Cryptographic Logical Relations

— What is the contextual equivalence for cryptographic protocols and how to prove it?

Yu ZHANG

Including joint work with J. Goubault-Larrecq, D. Nowak and S. Lasota

EVEREST, INRIA Sophia-Antipolis February 12, 2007

Cryptography

Using cryptography to hide information:

But, how to distribute keys on Internet?

The Needham-Schroeder's protocol

The Needham-Schroeder's protocol

Formal verification

1978 — The invention of the NS protocol [NS 78].

1995 – G. Lowe found the flaw [Lowe 95].

Formal verification

1978 — The invention of the NS protocol [NS 78]. 1995 — G. Lowe found the flaw [Lowe 95]. Verify security properties with formal methods.

CRYPTOGRAPHIC LOUIS RELATIONS

Formal verification community

Secrecy by contextual equivalence

Secrecy: for every messages m_1 and m_2 , $\frac{Protocol(m_1) \approx Protocol(m_2)}{m_2}$.

Spi-Calculus: with bisimulations [Abadi & Gordon 97].

Motivation

We keep on using the λ -calculus approach.

Related work and our contribution

- □ The cryptographic metalanguage
- Denotational semantics
- Cryptographic logical relations
- □ Contextual equivalence

Cryptographic Logical Relations

☑ Introduction

- The cryptographic metalanguage
- $\hfill\square$ Denotational semantics
- □ Cryptographic logical relations
- □ Contextual equivalence
- □ Conclusion

Syntax (i) — Types

Based on Moggi's computational λ -calculus — a nice framework for reasoning about side-effects, including key generation.

• A computation may generate fresh keys.

Syntax (ii) — Terms

Syntax (ii) — Typing rules

$$\frac{1}{\Gamma \vdash \texttt{new}: \mathsf{Tkey}} (New)$$

$$\frac{\Gamma \vdash t : \tau}{\Gamma \vdash \operatorname{val}(t) : \mathsf{T}\tau} (Val) \qquad \frac{\Gamma \vdash t_1 : \mathsf{T}\tau \qquad \Gamma, x : \tau \vdash t_2 : \mathsf{T}\tau'}{\Gamma \vdash \operatorname{let} x \leftarrow t_1 \text{ in } t_2 : \mathsf{T}\tau'} (Let)$$

$$\frac{\Gamma \vdash t: \mathsf{msg} \quad \Gamma \vdash k: \mathsf{key}}{\Gamma \vdash \mathsf{enc}(t, k): \mathsf{msg}} (Enc) \qquad \frac{\Gamma \vdash t: \mathsf{msg} \quad \Gamma \vdash k: \mathsf{key}}{\Gamma \vdash \mathsf{dec}(t, k): \mathsf{opt}[\mathsf{msg}]} (Dec)$$

Modeling asymmetric cryptography

Public key cryptography can be modeled using functions [Sumii & Pierce 02]:

• If k is a private key, then the public key is:

 $PK(k) = \lambda x.\operatorname{enc}(x,k)$

• Encrypt a message with a public key:

 $Enc(m, PK(k)) = (\lambda x.\texttt{enc}(x,k))m$

Encoding of protocols

- Principals as functions.
- Interactions as function applications.

• The protocol is a tuple of functions:

P(secret) = <fAlice, fBob, ...>

• An attack is a function F:

F(P(secret)) = secret

Cryptographic Logical Relations

- ☑ Introduction
- ☑ The cryptographic metalanguage
- Denotational semantics
- □ Cryptographic logical relations
- □ Contextual equivalence
- \Box Conclusion

Modeling cryptography

 $\llbracket \text{key} \rrbracket - a \text{ set of keys.}$ function symbol An encrypted message is written as <math>e(v, k). $\llbracket \text{enc}(t_1, t_2) \rrbracket = e(\llbracket t_1 \rrbracket, \llbracket t_2 \rrbracket)$ $\llbracket \text{dec}(t_1, t_2) \rrbracket = \begin{cases} v, & \text{if } \llbracket t_1 \rrbracket = e(v, k) \text{ and } \llbracket t_2 \rrbracket = k \\ \bot, & \text{otherwise.} \end{cases}$

Computations as monads

- According to Moggi, side-effects can be modeled by monads [Moggi 89].
 - Concrete monads: exceptions, non-determinism, ...
- Fresh key generation is seen as a side-effect.
- Key generation monad: computations might generate fresh keys.
 - Stark uses this monad to interpret his language for name creation [Stark 94].

