answer is known. The problem turned out to be
extremely hard and the partial results so far suggest that a generel condition
for the existence of singularities of a given type which is necessary and sufficient
at the same time cannot be expected for more complicated singularities than
nodes.

Two directions of research have been established in this connection:

(I) to find sufficient existence conditions which are proper (i.e.
have the asymptotic αdn+O(dn−1) with a constant α which is not
necesarily optimal) or

(II) to find necessary and sufficient conditions for small d and
the simplest singularities like nodes and cusps.



Let us first consider (I).

The first general asymptotic proper conditions for the existence were found only
in 1989 in the case of plane curves by G.-M. Greuel, Ch. Lossen, E. Shustin
(Inventiones Math. 1989):

Theorem: For any d ≥ 1 and topological types S1, . . . , Sn of plane
curve singularities s.t.

n
∑

i=1

µ(Si) ≤
1

392
d2

there exists an irreducible plane curve of degree d having exactly
S1, . . . , Sn as singularities.

The coefficient α = 1
392 has been improved subsequently (cf. our forthcoming

book).

This result is just an existence statement, the proof gives no hint how to produce
any equation.



Having a method for constructing curves of low degree with many singulari-
ties,Lossen was able to produce explicit equations. In order to check
his construction and improve the results, he made extensive use of Singular

to compute standard bases for global as well as for local orderings. One of his
examples is the following:

Example: The irreducible curve C with affine equation f (x, y) = 0,

f (x, y) = y2 − 2y(x10 +
1

2
x9y2 − 1

8
x8y4 +

1

16
x7y6 − 5

128
x6y8 +

7

256
x5y10

− 21

1024
x4y12 +

33

2048
x3y14 − 429

32768
x2y16 +

715

65536
xy18

− 2431

262144
y20) + x20 + x19y2

has degree 21 and an A228–singularity (x2 − y229 = 0) as its only singularity.



In order to verify this, one may proceed, using Singular, as follows:

>ring s = 0,(x,y),ds;

>poly f = y2-2x10y-x9y3+1/4x8y5-1/8x7y7+5/64x6y9-7/128x5y11+21/512x4y13

-33/1024x3y15+429/16384x2y17+x20-715/32768xy19+x19y2+2431/131072y21;

>matrix Hess = jacob(jacob(f)); //the Hessian matrix of f

>print(subst(subst(Hess,x,0),y,0)); //the Hessian matrix for x=y=0

0,0,

0,2

>vdim(std(jacob(f))); //the Milnor number of f

228

Since the rank of the Hessian at 0 is 1, f has an Ak singularity at 0; it is an
A228 singularity since the Milnor number is 228. To show that the projective
curve C defined by f has no other singularities, we have to show that C has
no further singularities in the affine part and no singularity at
infinity. The second assertion is easy.



The first follows from

dimC(K[x, y]〈x,y〉/〈jacob(f ), f〉 = dimC(K[x, y]/〈jacob(f ), f〉,
confirmed by Singular:

>vdim(std(jacob(f)+f));

228 //multiplicity of Sing(C) at 0

>ring r = 0,(x,y),dp;

>poly f = fetch(s,f);

>vdim(std(jacob(f)+f));

228 //total multiplicity of Sing(C)



The existence problem (II) for hypersurfaces in P3 of low degree
with specific singularities (such as nodes) has attracted attention of many re-
searchers.

Let m(d) := maximum number of nodes on a surface X of degree d in P3
C.

It is known: m(d) = 1, 4, 16, 31, 65 for d = 2, 3, 4, 5, 6.

For d ≥ 7 we only know 5
12d

3 ≤ m(d) ≤ 4
9d

3 up to O(d2), but the exact value
of m(d) is unknown.

Note that the lower bounds are obtained in each case by a specific construction,
due to Schläfli, Kummer, Togliatti, Chmutov and Barth.

In 2004 O. Labs constructed a surface of degree 7 with 99 nodes
which is the current world record for surfaces of degree 7 (but which is still
smaller than the known upper bound 104).

The construction of Labs is a very instructive example on how geometric rea-
soning with computer experiments over finite fields of small characteristic can
be used to support research in algebraic geometry.



