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Abstract. In this paper, parametric polynomial minimal surfaces of de-
gree six with isothermal parameter are discussed. We firstly propose the
sufficient and necessary condition of a harmonic polynomial parametric
surface of degree six being a minimal surface. Then we obtain two kinds
of new minimal surfaces from the condition. The new minimal surfaces
have similar properties as Enneper’s minimal surface, such as symmetry,
self-intersection and containing straight lines. A new pair of conjugate
minimal surfaces is also discovered in this paper. The new minimal sur-
faces can be represented by tensor product Bézier surface and triangular
Bézier surface, and have several shape parameters. We also employ the
new minimal surfaces for form-finding problem in membrane structure
and present several modeling examples.

Keywords: minimal surface, harmonic surfaces, isothermal parametric
surface, parametric polynomial minimal surface of degree six, membrane
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1 Introduction

Minimal surface is an important class of surfaces in differential geometry. Since
Lagrange derived the minimal surface equation in R3 in 1762, minimal surfaces
have a long history of over 200 years. Because of their attractive properties, the
minimal surfaces have been extensively employed in many areas such as archi-
tecture, material science, aviation, ship manufacture, biology, crystallogeny and
so on. For instance, the shape of the membrane structure, which has appeared
frequently in modern architecture, is mainly based on the minimal surfaces [1].
Furthermore, triply periodic minimal surfaces naturally arise in a variety of
systems, including block copolymers, nanocomposites , micellar materials, lipid-
water systems and certain cell membranes[11]. So it is meaningful to introduce
the minimal surfaces into CAGD/CAD systems.

However, most of the classic minimal surfaces, such as helicoid and catenoid,
can not be represented by Bézier surface or B-spline surface, which are the
basic modeling tools in CAGD/CAD systems. In order to introduce the minimal
surfaces into CAGD/CAD systems, we must find some minimal surfaces in the
parametric polynomial form. In practice, the highest degree of parametric surface
used in CAD systems is six, hence, polynomial minimal surface of degree six with
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isothermal parameter is discussed in this paper. The new minimal surfaces have
elegant properties and are valuable for architecture design.

1.1 Related Work

There has been many literatures on the minimal surface in the field of classical
differential geometry [19,20]. The discrete minimal surface has been introduced in
recent years in [2,4,12,21,22,27,30]. As the topics which are related with the min-
imal surface, the computational algorithms for conformal structure on discrete
surface are presented in [7,8,10]; and some discrete approximation of smooth
differential operators are proposed in[31,32]. Cośın and Monterde proved that
Enneper’s surface is the unique cubic parametric polynomial minimal surface
[3]. Based on the nonlinear programming and the FEM(finite element method),
the approximation to the solution of the minimal surface equation bounded by
Bézier or B-spline curves is investigated in [14]. Monterde obtained the approx-
imation solution of the Plateau-Bézier problem by replacing the area functional
with the Dirichlet functional in [15,16]. The modeling schemes of harmonic and
biharmonic Bézier surfaces to approximate the minimal surface are presented
in [3,17,18,29]. The applications of minimal surface in aesthetic design, aviation
and nano structures modeling have been presented in [6,25,26,28].

1.2 Contributions and Overview

In this paper, we employ the classical theory of minimal surfaces to obtain para-
metric polynomial minimal surfaces of degree six. Our main contribution are:

• We propose the sufficient and necessary condition of a harmonic polynomial
parametric surface of degree six being a minimal surface. The coefficient
relations are derived from the isothermal condition.

• Based on the sufficient and necessary condition, two kinds of new mini-
mal surfaces with several shape parameters are presented. We analyze the
properties of the new minimal surfaces, such as symmetry, self-intersection,
containing straight lines and conjugate minimal surfaces.

• Using surface trimming method, we employ the new minimal surfaces for
form-finding problems in membrane structure.

The remainder of this paper is organized as follows. Some preliminaries and
notations are presented in Section 2. Section 3 presents the sufficient and neces-
sary condition of a harmonic polynomial parametric surface of degree six being
a minimal surface. From the condition, two kinds of new minimal surface and
their properties are treated in Section 4. The topic of Section 5 is trimming of
the new minimal surfaces and its application in membrane structure. Finally, we
conclude and list some future works in Section 6.

