Java Bytecode Specification and Verification

Lilian Burdy
INRIA Sophia-Antipolis
2004 route des Lucioles BP 93
06902 Sophia-Antipolis, France

Lilian.Burdy@sophia.inria.fr

ABSTRACT

We propose a framework for establishing the correctness of
untrusted Java bytecode components w.r.t. to complex func-
tional and/or security policies. To this end, we define a
bytecode specification language (BCSL) and a weakest pre-
condition calculus for sequential Java bytecode. BCSL and
the calculus are expressive enough for verifying non-trivial
properties of programs, and cover most of sequential Java
bytecode, including exceptions, subroutines, references, ob-
ject creation and method calls.

Our approach does not require that bytecode components
are provided with their source code. Nevertheless, we pro-
vide a means to bring the benefits of source program specifi-
cations to the code consumer by defining a compiler from the
Java Modeling Language (JML) to BCSL. Our compiler can
be used in combination with many Java compilers to pro-
duce extended class files from JML-annotated Java source
programs.

All components, including the verification condition genera-
tor and the compiler are implemented and integrated in the
Java Applet Correctness Kit (JACK), and have been tested
on non-trivial examples.

1. INTRODUCTION

This paper addresses the problem of establishing trust in
untrusted software components. This question concerns im-
portant areas like smart card applications, mobile phones,
bank cards, ID cards and whatever scenario where untrusted
code should be installed and executed. In particular, de-
pending on what is the level of trust the code receiver wants
to establish, the state of the art proposes different solutions.
For example, the verification may be performed over the
source code. In this case, the code receiver should make
the compromise to trust the compiler, which is problem-
atic. The bytecode verification technique proposes another
solution, which requires no tradeoff with the compiler. The
bytecode verifier performs the static analysis directly over

Mariela Pavlova
INRIA Sophia-Antipolis
2004 route des Lucioles BP 93
06902 Sophia-Antipolis, France

Mariela.Pavlova@sophia.inria.fr

the bytecode and guarantees that the code is well typed
and well formed. Yet, bytecode verification is limited to
properties, that only guarantee that the bytecode does not
violate the proper function of the virtual machine. Another
solution is the Proof Carrying Code paradigm (PCC) and
the certifying compiler. In this architecture, the untrusted
code is accompanied by a proof for its safety w.r.t. to some
safety property and the code receiver has just to generate
the verification conditions and type check the proof against
them. The proof is generated automatically by the certify-
ing compiler and thus for properties like well typedness or
safe memory access. As the certifying compiler is designed
to be completely automatic, it will not be able to deal with
rich functional or security properties.

The present work proposes an interactive verification frame-
work for establishing trust between a client and a code pro-
ducer against non trivial security or functional policies, where
the untrusted code is likely to lack its source code. More
generally, the frameweork can be applied to scenarios where
the code producer has to implement or fulfill some client
requirements. Using this framework, the producer can gen-
erate and supply, along the bytecode, the specification in-
formation sufficient for the client to establish that the code
respects those requirements.

In particular, the architecture is tailored to Java bytecode.
The Java technology finds a large application in mobile and
embedded components because of its portability across plat-
forms. For instance, its dialect JavaCard is largely used
in smartcard applications and the J2ME Mobile Informa-
tion Device Profile (MIDP) finds application in GSM mobile
components. In this article we propose a static verification
technique using formal methods for sequential Java bytecode
programs.

The aforementioned scheme is composed by several copo-
nents. We define a bytecode logic in terms of weakest pre-
condition calculus for the sequential Java bytecode language.
The logic rules out almost all Java bytecode instructions
and supports the Java specific features like exceptions, ref-
erences, method calls and subroutines. We define a bytecode
specification language, called BCSL, and supply a compiler
from the high level Java specification language JML [13] to
BCSL. BCSL supports a JML subset which is expressive
enough to specify rich functional properties. The specifi-
cation is inserted in the class file format in newly defined
attributes, thus making not only the code mobile but also

its specification. These class file extensions do not affect
the JVM performance. The scheme makes the Java byte-
code benefit from the specification written at source level.
We have implementations of a verification condition gener-
ator based on the weakest precondition calculus and of the
JML specification compiler. Both are integrated in the Java
Applet Correctness Kit (JACK) [9].

In what follows, the sections and their corresponding topics
are: Section 2 reviews scenarios in which the architecture
is appropriate to use; Section 3 provides an overview of re-
lated work; Section 4 gives background information about
the JML specification language; Section 5 presents the byte-
code specification language BCSL and the JML compiler;
Section 6 explains how the weakest precondition calculus
works illustrating it with definitions and example; in this
section we also give the verification conditions that are gen-
erated for proving program correctness; Section 7 concludes
with future work.

2. FRAMEWORK

Figure 1 presents the proposed overall architecture for en-
suring Java bytecode correctness. It describes a process that

Java source file

annotate with JM

Proof obligations

theorem prover
yes

Java source file
provabl e agai nst

its JM specificatiol

Java Compiler

JML Compiler

Jass file
W th
BCSL attributes

Producer fail

Y
Client Weakest Precondition
Calculus

Functional
and/or security

requirements

Proof obligations

Figure 1: The overall architecture for annotating
and verifying code

allows a client to trust a code produced by an untrusted code

producer.

