
Cryptographic Logical Relations

— What is the contextual equivalence
for cryptographic protocols and how to prove it?

Yu ZHANG

Including joint work with J. Goubault-Larrecq, D. Nowak and S. Lasota

EVEREST, INRIA Sophia-Antipolis
 February 12, 2007

Cryptographic Logical Relations 1

Cryptography

Kdec

Hello,
buddy!

Kenc

Using cryptography to hide information:

Encryption Decryption
Hello,
buddy!

%$8?λ@
¥∂^#+

But, how to distribute keys on Internet?

Hello,
buddy!

%$8?
λ@
¥∂^#+

Cryptographic Logical Relations 2

The Needham-Schroeder’s protocol

Alice Bob

!

Secret{ }
NONCE

A

NONCEA becomes the session key

Cryptographic Logical Relations 3

The Needham-Schroeder’s protocol

Alice BobCharlie

!

NONCE
A

{ }
PKCharlie

Cryptographic Logical Relations 4

Formal verification
1978 — The invention of the NS protocol [NS 78].

1995 — G. Lowe found the flaw [Lowe 95].

The protocol is
secure, because

I don’t find
any attack!

As a logician,
I’d like to tell you

very seriously:
It’s NOT True!!!

What are you
talking about?

“Insecure”? We use
CRYPTOGRAPHY

here.

Those who think that their problem can be solved by
simply applying cryptography, don’t understand
cryptography and don’t understand their problem.

---- R. Needham{m}k

Cryptographic Logical Relations 5

Formal verification community

Verify security properties with formal methods.

Formal verification
1978 — The invention of the NS protocol [NS 78].

1995 — G. Lowe found the flaw [Lowe 95].

Cryptographic Logical Relations 6

Secrecy by contextual equivalence

!

"
Ehm, seems these

stupid guys always
talkin about the

same thing …

Internet

{ }k
Charlie

IS
stupid

Run 1

A - > B : message 1

B - > S : message 2

S - > A : message 3

A - > B : message 4

B - > A : message 5

A - > B : message 1

B - > S : message 2

S - > A : message 3

A - > B : message 4

B - > A : message 5

Protocol

Run 2

{ }k
Charlie
IS NOT
stupid

Secrecy: for every messages m1 and m2, Protocol(m1) ≈ Protocol(m2).

Spi-Calculus: with bisimulations [Abadi & Gordon 97].

Cryptographic λ-calculus: with logical relations [Sumii & Pierce 02].
Higher-order functions are taken into account.

What the hell did
that guy encrypt in

this message?
Eh … looks like a …

PROGRAM!

A - > B : m essag

 m essage 2

S A : message 3

A - > Bssage 4

B - > A : age 5

A - > B :

Cryptographic Logical Relations 7

Motivation

Sumii and Pierce’s logical relations are somehow ad-hoc. Is
there a systematic way to construct these logical

relations?

And, to what extent can we rely on this method? If
logical relations fail in proving the secrecy property, can

we say that protocol is NOT secure?

We keep on using the λ-calculus approach.

Cryptographic Logical Relations 8

Related work and our contribution
Side-effects Logical relations

2002, logical relations for encryption
[Sumii & Pierce 02]

1993~94, operational logical relations for name creation
[Pitts & Stark 93]

1992~93, categorical construction
[Ma & Reynolds 92, Mitchell & Scedrov 93]

1980, invention of logical relations
[Plotkin 80]

2002, logical relations for computational λ-calculus
[Goubault-Larrecq, Lasota & Nowak 02]

1989, computational λ-calculus
[Moggi 89, Moggi 90]

2005, completeness of monadic logical relations
[Lasota, Nowak & Zhang 06]

2003, denotational logical relations for key generation
[Zhang & Nowak 03]
2004, lax cryptographic logical relations
[Goubault-larrecq, Lasota, Nowak & Zhang 04]

Cryptographic Logical Relations 9

Outline

 The cryptographic metalanguage

 Denotational semantics

 Cryptographic logical relations

 Contextual equivalence

Cryptographic Logical Relations

Cryptographic Logical Relations

 Introduction

 The cryptographic metalanguage

 Denotational semantics

 Cryptographic logical relations

 Contextual equivalence

 Conclusion

Cryptographic Logical Relations 11

Syntax (i) — Types

• A computation may generate fresh keys.