2 Preliminary

In this section, we shall review some concepts and results related to minimal
surfaces [5,19].
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If the parametric form of a regular patch in R3 is given by

r(u, v) = (x(u, v), y(u, v), z(u, v)), u ∈ (−∞, +∞), v ∈ (−∞, +∞),

Then the coefficients of the first fundamental form of r(u, v) are

E = 〈ru, ru〉, F = 〈ru, rv〉, G = 〈r v, rv〉,

where ru, rv are the first-order partial derivatives of r(u, v) with respect to u
and v respectively and 〈, 〉 defines the dot product of the vectors . The coefficients
of the second fundamental form of r(u, v) are

L = (ru, rv, ruu), M = (ru, rv, ruv), N = (ru, rv, rvv),

where ruu, rvv and ruv are the second-order partial derivatives of r(u, v) and
(, , ) defines the mixed product of the vectors. Then the mean curvature H and
the Gaussian curvature K of r(u, v) are

H =
EN − 2FM + LG

2(EG − F 2)
, K =

LN − M2

EG − F 2 .

Definition 1. If parametric surface r(u, v) satisfies E = G, F = 0, then r(u, v)
is called surface with isothermal parameter.

Definition 2. If parametric surface r(u, v) satisfies ruu +rvv = 0, then r(u, v)
is called harmonic surface.

Definition 3. If r(u, v) satisfies H = 0, then r(u, v) is called minimal surface.

Lemma 1. The surface with isothermal parameter is minimal surface if and
only if it is harmonic surface.

Definition 4. If two differentiable functions p(u, v), q(u, v) : U �→ R satisfy the
Cauchy-Riemann equations

∂p

∂u
=

∂q

∂v
,
∂p

∂v
= − ∂q

∂u
, (1)

and both are harmonic. Then the functions are said to be harmonic conjugate.

Definition 5. If P = (p1, p2, p3) and Q = (q1, q2, q3) are isothermal parametriza-
tions such that pk and qk are harmonic conjugate for k = 1, 2, 3, then P and Q are
said to be parametric conjugate minimal surfaces.

For example, the helicoid and catenoid are conjugate minimal surface. Two
conjugate minimal surfaces satisfy the following lemma.

Lemma 2. Given two conjugate minimal surface P and Q and a real number
t, all surfaces of the one-parameter family

P t = (cos t)P + (sin t)Q (2)

satisfy

(a) P t are minimal surfaces for all t ∈ R;
(b) P t have the same first fundamental forms for t ∈ R.
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Thus, from above lemma, any two conjugate minimal surfaces can be joined
through a one-parameter family of minimal surfaces, and the first fundamental
form of this family is independent of t. In other words, these minimal surfaces
are isometric and have the same Gaussian curvatures at corresponding points.

3 Sufficient and Necessary Condition

The main idea of construction of new minimal surfaces is based on Lemma 1.
We firstly consider the harmonic parametric polynomial surface of degree six.

Lemma 3. Harmonic polynomial surface of degree six r(u, v) must have the
following form

r(u, v) = a(u6 − 15u4v2 + 15u2v4 − v6) + b(3u5v − 10u3v3 + 3uv5) + c(u5

−10u3v2 + 5uv4) + d(v5 − 10u2v3 + 5u4v) + e(u4 − 6u2v2 + v4)
+f uv(u2 − v2) + gu(u2 − 3v2) + hv(v2 − 3u2) + i(u2 − v2) +
juv + ku + lv + m,

where a, b, c,d, e, f, g,h, i, j, k, l,m are coefficient vectors.

Theorem 1. Harmonic polynomial surface of degree six r(u, v) is a minimal
surface if and only if its coefficient vectors satisfy the following system of equa-
tions ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4a2 = b2

a · b = 0
2a · c − b · d = 0
2a · d + b · c = 0
25c2 − 25d2 + 48a · e − 6b · f = 0
25d · c + 12b · e + 6a · f = 0
16e2 − f 2 + 30c · g − 30d · h + 24a · i − 6b · j = 0
4e · f − 15c · h + 15d · g + 6b · i + 6a · j = 0
9g2 − 9h2 + 16e · i − 2f · j + 10c · k − 10l · d = 0
9g · h − 2f · i − 4e · j − 5d · k − 5c · l = 0
4i2 − j 2 + 6g · k + 6h · l = 0
2i · j − 3g · l − 3h · k = 0
18a · g + 9b · h + 20e · c − 5f · d = 0
18a · h − 9b · g − 20e · d − 5f · c = 0
6a · k − 3b · l + 10c · i − 5d · j + 12e · g + 3f · h = 0
6a · l + 3b · k + 5c · j + 10d · i + 3f · g − 12e · h = 0
4e · k − f · l + 3h · j + 6g · i = 0
4e · l + f · k + 3g · j − 6h · i = 0
2l · i + k · j = 0
2k · i − l · j = 0
k2 = l2

k · l = 0

(3)