In the first stage of the process the client provides the func-
tional and (or) security requirements to the producer. The
requirements can be in different form:

e A specified interface that describes the application to
be developed. In that case, the client has fully specified
in JML the features that have to be implemented by
the code producer.

e An API with some restricted access to some method.
In this case, the client can protect its system by re-
stricting its usage (for example, if the client API pro-
vides transaction management facilities, a requirement
can be for no nested transactions and the API method
open for opening and method close for closing trans-
actions can be annotated to ensure that close should
not be called if there is no transaction running and
open should not be called if there is already a running
transaction).

In the development process, the producer verifies if the client
requirements are respected by generating verification condi-
tions over the source code and usually, he has to add JML
annotations for this e.g. loop invariants, class invariants,
method preconditions and postconditions etc. Usually, only
after specifying enough the source code, have we got the
annotated Java source files to feed to the JML compiler.

When the annotations are sufficient to prove the code, the
Java file is then normally compiled with a Java compiler to
obtain a class file. This class file is then extended with user
defined attributes that contain the BCSL specification, re-
sulting from the compilation of the JML specification. At
this stage, the Java class files contain all the information
that will allow the client to check it. In particular, the
client will generate proof obligations from the untrusted an-
notated bytecode and his security requirements (expressed
in a suitable form) as shown in figure 1. Proof obligations
are formulas which, if provable, guarantee the bytecode cor-
rectness. The latter are then proved with a theorem prover
(possibly interactively). If the client succeeds in proving
the verification conditions, he can trust the unknown code.
Currently the framework does not support sending both the
proof and the bytecode to the client, which is the next step
in our work.

To implement this architecture we use JACK as a verifi-
cation condition generator both on the consumer and the
producer side. JACK is a plugin for the eclipse' integrated
development environment for Java. Originally, the tool was
designed as verification condition generator for Java source
programs against their JML specification. JACK can inter-
face with several theorem provers (AtelierB, Simplify, Coq,
PVS). We have extended the tool with a compiler from
JML to BCSL and a bytecode verification condition gener-
ator. In the following we introduce the BCSL language, the
JML compiler and the bytecode weakest precondition cal-
culus which underlines the bytecode verification condition
generator.

"http://www.eclipse.org

3. RELATED WORK

There are several fields which are related to the present
work: bytecode verification, logic for unstructured program
languages, attaching specification to the compiled code, ar-
chitecture for checking untrusted components.

Bytecode verification is concerned with establishing that
a bytecode is well typed (every instruction is applied to
operands of the correct type) and well formed (e.g. no jumps
to an un-existing bytecode index), differently from the goals
of the present work where program correctness is defined in
terms of functional correctness. The Java Virtual Machine
(JVM), for example, is provided with a bytecode verifier.
The field is well researched and for more information one
can look at [14].

Floyd is among the first to work on program verification for
unstructured languages (see [22]). Few works have been ded-
icated to the definition of a bytecode logic. In [20], Quigley
defines a Hoare logics for bytecode programs. This work
is limited to a subset of the Java virtual machine instruc-
tions and does not treat for example method calls, neither
exceptional termination. The logic is defined by searching
a structure in the bytecode control flow graph, which gives
an issue to complex rules.

A work close to ours is presented in [3] by P.Muller and
F.Bannwart. The authors define a Hoare logic over a byte-
code language with objects and exceptions. A compiler from
source proofs into bytecode proofs is also defined. As in our
work, they assume that the bytecode has passed the byte-
code verification certification. The bytecode logic aims to
express functional properties. To our knowledge subroutines
are not treated. Invariants are inferred by fixpoint calcula-
tion, differently from the approach presented here, where
invariants are compiled from the high level JML specifica-
tion (see section 5.2). However, infering invariants is not a
decidable problem. The work of P.Muller and F.Bannwart
is inspired by the Nick Benton’s work (see [5]). In the lat-
ter a bytecode logic for a stack based language is defined
which checks programs both for well — typedness and func-
tional correctness. The language does not support objects,
references, exceptions neither subroutines.

In [23], M. Wildmoser and T. Nipkow describe a frame-
work for verifying Jinja (a Java subset) bytecode against
arithmetic overflow. The annotation is written manually,
which is not comfortable, especially on bytecode. Here we
propose a way to compile a specification written in a high
level language, allowing specification to be written at source
level, which we consider as more convenient.

The Spec# ([4]) programming system developed at Microsoft
proposes a static verification framework where the method
and class contracts (pre, post conditions, exceptional post-
conditions, class invariants) are inserted in the intermedi-
ate code . Spec# is a superset of the C# programming
language, with a built-in specification language, which pro-
poses a verification framework (there is a choice to perform
the checks either at runtime or statically). The static verifi-
cation procedure involves translation of the contract specifi-
cation into metadata which is attached to the intermediate
code and the verification is performed over the bytecode by

the Boogie theorem prover.