Type for computations,

from Moggi’s language

Based on Moggi’s computational λ-calculus — a nice framework for
reasoning about side-effects, including key generation.

Cryptographic Logical Relations 12

Syntax (ii) — Terms

generation of fresh key,

from Stark’s metalanguage

trivial computation and

sequential computation,

from Moggi’s language

trivial computation and

sequential computation,

from Moggi’s language

Cryptographic Logical Relations 13

Syntax (ii) — Typing rules

Cryptographic Logical Relations 14

Public key cryptography can be modeled using functions
[Sumii & Pierce 02]:

• If k is a private key, then the public key is:

• Encrypt a message with a public key:

Modeling asymmetric cryptography

Cryptographic Logical Relations 15

Encoding of protocols

• Principals as functions.
• Interactions as function applications.

• The protocol is a tuple of functions:
P(secret) = <fAlice, fBob, …>

• An attack is a function F:
F(P(secret)) = secret

Cryptographic Logical Relations

Cryptographic Logical Relations

 Introduction

 The cryptographic metalanguage

 Denotational semantics

 Cryptographic logical relations

 Contextual equivalence

 Conclusion

Cryptographic Logical Relations 17

An encrypted message is written as .

Modeling cryptography

— a set of keys.

plain-text key

function symbol

Cryptographic Logical Relations 18

Computations as monads

• According to Moggi, side-effects can be modeled by

monads [Moggi 89].

– Concrete monads: exceptions, non-determinism, ...

• Fresh key generation is seen as a side-effect.

• Key generation monad: computations might generate

fresh keys.

– Stark uses this monad to interpret his language for name

creation [Stark 94].

Cryptographic Logical Relations 19

Stark’s model

A functor category with a monad T:

• — category of finite sets and injections.

– A set represents a computation stage.

• Denotations are defined over a set of keys.

• Computations are interpreted as

We use Stark’s model to interpret our metalanguage.

fresh keys generated
during the computation

result of the
computation

Cryptographic Logical Relations

Cryptographic Logical Relations

 Introduction

 The cryptographic metalanguage

 Denotational semantics

 Cryptographic logical relations

 Contextual equivalence

 Conclusion

Cryptographic Logical Relations 21

What is a logical relation?

• A logical relation is a family of relations, each indexed by a type.

• Two functions f1 and f2 are related iff

• Basic Lemma
– If the denotation of each constant is related to itself, denotations of every

term in related environments are related.

– Basic Lemma helps us to prove contextual equivalence.

What is a cryptographic logical relation?

• The sprit of Sumii and Pierce’s logical relations: A cryptographic logical relation

must relate encryption with itself, and relate decryption with itself.

Cryptographic Logical Relations 22

Relations for base types

• Only keys that are accessible to attackers are related [Sumii & Pierce
02, Abadi & Gordon 97]:

 — the set of disclosed keys.

• Encrypted messages are then divided into two parts

ϕ — parameter of the logical relation, fixing the relation between secret
messages [Sumii & Pierce 02].

or

U

bui lt by induction on
message structure

 fixed by the parameter ϕ

Cryptographic Logical Relations 23

Logical relations for monadic types

• Categorical construction of logical relation for monadic types
[Goubault-Larrecq et al. 02].

But what is the category for constructing logical relations?

• Logical relations derived over are too weak with naïve relations
for keys:

How to represent the parameter ?

• A logical relation constructed over :

– Kripke logical relation — logical relations defined over functor
categories [Mitchell & Moggi 91].

– is called a “world”, representing a computation stage.
– Two functions are related iff they take related arguments at any

larger world to related results.