Remark. The proof of this theorem will be given in the Appendix.
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4 Examples and Properties

Obviously, it is difficult to find the general solution for the system (3). But we
can construct some special solutions from the condition. In order to simplify the
system (3), we firstly make some assumptions about the coefficient vectors,

a = (a1, −a2, 0), b = (2a2, 2a1, 0), c = (c1, c2, c3),d = (d1, d2, d3), e = (e1, e2, e3), f = (f1, f2, f3),
g = (g1, g2, g3),h = (h1, h2, h3), i = (i1, i2, i3), j = (j1, j2, j3), k = (k1, k2, k3), l = (l1, l2, l3),

From 2a · c − b · d = 0 and 2a · d + b · c = 0, we have

a1(c1 − d2) − a2(c2 + d1) = 0, (4)

a2(c1 − d2) + a1(c2 + d1) = 0, (5)

From (4)×a1+(5)×a2 and (5)×a1−(4)×a2, we have

(a2
1 + a2

2)(c1 − d2) = 0, (a2
1 + a2

2)(c2 + d1) = 0.

Hence, we obtain
d2 = c1, d1 = −c2. (6)

In the following subsections, we shall use this method to obtain the solutions.

4.1 Example 1

Supposing c = d = g = h = k = l = 0, j1 = 2i2, j2 = −2i1 in (3), we obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8a · e − b · f = 0
2b · e + a · f = 0
16e2 − f 2 + 24a · i − 6b · j = 0
4e · f + 6b · i + 6a · j = 0
8e · i − f · j = 0
f · i + 2e · j = 0
4i23 − j2

3 = 0
i3 · j3 = 0

(7)

From (7), we have

f1 = f2 = e1 = e2 = i3 = j3 = 0,

e3 =
√

6
2

√√
(a2

1 + a2
2)(i21 + i22) + (a2i2 − a1i1),

f3 = −2
√

6
√√

(a2
1 + a2

2)(i
2
1 + i22) − (a2i2 − a1i1).

Then we obtain a class of minimal surface with four shape parameters a1, a2, i1
and i2:

r(u, v) = (X(u, v), Y (u, v), Z(u, v)) (8)
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a) i1 = 40 b) i1 = 800 c) i1 = 2000

Fig. 1. The effect of shape parameter i1 in r1(u, v). Here a1 = 4, u, v ∈ [−4, 4].

a) i2 = 40 b) i2 = 800 c) i2 = 200

Fig. 2. The effect of shape parameter i2 in r2(u, v). Here a2 = 4, u, v ∈ [−4, 4].

where

X(u, v) = a1(u6 − 15u4v2 + 15u2v4 − v6) + 2a2(3u5v − 10u3v3 + 3uv5)
+i1(u2 − v2) + 2i2uv,

Y (u, v) = −a2(u6 − 15u4v2 + 15u2v4 − v6) + 2a1(3u5v − 10u3v3 + 3uv5)
+i2(u2 − v2) − 2i1uv,

Z(u, v) =

√
6

2

√√

(a2
1 + a2

2)(i
2
1 + i22) + (a2i2 − a1i1)(u4 − 6u2v2 + v4) −

2
√

6

√√

(a2
1 + a2

2)(i
2
1 + i22) − (a2i2 − a1i1)uv(u2 − v2).

When a2 = i2 = 0, we denote the minimal surface in (8) by r1(u, v). The
Gaussian curvature of r1(u, v) is

K = −192a1i1(u2 + v2)2. (9)

Fig 1 shows the effect of the shape parameter i1.
In the case a1 = i1 = 0, the minimal surface in (8) is denoted by r2(u, v).

The Gaussian curvature of r2(u, v) is

K = −192a2i2(u2 + v2)2. (10)

Fig 2 illustrates the effect of the shape parameter i2.
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a) b) c)

Fig. 3. The minimal surface r2(u, v) and its symmetric planes: (a) r2(u, v) with a2 = 4
and i2 = 500, u, v ∈ [−4, 4], its symmetric planes X = 0 and Y = 0; (b) self-intersection
curve on the plane X = 0;(c) self-intersection curve on the plane Y = 0

a) b)

Fig. 4. The minimal surface r1(u, v) and the straight lines on it. Here a1 = 4, i1 = 2000
u, v ∈ [−4, 4].