Another topic related to the present work is PCC. PCC and
the certifying compiler were proposed by Necula (see [16,
17, 18]). PCC is an architecture for establishing trust in un-
trusted code in which the code producer supplies a proof for
correctness with the code. The initial idea for PCC was that
the producer automatically infers annotation for properties
like well typedness, correct read/writes and automatically
generates the proof for their correctness using the certify-
ing compiler. Such properties guarantee that a program do
the things correctly and not that it does the right things.
The present work is targeting at a framework for establish-
ing complex functional and interface properties whose au-
tomatic checking is hard and even impossible. From the
above cited papers, [3] is aiming also at building PCC for
guaranteeing not trivial properties. As we stated in section
1, our framework currently does not support adding proofs
to bytecode which but we consider this point as a future
work.

4. A QUICK OVERVIEW OF JML

JML [13] (short for Java Modeling Language) is a behav-
ioral interface specification language tailored to Java ap-
plications. JML follows the design-by-contract approach
(see [6]), where classes are annotated with class invariants
and method pre- and postconditions. Specification inside
methods is also possible; for example one can specify loop
invariants, or assertions predicates that must hold at specific
program points.

JML specifications are written as comments so they are not
visible by Java compilers. The JML syntax is close to the
Java syntax: JML extends Java with few keywords and op-
erators. For introducing method precondition and postcon-
dition one has to use the keywords requires and ensures
respectively, modifies keyword is followed by all the loca-
tions that can be modified by the method, loop_invariant,
not surprisingly, stands for loop invariants, loop_modifies
keyword gives the locations modified by loop invariants etc.
The latter is not standard in JML and is an extension in-
troduced in [9]. Special JML operators are, for instance,
\result which stands for the value that a method returns
if it is not void, the \old(expression) operator designates
the value of expression in the prestate of a method and is
usually used in the method’s postcondition. JML also al-
lows the declaration of special JML variables, that are used
only for specification purposes. These variables are declared
in comments with the model modificator and may be used
only in specification clauses.

JML can be used for either static checking of Java programs
by tools such as JACK, the Loop tool, ESC/Java [1] or dy-
namic checking by tools such as the assertion checker jml-
rac [12]. An overview of the JML tools can be found in [8].

Figure 2 gives an example of a Java class that models a list
stored in a private array field. The method replace will
search in the array for the first occurence of the object obj1
passed as first argument and if found, it will be replaced
with the object passed as second argument obj2 and the
method will return true; otherwise it returns false. The loop
in the method body has an invariant which states that all the

elements of the list that are inspected up to now are different
from the parameter object obj1. The loop specification also
states that the local variable i and any element of the array
field 1ist may be modified in the loop.

public class ListArray {
private Object[] list;

//@requires list != null;
//@ensures \result ==(\exists int i;
//@ 0 <= i && i < list.length &&
//@ \old(list[i]) == objl && list[i] == obj2);
public boolean replace(Object objl,0bject obj2)
{
int i = 0;
//@loop_modifies i, list[*];
//@loop_invariant i <= list.length && i >=0
//@ && (\forall int k;0 <= k && k < i ==>
//@ 1list[k] !'= objl);
for (i = 0; i < list.length; i++) {
if (list[i] == obj1) {
list[i] = obj2;
return true;
}
}

return false;

Figure 2: class ListArray with JML annotations

5. BYTECODE SPECIFICATION
LANGUAGE (BCSL)

In this section, we propose a bytecode specification language
which we call BCSL. We define a compiler from the high
level specification language JML to BCSL. The specification
compilation results in a class file extension. In the following
we give the grammar of BCSL and sketch the specification
compiler.

5.1 Grammar

We propose a bytecode level specification language which
corresponds to a representative subset of JML. We sketch
the bytecode specification language grammar in figure 3. We
omit some of the definitions because of space constraints,
e.g. the grammar for arithmetic expressions (which is de-
fined in a standard way). The full specification can be found
in [10]. The language defined here is expressive enough for
most purposes including the description of non trivial func-
tional and security properties. We now discuss some of the
specification clauses that have some differences with JML,
for the rest their semantics is the same as in JML and can
be found in [21, 13].

We can specify using the specification clause exsures what
is the postcondition of a method in case it terminates with
an exception E. If the postcondition states something about
the exception object thrown then the special expression EXC
is used (this expression can appear only in exceptional post-
conditions). If exsures is not specified for certain exception,
then by default it is considered as false.

ClassSpec ::= class invariant P
| history constraint P
| model ClassName id

MethodSpec ::= SpecCase
| SpecCase also MethodSpec;

SpecCase ::= requires P;
modifies list(E);
ensures P;
exsures (ExceptionClass) P;

InterMethodSpec ::= loopSpec
| assertSpec

loopSpec ::= pc_ index int;
loop_modifies list(E);
loop_invariant P;
loop_decreases &;

assertSpec ::= pc_ index int;
assert P;

P ::=true | false
| £ predSymbol &
|PAP|PVP|P=>P
| V(boundVar : JavaType)P
| 3(boundVar : JavaType)P

€ = Arithmetic Expr | 1v[il
| ref | int_literal
| field cp_index(&) | £[€]
| \result |\old(E) | EXC
| \typeof(£) | null | this
| ¢ | st(Arithmetic_Expr) ...

Figure 3: BCSL grammar

As shown by the grammar, BCSL allows to specify different
method specification cases separated by the keyword also
— this means that method caller has to satisfy the disjunc-
tion of the preconditions in the specification cases and the
method’s implementation has to guarantee the postcondi-
tion of every specification case of which the precondition
held in the prestate.