Cryptographic Logical Relations 24

The “frame” category

Formalize the parameter in the category [ZN 03]:
• objects are tuples ;
• morphisms are pairs of injections such that the following

diagram commutes:

disclosed keysdisclosed keys all keys that have
been created

all keys that have
been created

Becomes :

Cryptographic Logical Relations 25

Logical relations over

 (using the general
construction of [GLLN02]).

• Basic Lemma holds, but only for a very limited set of ϕ .
• This logical relation fails in relating equivalent programs:

k ∈ w’

k ∉ w

Secret keys get known by attackers at a larger “world”.

disclosed keysdisclosed keys

Cryptographic Logical Relations 26

• Category :

the subcategory of where every is a pull-back.

The “frame” category (revised)

• In our model, secret keys must NOT be exposed at any larger
“world”.
– A “world” represents a stage based on keys, not on time.

 k ∉ w’

k ∉ w

!

"disclosed keysdisclosed keys

Cryptographic Logical Relations 27

Cryptographic logical relations

• Cryptographic logical relations derived over :

– Cipher function ϕ — a group of “world”-indexed functions, each
determining the relation between secret cipher-texts at the
“world”.

– Basic Lemma holds for a non-trivial set of cipher functions.
– Recognize Pitts and Stark’s operational logical relations for

name creation.

Cryptographic Logical Relations

Cryptographic Logical Relations

 Introduction

 The cryptographic metalanguage

 Denotational semantics

 Cryptographic logical relations

 Contextual equivalence

 Conclusion

Cryptographic Logical Relations 29

Contexts for cryptographic protocols

• Contexts represent exactly the knowledge of attackers:

Contexts have access to
disclosed keys.

{m}k

Contexts have access to secret
cipher-texts, although they cannot

decrypt them.

• In the computational lambda-calculus, contexts are allowed
to do computations:

Cryptographic Logical Relations 30

Cryptographic contextual equivalence

defined using category :

• holds;

• — context knowledge, sets of secret cipher-texts that
contexts can access;

• -honest environment, mapping every message variable to a cipher-
text in .

Cryptographic Logical Relations 31

Verifying the secrecy property

• Secrecy property:

∀ msg1, msg2, Protocol(msg1) ≈ Protocol(msg2)

• Theorem:
Cryptographic logical relations are sound:

• Proposition:
This technique shows that Lowe’s fixed version of the Needham-
Shroeder protocol satisfies the secrecy property (for multi-
sessions) .

Cryptographic Logical Relations 32

Completeness

• A logical relation is complete if .
• Completeness for monadic logical relations is hard to achieve,

even for first-order types.

!

Our results:
• The cryptographic logical relations are complete for types:

• A lax logical relation that is complete for all types.

Cryptographic Logical Relations 33

Decidability

• In general, contextual equivalence in the cryptographic
metalanguage is undecidable.

• Cryptographic logical relations are decidable for types:

• Contextual equivalence is decidable for types:

Cryptographic Logical Relations

Cryptographic Logical Relations

 Introduction

 The cryptographic metalanguage

 Denotational semantics

 Cryptographic logical relations

 Contextual equivalence

 Conclusion

Cryptographic Logical Relations 35

Main results

• The category for deriving cryptographic logical
relations.

• A proper notion of contextual equivalence for
cryptographic protocols.

• Cryptographic logical relations:
– sound (can deduce contextual equivalence);
– complete for types:

• A complete lax logical relation.
• Decidability for contextual equivalence for types:

Cryptographic Logical Relations 36

Future work

• On programming languages:
– Extend the model for dealing with recursion.
– Freshness: nominal techniques based on FM-sets (name-

swapping) [Pitts et al.].

• On security:
– Protocols aiming at other security properties, e.g., anonymity.
– The computational model:

• Lambda-calculi might be a better language for expressing games,
oracle calls, etc.

• Typing systems enforcing complexity constraints [Hofmann 1997,
Mitchell et al. 1998]

• Logical relations might help!