Enneper surface is the unique cubic isothermal parametric polynomial min-
imal surface, and it has several interesting properties, such as symmetry, self-
intersection, and containing straight lines on it. For r(u, v), we have the following
propositions.

Proposition 1. The minimal surface r2(u, v) is symmetric about the plane
X = 0 and the plane Y = 0.

Furthermore, there exists two self-intersection curves of r2(u, v) on the plane
X = 0 and the plane Y = 0; besides the two self-intersection curves, there are
no other self-intersection points on r2(u, v). Fig 3 shows the symmetric planes
and self-intersection curves when a2 = 4 and i2 = 500.

Proposition 2. The minimal surface r1(u, v) contains two orthogonal straight
lines x = ±y on the plane Z = 0.

Fig 4 shows the minimal surface and the straight lines on it. It is consistent
with the fact that if a piece of a minimal surface has a straight line segment on its
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boundary, then 180
o

rotation around this segment is the analytic continuation
of the surface across this edge.

Helicoid and catenoid are a pair of conjugate minimal surfaces. For r(u, v),
we find out a new pair of conjugate minimal surfaces as follows.

Proposition 3. When a1 = a2, i1 = i2, r1(u, v) and r2(u, v) are conjugate
minimal surfaces.

Proof. Suppose that r1(u, v)=(X1(u, v), Y1(u, v), Z1(u, v)), r2(u, v)=(X2(u, v),
Y2(u, v), Z2(u, v)). After some computation, we have

∂X1(u, v)
∂u

= a1(6u5 − 60u3v2 + 30uv4) + 2i1u,

∂X1(u, v)
∂v

= a1(60u2v3 − 30u4v − 6v5) − 2i1v

∂X2(u, v)
∂u

= a2(30u4v − 60u2v3 + 6v5) + 2i2v,

∂X2(u, v)
∂v

= a2(6u5 − 60u3v2 + 30uv4) + 2i2u.

When a1 = a2, i1 = i2,
∂X1(u, v)

∂u
= ∂X2(u, v)

∂v
,
∂X1(u, v)

∂v
= −∂X2(u, v)

∂u
. That

is, X1(u, v) and X2(u, v) are harmonic conjugate. Similarly, Y1(u, v) and Y2(u, v),
Z1(u, v) and Z2(u, v) are also harmonic conjugate respectively. From Definition
5, the proof is completed. �
From Lemma 2, when a1 = a2, i1 = i2, the surfaces of one-parametric family

r t(u, v) = (cos t)r1(u, v) + (sin t)r2(u, v) (11)

are minimal surfaces with the same first fundamental form. These minimal sur-
faces are isometric and have the same Gaussian curvature at corresponding
points. It is consistent with (9)and (10).

a) t = 0 b) t = π/10 c) t = π/5

d) t = 3π/10 e) t = 2π/5 f) t = π/2

Fig. 5. Dynamic deformation between r1(u, v) and r2(u, v). Here a1 = a2 = 500,
i1 = i2 = 5, u, v ∈ [−4, 4].
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Let t ∈ [0, π/2]. When a1 = a2 and i1 = i2, for t = 0, the minimal surface r t

reduces to r1(u, v); for t = π/2, it reduces to r2(u, v). Then when t varies from
0 to π/2, r1(u, v) can be continuously deformed into r2(u, v), and each interme-
diate surface is also minimal surface. Fig 5 illustrates the dynamic deformation
when a1 = a2 = 500, i1 = i2 = 5. It is similar with the dynamic deformation
between helicoid and catenoid.

4.2 Example 2

Supposing k = l = i = j = 0, c3 = d3 = g3 = h3 = 0 in (3), we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8a · e − b · f = 0
2b · e + a · f = 0
16e2 − f 2 + 30c · g − 30d · h = 0
4e · f − 15c · h + 15d · g = 0
g2 − h2 = 0
g · h = 0
18a · g + 9b · h + 20e · c − 5f · d = 0
18a · h − 9b · g − 20e · d − 5f · c = 0
4e · g + f · h = 0
f · g − 4e · h = 0

(12)

From (6) and (12), two solutions can be obtained: if c1g1 + c2g2 > 0, then

f2 = 4e1, f1 = −4e2, h1 = g2, h2 = −g1,

e3 = 0, f3 = 2
√

15
√

c1g1 + c2g2;

if c1g1 + c2g2 < 0, then

f2 = 4e1, f1 = −4e2, h1 = g2, h2 = −g1,

f3 = 0, e3 =
√

15
2

√−c1g1 − c2g2;