Loop specifications and assertions are tagged with the pro-
gram point in the bytecode where they must hold. Among
the expressions that are handled (almost all are also han-
dled by JML) we have the expressions : 1v[i] standing
for the i-th local variable in a method; field_cp-index (&)
meaning a field access expression, where field _cp-index is
the constant pool index describing the field; ¢ stands for the
stack counter and st (Arithmetic_Expr) a stack element at
position Arithmetic_Expr. These expressions do not ap-
pear in the precondition and postcondition specification of
a method. Later we shall see how they are used.

5.2 Compiling JML into bytecode specifica-
tion language

This section explains how JML specifications are compiled
into bytecode level specifications and how they are inserted
into the bytecode.

Before going farther we give a brief description of the class
file format. As defined by the Java Virtual Machine Specifi-
cation (JVMS) [15], a class file contains a definition of a sin-
gle class class or interface. It contains information about the
class name, interfaces implemented by the class, super class,
methods and fields declared in the class and references. The
JVMS mandates that the class file contains data structure
usually referred as the constant_pool table which is used
to construct the runtime constant pool upon class or inter-
face creation. The runtime constant pool serves for loading,
linking and resolution of references used in the class. The
JVMS allows to add to the class file user specific informa-
tion([15], ch.4.7.1). This is done by defining user specific
attributes (their structure is predefined by JVMS).

Thus the “JML compiler” ? compiles the JML source specifi-
cation into user defined attributes. The compilation process
has three stages:

1. compile the Java source file. This can be done by any
Java compiler that supplies for every method in the
generated class file the Line_Number_Table and Lo-
cal_Variable_Table attributes. The presence in the
Java class file format of these attribute is optional [15],
yet almost all standard non optimizing compilers can
generate these data. The Line_Number_Table de-
scribes the link between the source line and the byte-
code of a method. The Local_Variable_Table de-
scribes the local variables that appear in a method.
Those attributes are important for the next phase of
the JML compilation.

2. from the source file and the resulting class file com-
pile the JML specification. In this phase, Java and
JML source identifiers are linked with their identifiers
on bytecode level, namely with the corresponding in-
dexes either from the constant pool or the array of lo-
cal variables described in the Local_Variable_Table
attribute. If in the JML specification a field identifier
appears, for which no constant pool (cp) index exists,
such is added in the constant pool and the identifier
in question is compiled to the new cp index. It is also
in this phase that the specification parts like the loop
invariants and the assertions which should hold at a
certain source program point must be associated to
the respective program point on bytecode level. The
specification is compiled in binary form using tags in
the standard way. Basically the compilation of an ex-
pression is a tag followed by the compilation of its
subexpressions. Thus for example the loop invariant
specified in JML for the method replace in figure 2 is

2@ary Leavens also calls his tool jmlc JML compiler, which
transforms jml into runtime checks and thus generates input
for the jmlrac tool

1v[3] < length(#19(1v[01)) A

W3] >0A

0<wy A

vo < 1v[3]

= #19(1v[0])[vo] # 1v[1]

Yvo € int.

From the example one can see that local variables and
fields are respectively linked to the index of the register
table for the method and to the corresponding index of
the constant pool table (#19 is the compilation of the
field name list, 1v[3] stands for the method local
variable 1i).

3. add the result of the JML compilation in the class file
as user defined attributes. Method specifications, class
invariants, loop invariants are newly defined attributes
in the class file. For example, the specification of all
the loops in a method are compiled to a unique method
attribute: whose syntax is given in figure 4. This at-
tribute is an array of data structures each describing a
single loop from the method source code. Also for each
loop in the source code there must be a corresponding
element in the array. More precisely, every element
contains information about the instruction where the
loop starts as specified in the Line_Number_Table,
the invariant associated to this loop, the decreasing
expression in case of total correctness, the expressions
that can be modified. For the full specification of the
compiler see [10].

JMLLoop_specification_attribute {

{ u2 index;
u2 modifies_count;
formula modifies[modifies_count];
formula invariant;
expression decreases;
} loop[loop_count];

e index: The index in the LineNumberTable where the
beginning of the corresponding loop is described

e modifies[]: The array of modified expressions.

e invariant : The predicate that is the loop invariant.
It is a compilation of the JML formula in the low level
specification language

e decreases: The expression whose decreasing at every
loop iteration

Figure 4: Structure of the Loop Attribute

The JML compiler does not depend on any specific Java
compiler, but it requires the presence of a debug informa-
tion, namely the presence of the Line_Number_Table at-
tribute for the proper compilation of inter method specifi-
cation, i.e. loops and assertions. We think that this is an
acceptable restriction for the compiler. The most problem-
atic part of the compilation is to find the program points

where the loop invariants must hold. This basically means
that one has to identify which source loop corresponds to
which bytecode loop in the control flow graph. To do this,
we assume that the control flow graph is reducible (see [2]);
intuitively this means no jumps from outside a loop inside
it; graph reducibility allows to establish the same order be-
tween loops in the bytecode and source code level and to
compile correctly the invariants to the proper places in the
bytecode.

limitations : registers that are used with two differ-
ent types in the method bytecode

6. WEAKEST PRECONDITION
CALCULUS FOR JAVA BYTECODE

In this section, we define a bytecode logic in terms of a
weakest precondition calculus. We assume that the bytecode
program has passed the bytecode verification procedure (we
discuss the issue in section 3), thus the calculus is concerned
only with program functional properties. We also assume
that code is generated by a non optimizing compiler.