The arguments of Labs can be roughly summarized as follows. Inspired by
previous work of Barth and Endraß, Labs considers a 6–parameter family
Sa1,...,a6 ∈ Z[x, y, z] of homogeneous polynomials of degree 7, and the aim
was to construct explicit algebraic numbers a1, . . . , a6 such that Sa1,...,a6 defines
a nodal surface having more than the previously known 93 nodes. Computer
experiments with Singular over small prime fields suggested that the maxi-
mum number of nodes on Sa1,...,a6 is 99 and that such examples should exist for
a6 = 1.

Using the symmetry of the family S = Sa1,...,a5,1, it is sufficient to consider the
plane curve defined by Sy := S|y=0 and find parameters α1, . . . , α5 such that
Sy has many nodes (from which the number of nodes on S can be computed).

Of course, to work in the plane y = 0 allows much faster computations. By
running Singular computations over all possible parameter combinations for
small prime fields Fp(11 ≤ p ≤ 53) he finds some 99–nodal surfaces over these
fields. To find conditions for the parameters, Labs used geometric properties of
the plane curve Sy together with extensive Singular computations such as
elimination and factorization.



He ended up with a1, . . . , a5 being polynomial expression in α ∈ C, 7α3+7α+
1 = 0, such that the resulting polynomial Sα defines a surface with exactly 99
nodes over several prime fields.

It turns out that the same conditions give a 99–nodal septic surface in character-
istic 0 which can be proved by a straightforward computations with Singular.

The following surface in P3(C) of degree 7 with equation Sα =
P − Uα has exactly 99 nodes and no other singularities, where

P : = x·
[

x6 − 3·7·x4y2 + 5·7·x2y4 − 7·y6
]

+7·z·
[

(

x2 + y2
)3 − 23·z2·

(

x2 + y2
)2

+ 24·z4·
(

x2 + y2
)

]

− 26·z7,

Uα : = (z + a5w)
(

(z + w)(x2 + y2) + a1z
3 + a2z

2w + a3zw
2 + a4w

3
)2

,

a1 = −12
7 α

2 − 384
49 α− 8

7, a4 = −8
7α

2 + 8
49α− 8

7,

a2 = −32
7 α

2 + 24
49α− 4, a5 = 49α2 − 7α + 50.

a3 = −4α2 + 24
49α− 4,

Note that 7α3 + 7α + 1 = 0 has one real solution ≈ −0, 14010685 and for this
value all 99 nodes of Sα are real, which allows to draw a nice picture of Sα.



Lab’s 99–nodal septic

The following Singular code verifies that Lab’s septic has indeed 99 nodes
and no other singularities.

>LIB "all.lib";

>ring r = (0,alpha), (x,y,w,z), dp;

>minpoly = 7*alpha^3 + 7*alpha + 1;



>poly a(1) = -12/7*alpha^2 - 384/49*alpha - 8/7;

>poly a(2) = -32/7*alpha^2 + 24/49*alpha - 4;

>poly a(3) = -4*alpha^2 + 24/49*alpha - 4;

>poly a(4) = -8/7*alpha^2 + 8/49*alpha - 8/7;

>poly a(5) = 49*alpha^2 - 7*alpha + 50;

>poly P = x*(x^6-3*7*x^4*y^2+5*7*x^2*y^4-7*y^6)

+7*z*((x^2+y^2)^3-2^3*z^2*(x^2+y^2)^2+2^4*z^4*(x^2+y^2))-2^6*z^7;

>poly C = a(1)*z^3+a(2)*z^2*w+a(3)*z*w^2+a(4)*w^3+(z+w)*(x^2+y^2);

>poly U = (z+a(5)*w)*C^2;

>poly S = P-U;

The following computation verifies that the total Tjurina number of Sα is 99
and that all singularities are ordinary double points, using the Hessian criterion.
We check the total Tjurina number of the projective surface:



>ideal sl = jacob(S); //the singular locus of S

>ideal newsl = groebner(sl); //a groebner basis

>dim(newsl)-1; //dimension of the projective variety.

0

>mult(newsl); //total tjurina number

99

Check now that all singularities are ordinary double points:

>matrix mHS = jacob(jacob(S));

>ideal nonnodes = minor(mHS,2), sl; //the ideal of non-nodes

>nonnodes = groebner(nonnodes);

>dim(nonnodes);

0

Since the dimension is zero, the projective dimension of nonnodes is −1, that
is, there are no non-nodes.
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