Then we obtain two classes of minimal surface with eight shape parameters
a1, a2, c1, c2, e1, e2, g1 and g2:

r(u, v) = (X(u, v), Y (u, v), Z(u, v)) (13)

where

X(u, v) = a1(u6 − 15u4v2 + 15u2v4 − v6) + 2a2(3u5v − 10u3v3 + 3uv5)
+c1(u5 − 10u3v2 + 5uv4) − c2(v5 − 10u2v3 + 5u4v) + e1(u4 − 6u2v2 + v4)
−4e2uv(u2 − v2) + g1u(u2 − 3v2) + g2v(v2 − 3u2),

Y (u, v) = −a2(u6 − 15u4v2 + 15u2v4 − v6) + 2a1(3u5v − 10u3v3 + 3uv5)
+c2(u5 − 10u3v2 + 5uv4) + c1(v5 − 10u2v3 + 5u4v) + e2(u4 − 6u2v2 + v4)
+4e1uv(u2 − v2) + g2u(u2 − 3v2) − g1v(v2 − 3u2),

Z(u, v) = 2
√

15
√

c1g1 + c2g2uv(u2 − v2),
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a) c1 = 10 b)c1 = 40 c)c1 = 200

Fig. 6. The effect of shape parameter c1 in r3(u, v). Here a1 = e1 = g1 = 4, u, v ∈
[−2, 2].

a) g2 = 10 b) g2 = 80 c)g2 = 800

Fig. 7. The effect of shape parameter g2 in r6(u, v). Here a2 = e2 = 4, c2 = −4,
u, v ∈ [−2, 2].

or
r̄(u, v) = (X̄(u, v), Ȳ (u, v), Z̄(u, v)) (14)

where

X̄(u, v) = a1(u6 − 15u4v2 + 15u2v4 − v6) + 2a2(3u5v − 10u3v3 + 3uv5)
+c1(u5 − 10u3v2 + 5uv4) − c2(v5 − 10u2v3 + 5u4v) + e1(u4 − 6u2v2 + v4)
−4e2uv(u2 − v2) + g1u(u2 − 3v2) + g2v(v2 − 3u2),

Ȳ (u, v) = −a2(u6 − 15u4v2 + 15u2v4 − v6) + 2a1(3u5v − 10u3v3 + 3uv5)
+c2(u5 − 10u3v2 + 5uv4) + c1(v5 − 10u2v3 + 5u4v) + e2(u4 − 6u2v2 + v4)
+4e1uv(u2 − v2) + g2u(u2 − 3v2) − g1v(v2 − 3u2),

Z̄(u, v) =

√
15
2

√
−c1g1 − c2g2(u4 − 6u2v2 + v4).

When a2 = c2 = e2 = g2 = 0, we denote the minimal surface r(u, v) in (13) by
r3(u, v); similarly, in the case a1 = c1 = e1 = g1 = 0, r(u, v) in (13) is denoted
by r4(u, v). When a1 = a2, c1 = c2, e1 = e2, g1 = g2, we can obtain r4(u, v) from
r3(u, v) by rotation transformation. Fig 6 illustrates the effect of c1 of r3(u, v).

In the case a2 = c2 = e2 = g2 = 0, the minimal surface r̄(u, v) in (14) is
denoted by r5(u, v); similarly, when a1 = c1 = e1 = g1 = 0, we denote r̄(u, v) in
(14) by r6(u, v). In the case a1 = a2, c1 = c2, e1 = e2, g1 = g2, r6(u, v) can be
obtained from r5(u, v) by rotation transformation. The effect of g2 of r6(u, v) is
shown in Fig 7.

For r5(u, v) and r6(u, v), we have the following proposition.
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a) b)

Fig. 8. Two different views of the minimal surface r6(u, v) and its symmetric plane.
Here a2 = e2 = g2 = 4, c2 = −4, u, v ∈ [−2, 2].

a) b)

Fig. 9. Tensor product Bézier surface representation of r(u, v) in (8) and (13):(a)r (u, v)
in (8) and its control mesh, a1 = 3, a2 = 500, i1 = i2 = 1, u, v ∈ [0, 1] (b)r(u, v) in (13)
and its control mesh, a1 = c1 = e1 = g1 = a2 = c2 = e2 = 4, g2 = 400, u, v ∈ [0, 1]

Proposition 4. The minimal surface r5(u, v) is symmetric about the plane
Y = 0; r6(u, v) is symmetric about the plane X = 0.