The proposed weakest precondition has those features:

e it supports all Java sequential instructions except for
floating point arithmetic instructions and 64 bit data
(1ong and double types), including exceptions, object
creation, references and subroutines. The calculus is
defined over the method control flow graph

e it supports BCSL (section 5), i.e. method’s specifi-
cation written in BCSL like pre- and postconditions,
assertions at particular program point among which
loop invariants (if there is nothing special specified the
specification by default: preconditions, postconditions
and invariants are taken to be true) is taken into ac-
count.

The calculus is defined over the control flow graph of the pro-
gram and has two levels of definitions — the first one is the
set of rules for single Java bytecode instructions (discussed in
subsection 6.1) and the second one takes into account how
control flows in the bytecode (subsection 6.3). A related
problem is how the loops in the control flow are treated. As
we mentioned earlier we assume that every method is speci-
fied in sufficient details, i.e. for each loop, the corresponding
loop invariant is present. This allows us to “cut” the loops
in the graph at the program point where the invariant must
hold. These “cuts” generate an abstract control flow graph
which is acyclic and over which the verification conditions
are generated. Subsection 6.2 discusses how the abstract
control flow graph is generated.

6.1 Weakest Precondition for bytecode

instructions
We define a weakest precondition (wp) predicate transformer
function which takes into account normal and exceptional
termination. wp takes three arguments: an instruction, a
predicate that is the instruction’s normal postcondition ¥,
and a function from exception types to predicates ¥ "¢ (it
returns the specified postcondition in the exsures clause for

a given exception; see section 3). The wp function returns
the weakest predicate such that if it holds in the state when
the instruction starts its execution the following conditions
are met:

1. if the instruction terminates its execution normally the
predicate 1 holds in the poststate

2. if it terminates with an exception E then the predicate
1°*°(E) holds in the poststate.

So the signature of wp is:

wp : instruction — P — (ExceptionType — P) — P

The Java bytecode language is stack based, i.e. the instruc-
tions take their arguments from the method execution stack
and put the result on the stack. So, we have to represent
the elements of the stack that correspond to the arguments
and the result for a given instruction. In the examples in
figure 5 st (¢) stands for the element on the top of the stack.
The instruction Type_load ¢ loads on the top of the stack
the value of the method local variable at index ¢ in the
Local_Variable_Table (see section 5). The wp rule for
Type_load i increments the stack counter ¢ and puts on
st(c) the contents of the local variable 1v[i]. As we said
in the beginning of the section, wp “understands” the byte-
code specification language, i.e. the keywords have their cor-
responding semantics. For example, the keyword \result is
evaluated only by Type_return instructions and if appearing
in the postcondition, \result is substituted by the element
on the top of the stack st(c).

The rules also take into account the possible abnormal ex-
ecution of the instruction. For example, in Fig. 5, the rule
for the instruction putField has two conjuncts - one in the
case when the dereferenced object is not null and the instruc-
tion execution terminates normally; the other one stands for
the case when this is not true. Note, that if the exception
thrown is not handled, we substitute the special specification
variable EXC (see Subsection 5.1) in the exceptional postcon-
dition by the thrown exception object.

A complete definition of wpcan be found in [11].

6.1.1 References: manipulating fields

Instance fields are treated as functions, where the domain of
a field £ declared in the class C1 is the set of objects of class
C1l and its subclasses. We are using function update when
assigning a value to a field reference as, for instance in [7].
In Fig. 5 the rule for putField substitutes the corresponding
field function C1.f with C1.f updated for object o, in case
the dereferenced object is not null. The definition of update
function is given in figure 6.

6.1.2 Method calls

Method calls are handled by using their specification. A
method specification is a contract - the precondition of the
called method must be established by the caller at the pro-
gram point where the method is invoked and its postcondi-
tion is assumed to hold after the invocation. The rule for

wp(iinc i, ¥, ¥°*°) = Y[lv[i] « 1v[i] + 1]

wp(Type-load i, ¥,) =
Yle — c+1][st(c+1) «— 1v[il]
where ¢ is a valid local variable index

wp(putField Cl.f, v, ¢°*°) =
st(c-1) # null
= Plc —c—2]
[CL.f « CLl.f @ [st(c-1) — st(c)]]
A
st(c-1) = null
= ¢[c — 0][st(0) «— st(c)]

where the predicate ¢ is the precondition of the
exception handler protecting the instruction against
NullPointerException if it exists, otherwise

if the NullPointerException is not handled

¢ = ¢¥°®“(NullPointerException)[EXC « st (c)]

Figure 5: rules for some bytecode instructions

el ife2=o0

(C1.£) @ [e2 — el](0) = { Cl.f(0o) else

Figure 6: Overriding Function

invocation on a non-void instance method is given in fig-
ure 7. In the precondition of the called method, the formal
parameters and the object on which the method is called
are substituted with the first n+1 elements from the top of
stack. Because the method returns a value, if it terminates
normally, any occurence of the JML keyword \result in
P°%*(m) is substituted with the fresh variable fresh_var.
Because the return value in the normal case execution is
put on the stack top, the fresh_var is substituted for the
stack top in ¥. The resulting predicate is quantified over
the expressions that may be modified by the called method.
We also assume that if the invoked method terminates ab-
normally, by throwing an exception of type Exc, on return-
ing the control to the invoker its exceptional postcondition

= °(Exc) holds. The rule for static methods is rather the
same except for the number of stack elements taken from
the stack.

6.2 Abstracting The Control Flow Graph

In this section we discuss how the control flow graph of a
bytecode is transformed in an acyclic control flow graph.
We assume that the bytecode is provided with sufficient
specification and in particular loop invariants. Under this
assumption, we can “cut” the control flow graph at every
program point where an invariant must hold and “place” at
that point the invariant. This requires the introduction of
several definitions.

A method body is an array of bytecode instructions. We
write i, the k—th instruction in a method body. We assume
that method’s bytecode has exactly one entry point(every
execution of a method starts at the entry point instruction)
and we denote it with Zentry. Using standard terminology

wp(invoke m, ¥, ¥
7 (m) A
Vj=1.s€;5.(
PP (m)[1v[i] « st(c + i - numArgs(m))}?“:mérgs(m)

[\result < fresh var]
= 9Y[c + ¢ — numArgs(m)][st (c) + fresh_var]) Af_,
Vj=1.s€i(
= C(Exci) = @rxe; [c < 0][st(0) «— st(c)]))

e:vc) _

PP % (m) — the specified precondition of method m
PO (m) — the specified postcondition of method m
V¢ — the exceptional function for method m
numArgs(m) — the number of arguments of m

ej,j = l..s — the locations modified by method m
Exci,i = 1.k — the exceptions that m may throw

PExc;, @ = 1.k — is the precondition

of the exception handler protecting the instruction against

Exc; if it exists, otherwiseif the Exc; s not handled
¢ = " (Exc;i)[EXC «— st (c)]

Figure 7: wp rule for a call to an instance non void
method

(see [2]), a basic block is a code segment that has no un-
conditional jump or conditional branch statements except
for possibly the last statement, and none of its statements,
except possibly the first, is a target of any jump or branch
statement. We denote a block starting at instruction 4; with
bd. The block starting at the entry instruction is denoted
with b, The execution relation b’ — b* states that block
b* may be executed immediately after b’ in some execution
path of the method. For example if instruction ix = athrow
is the last of the block b then b¥ — b*, where b® is the first
block of an exception handler that protects ix

Definition 1. Loop. Assume we have a bytecode II. We
say that b°® is the entry block of a loop ! in IT and b® is an
end block of I and we note this with b® —! b° if:

e every path in the control flow graph starting at the
entry block b®™™ of II and that reaches b®, passes
through b®

e there is a path in which b® is executed immediately
after the execution of bf, b — b°

We abstract the execution relation — to the acyclic execu-
tion relation —# which is an abstraction of — where the
backedges —' are removed: —4=—\ —!

We give in Fig. 8 the control flow graph of the method
replace given earlier in Fig. 2. The figure shows that the
acyclic relation excludes edges between loop entry and loop

end blocks and that at that place the corresponding loop
invariant must hold.

6.3 Bytecode Weakest Precondition

In the following we overload the function symbol wp apply-
ing it to a method and sequence of bytecode instructions.
The wp function runs in a backwards direction starting from
the blocks that do not have successors up to reaching the
entry point instruction. We distinguish the wp calculus over
a method’s body bytecode, a bytecode block and a sequence
of bytecode instructions.

The weakest precondition wp(m) for method mis the weakest
precondition of its entry block b,

wp(m) = wp(b=™)

The weakest precondition for a bytecode block is calculated
splitting the block in two parts: its last instruction and its
sequential part (the instruction sequence without the last
one). We note with béeq the sequential part of block b* and
post(bgeq) the predicate that must hold after the execution of
bgeq and before its last instruction; the weakest precondition
of b* is then defined as follows:

wp(bi) = wp(bieqa pOSt(b:eq)v 1/)%6)

Concerning the sequential part, the wp is calculated apply-
ing the standard wp rule for compositional statements :

e:vc) _

wp(instrList; i, 1,
wp(instrList, wp(ij, 1,),)

The postcondition post(ble,) of the block b* depends on its
last instruction and the respective predicates that must hold
between b' and its successor blocks. Those predicates are
determined by the function pre, which for any two blocks b*
and b*, such that b* — b® gives the predicate pre(b’, b™) that
must hold after the execution of b* and before the execution
of b".