Fig 8 presents the symmetric plane of r6(u, v) with a2 = e2 = g2 = 4 and
c2 = −4.

5 Application in Architecture

Obviously, the proposed minimal surfaces can be represented by tensor product
Bézier surface or triangular Bézier surface. Fig 9 shows the tensor product Bézier
surface representation of r(u, v) in (8) and (13).

Geometric design and computation in architecture has been a hotspot in re-
cent years [13,23,24]. In the surface of membrane structure, we need that the
resultant nodal forces (i.e. residual forces) must be reduced to zero, so that
there is no pressure difference across the surface. Hence, minimal surface is the
ideal shape of the membrane structure. In particular, the minimal surfaces pro-
posed in the current paper can be used for the form-finding problem, which is
the first stage in the construction process of membrane structure.

From the classical theory of minimal surface, any trimmed surfaces on mini-
mal surface are also minimal surfaces. Hence, the traditional surface trimming
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a) b)

Fig. 10. Trimmed surfaces (yellow) on minimal surfaces r(u, v)(green) in (8) with
i1 = a1 = 1, i2 = a2 = 5

a) b)

Fig. 11. Two modeling examples of membrane structures by using the triangular
trimmed surfaces on minimal surface r1(u, v) with a1 = i1 = 50

methods in [9] are employed for form finding problems. Fig 10 illustrates two
trimmed minimal surface. Modeling examples of membrane structure are shown
in Fig 11.

6 Conclusion and Future Work

In order to introduce minimal surfaces into CAGD/CAD systems, the paramet-
ric polynomial minimal surface of degree six is studied in this paper. We propose
the sufficient and necessary condition of a harmonic polynomial parametric sur-
face of degree six being a minimal surface. Two kinds of new minimal surface
with several shape parameters are obtained from the condition. We analyze the
properties of the new minimal surface, such as symmetry, self-intersection, con-
taining straights lines and conjugate property. Hence, the new minimal surfaces
have the similar properties as the classical Enneper surface. In particular, the
conjugate property is similar with the catenoid and the helicoid.

The Weierstrass representation is another method to obtain new minimal
surfaces. However, it is difficult to choose the proper initial functions to obtain
the parametric polynomial minimal surfaces. The method presented in this paper
can directly derive the parametric polynomial minimal surface.
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In the future, we will investigate the other applications of the new minimal
surfaces. How to give the general formula of the parametric polynomial minimal
surfaces, is also our future work.
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Appendix: The Proof of Theorem 1

Theorem 1 can be proved from the isothermal condition and the linear indepen-
dence of the power basis. The partial derivatives of the harmonic surface r(u, v)
in Lemma 3 has the following forms:

ru(u, v) = 6aAo
5 + 3bAe

5 + 5cAe
4 + 10dAo

4 + 4eAo
3 + fAe

3 + 3gAe
2 − 6hAo

2 + 2iAo
1 + jAe

1 + k

rv(u, v) = −6aAe
5 + 3bAo

5 + 5dAe
4 − 10cAo

4 + fAo
3 − 4eAe

3 − 3hAe
2 − 6gAo

2 + jAo
1 − 2iAe

1 + l

where Ao
5 = u5 − 10u3v2 + 5uv4, Ae

5 = 5vu4 − 10v3u2 + v5, Ae
4 = u4 − 6u2v2 +

v4, Ao
4 = 2u3v − 2uv3, Ao

3 = u3 − 3uv2, Ae
3 = 3u2v − v3, Ae

2 = u2 − v2, Ao
2 =

uv, Ao
1 = u, Ae

1 = v.
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Hence, from F = 〈ru, rv〉, the term u10 in F is related with Ao
5, then we

obtain a · b = 0 from F = 0. The term u9v is related with Ae
5 and Ao

5, then we
get 4a2 = b2. Similarly, the other equations in (3) can be obtain from F = 0
and E = G.

It is noted that we obtain only two equation for the terms uivj , i+ j = k, k =
0, 1, 2, · · ·9, 10. One is for the case of i is even, and the other one is for the case
of i is odd. The equations derived from F = 0 are the same as the case of E = G
except for the equations k2 = l2 and k · l = 0. Hence, the number of equations
in system (3) is 2 × 2 × (6 − 1) + 2 = 22. Thus, the proof is completed. �
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