We define the postcondition of the sequential part of a block
b* as follows:

Definition 2. Block’s postcondition post(bieq). Let is be
the last instruction of b* then:

e if i, = if _cond n

cond(st(c),st(c- 1)) =
pre(b’,b™)[c «— ¢ — 2]
post(bieq) = A
not(cond(st(c),st(c- 1))) =
pre(b',b°TH[c « ¢ — 2]

o if i = goto n _
post(bgeq) = pre(b”, b™)

e if s = athrow

liconst O
2istore 3

5 goto 20

6 aoad O

7 getfield 19
8iload_3

9 aaload
10doad 1

11 if _acmpne 19

12 doad O
17iconst_1

18 ireturn

oop End block

19iinc3by 1

/23 arraylength /
(| 24if_icmplt 6

\jL 25iconst O
26 ireturn

dashed arrows stand for the standard execution relation
black arrows represent the acyclic execution relation
bytecode basic blocks are placed in boxes

the invariant is placed between the blocks where it must
hold

Figure 8: control flow graph of method replace from
figure 2

1. if there exists a block b® such that b* — b° (i.e.
an exception handler protects the type of the ex-
ception thrown) then :
post(bieq) =
pre(bt,b%)[c « 0][st(0) «— st(c)].

2. Otherwise the thrown exception is not handled
and then b* must respect the postcondition deter-
mined by the exceptional postcondition function
%€ for this exceptional type:
post(bzeq) =
Y»7¢(st(c))[c < 0][st (0) «— st(c)][EXC « st(c)].
see in section 5.1 for the meaning of EXC.

e if 55 = return
post(bieg) = Y[\result « st(c)]
where 1) is the specified method postcondition.

e clse

post(bieq) =
wp(is, pre(bt, b°Th),)

The function pre determines what is the property that should
hold between two blocks that execute one after another, de-
pending on if they determine a cycle or not (see definition 1
in the previous Section 6.2). This definition gives us the
right to abstract the control flow to an acyclic one, as dis-
cussed in the previous subsection 6.2 and perform on the
latter the weakest precondition calculus.

Definition 3. Predicate between consecutive blocks. As-
sume that b° — b". The predicate pre(b,b™) must hold
after the execution of b* and before the execution of b® and
is defined as follows:

e if b* —* b" then the corresponding loop invariant must
hold:

pre(d’,b") =1

e else if b" is a loop entry then the corresponding loop
invariant I must hold before b" is executed, i.e. after
the execution of b*. We also require that I implies
the weakest precondition of the loop entry instruction.
The implication is quantified over the locations m;,i =
1..s that may be modified in the loop.

pre(b',b") =1 A Vie1.smi.(I= wp(b™))
e else the normal precondition is taken into account:

pre(d’,b") = wp(b™)

Subroutines are treated, first by identifying the instructions
that belongs to it and then by in-lining them. Exception
handlers are treated by identifying the instructions that be-
long to the handler (the class file format provides informa-
tion about the exception handlers for all methods, in par-
ticular where starts and ends the region they protect and at
what index the handler starts at); the precondition of the
handler bytecode is calculated upon the normal postcondi-
tion of the method.

6.4 \erifying Java Bytecode Programs
Bytecode programs represent a set of Java classes. Es-
tablishing the correctness of Java bytecode program w.r.t.
to their specification thus, consists in generating verifica-
tion conditions for every method appearing in every class
of the bytecode program. The verification procedure for
a method m consists in calculating the weakest precondition
wp(m) upon its specification: precondition ¥*"¢(m), postcon-
dition *°*(m) and the mapping between exceptional types
and predicates 9°*“(m) and then prove the condition:

PP (m) = wp(m)

The verification procedure does not trust neither the byte-
code specification, nor the bytecode; in both cases — wrong
specification or incorrect implementation will result in veri-
fication conditions that are not provable

We give a simple example of how the wp works. Block b®
(starts at instr. 6) in Fig. 8 ends with a branching instruc-
tion and in the case when the condition is true (the cur-
rent element of the array is not equal to the first parame-
ter of the method replace) the execution will continue at
b'®. Below we give the part of the weakest precondition for
block b® in case the control flows to block b* (the condi-
tion of its last instruction holds and in this case the pred-
icate pre(b°,0'%) is wp(v'®)). The implications with con-
clusion false stand for the possible exceptions NullPointer
and ArrayIndexOutOfBound exceptions that may be thrown
(as no postcondition is specified explicitely for these cases
of abnormal termination, the one by default is taken).

1v[0] = null = falseN
(1v[0] # nullA
#19(1v[0]) # nullA
len(#19(1v[0])) > 1v[3IA
1v([3] > 0A
1v[1] # #19(1v[01)[1v[3]1])
1+ 1v[3] < len(#19(1vI0]))A
141v[3] > 0A
0 > vOA
Va0, v0 < 1+ 1v[3]
=
#19(1v[01)[v0] # 1v[1]
#19(1v[0]) = null = falseA
len(#19(1v[0])) < 1v[3] V1vI3] < 0 = false

Here we discuss some experimental results. The JML compi-
lation augments around twice the file size. For the example
given at fig. 2, the class file without the specification exten-
sions is 548 bytes, and the class with the BCSL extension
BCSL is 954 bytes. Ofcourse, the more specific is the spec-
ification, the greater will be the size of the class file. On
bytecode level, Jack generated 4 proof obligations, which
can be proven interactively with Coq. On source level of
the program 13 proof obligations, which can also be proven
interactively in Coq. The proof obligations on source and
bytecode level are basically the same modulo local variable
names and field names; the difference in the number is due to
differences in the implementation of wp on source and byte-
code level; splitting the conjunctions in the bytecode proof
obligations results in the same proof obligations generated
over the source code (modulo names).

7. CONCLUSION AND FUTURE WORK

This article describes a bytecode weakest precondition cal-
culus applied to a bytecode specification language (BCSL).
BCSL is defined as suitable extensions of the Java class file
format. Implementations for a proof obligation generator
and a JML compiler to BCSL have been developped and
are part of the Jack 1.8 release®. At this step, we have built
a complete framework for Java program validation. This
validation can be done at source or at bytecode level in a
common environment: for instance, to prove lemmas ensur-
ing bytecode correctness all the current and future provers
plugged in Jack can be used.

We are now targeting to complete our architecture for es-
tablishing trust in untrusted code - in particular extending
the present work to a PCC architecture for establishing non
trivial requirements. In this way, several important direc-
tions for future work are:

e perform case studies and strengthen the tool with more
experiments.

e find an efficient representation and validation of proofs
in order to construct a PCC framework for Java byte-
code. We would like to build a PCC framework where
the proofs are done interactively over the source code
and then compiled down to bytecode. Actually, ob-
serving the proof obligations generated over a source
program and over its compilation with non optimizing
compiler are rather similar (modulo names and certain
types, e.g. boolean type).

e an extension of the framework applying previous re-
search results in automated annotation generation for
Java bytecode (see [19]). The client thus will have the
possibility to verify a security policy by propagating
properties in the loaded code and then by verifying
that the code verify the propagated properties.

Finally, we are currently proving the correctness of the se-
mantics of the weakest precondition calculus proposed, the
proof is built over the bytecode operational semantics and
will ensure the soudness of our weakest precondition calcu-
lus.

8. REFERENCES

[1] escjava. http://secure.ucd.ie/products/
opensource/ESCJava2/docs.html.

[2] Aho AV, Sethi R, and Ullman JD.
Compilers-Principles, Techniques and Tools.
Addison-Wesley: Reading, 1986.

[3] Fabian Bannwart and Peter M:uller. A program logic
for bytecode. 2005.

[4] Mike Barnett, K. Rustan M. Leino, and Wolfram
Schulte. The spec# programming system: An
overview. In Springer, editor, in CASSIS workshop
proceedings, 2004.

[5] Nick Benton. A typed logic for stack and jumps. 2004.

Shttp://www-sop.inria.fr/everest /soft / Jack /jack.html

[6] B.Meyer. Object-Oriented Software Construction. 2
rev edition edition, 1997.

[7] Richard Bornat. Proving pointer programs in Hoare
Logic. In MPC, pages 102-126, 2000.

[8] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G.T.
Leavens, K.R.M. Leino, and E. Poll. An overview of
JML tools and applications. In T. Arts and
W. Fokkink, editors, Formal Methods for Industrial
Crritical Systems (FMICS 2003), volume 80 of
ENTCS. Elsevier, 2003.

[9] L. Burdy, A. Requet, and J.-L. Lanet. Java applet
correctness: A developer-oriented approach. In
K. Araki, S. Gnesi, and D. Mandrioli, editors, FME
2003: Formal Methods: International Symposium of
Formal Methods Europe, volume 2805 of LNCS, pages
422-439. Springer, 2003.

[10] Lilian Burdy and Mariela Pavlova. From JML to
BCSL. Technical report, INRIA, Sophia-Antipolis,
2004. draft.

[11] Lilian Burdy and Mariela Pavlova. Weakest
precondition calculus for Java bytecode. Technical
report, INRIA, Sophia-Antipolis, 2004. draft.

[12] Yoonsik Cheon and Gary T. Leavens. A runtime
assertion checker for the Java modeling language.

[13] G.T.Leavens, Erik Poll, Curtis Clifton, Yoonsik
Cheon, Clyde Ruby, David Cok, and Joseph Kiniry.
JML Reference Manual.

[14] Xavier Leroy. Java bytecode verification: Algorithms
and formalizations. Journal of Automated Reasoning.

[15] Tim Lindholm and Frank Yellin. Java virtual machine
specification. Technical report, Java Software, Sun
Microsystems, Inc., 2004.

[16] G.C. Necula. Proof-Carrying Code. In Proceedings of
POPL’97, pages 106-119. ACM Press, 1997.

[17] George Necula. Compiling With Proofs. PhD thesis,
Carnegie Mellon University, 1998.

[18] George C. Necula and Peter Lee. The design and
implementation of a certifying compiler. In PLDI98,
1998.

[19] M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and
J.-L. Lanet. Enforcing high-level security properties
for applets. In CARDIS 200/4. Springer-Verlag, 2004.

[20] C.L. Quigley. A programming logic for Java bytecode
programs. In Proceedings of the 16th International
Conference on Theorem Proving in Higher Order
Logics, volume 2758 of Lecture Notes in Computer
Science. Springer-Verlag, 2003.

[21] A.D. Raghavan and G.T. Leavens. Desugaring JML
method specification. Report 00-03d, Iowa State
University, Department of Computer Science, 2003.

[22] R.W.Floyd. Assigning meaning to programs. In J. T.
Schwartz, editor, volume 19 of Proceedings of
Symposia in Applied Mathematics, pages 19-32, 1967.

[23] Martin Wildmoser and Tobias Nipkow. Asserting
bytecode safety. 2005. to appear.