Stark's model

A functor category $Set^{\mathcal{I}}$ with a monad T:

- \mathcal{I} category of finite sets and injections.
 - A set represents a computation stage.
- Denotations are defined over a set of keys.
- Computations are interpreted as

$$\mathbf{T}\llbracket \tau \rrbracket s = \{ \llbracket s', a \end{bmatrix} \mid s' \in \mathcal{I}, a \in \llbracket \tau \rrbracket (s+s') \}$$

fresh keys generated during the computation

result of the computation

We use Stark's model to interpret our metalanguage.

Cryptographic Logical Relations

- ☑ Introduction
- ☑ The cryptographic metalanguage
- Denotational semantics
- Cryptographic logical relations
- □ Contextual equivalence
- □ Conclusion

What is a logical relation?

• A logical relation is a family of relations, each indexed by a type.

 $\begin{array}{rcl} n_1 \ \mathcal{R}_{\mathsf{int}} \ n_2 & \Leftrightarrow & n_1 = n_2 \\ \left\langle a_1, b_1 \right\rangle \ \mathcal{R}_{\tau \times \tau'} \ \left\langle a_2, b_2 \right\rangle & \Leftrightarrow & a_1 \ \mathcal{R}_{\tau} \ a_2 \ \& \ b_1 \ \mathcal{R}_{\tau'} \ b_2 \end{array}$

• Two functions f_1 and f_2 are related iff

 $(\forall a_1, a_2) \ a_1 \ \mathcal{R}_{\tau} \ a_2 \Rightarrow f_1(a_1) \ \mathcal{R}_{\tau'} \ f_2(a_2)$

- Basic Lemma
 - If the denotation of each constant is related to itself, denotations of every term in related environments are related.
 - Basic Lemma helps us to prove contextual equivalence.

What is a cryptographic logical relation?

• The sprit of Sumii and Pierce's logical relations: A cryptographic logical relation must relate encryption with itself, and relate decryption with itself.

Relations for base types

Only keys that are accessible to attackers are related [Sumii & Pierce 02, Abadi & Gordon 97]:

$$k_1 \ \mathcal{R}_{\mathsf{key}}^{fr} \ k_2 \Leftrightarrow k_1 = k_2 \ \& \ k_1, k_2 \in fr$$

 $fr \subseteq \llbracket key \rrbracket$ - the set of disclosed keys.

Encrypted messages are then divided into two parts

 φ — parameter of the logical relation, fixing the relation between secret messages [Sumii & Pierce 02].

Logical relations for monadic types

 Categorical construction of logical relation for monadic types [Goubault-Larrecq et al. 02].

But what is the category for constructing logical relations?

• A logical relation constructed over $\boldsymbol{Set}^{\mathcal{I}}$:

$\mathcal{R}^s_\tau \quad \subseteq \llbracket \tau \rrbracket s \times \llbracket \tau \rrbracket s$

- Kripke logical relation logical relations defined over functor categories [Mitchell & Moggi 91].
- $s \in \mathcal{I}$ s called a "world", representing a computation stage.
- Two functions are related iff they take related arguments at any larger world to related results.
- Logical relations derived over ${\it Set}^{\mathcal{I}}$ are too weak with naïve relations for keys:

$$k_1 \mathcal{R}^s_{\mathsf{key}} \quad k_2 \Leftrightarrow k_1 = k_2$$

How to represent the parameter $fr\,$?

The "frame" category

Formalize the parameter fr in the category $\mathcal{I}^{\rightarrow}$ [ZN 03]:

- objects are tuples $\langle w, i, s
 angle$;
- morphisms are pairs of injections (j, l) such that the following diagram commutes:

$$fr \text{ Becomes } i(w)$$
:
 $k_1 \mathcal{R}_{\mathsf{key}}^{\langle w, i, s \rangle} k_2 \Leftrightarrow k_1 = k_2 \& k_1, k_2 \in i(w)$

Logical relations over $Set^{\mathcal{I}}$

 $\mathcal{R}_{\tau}^{\langle w,i,s \rangle,\varphi} \subseteq \llbracket \tau \rrbracket s \times \llbracket \tau \rrbracket s$ (using the general construction of [GLLN02]).

- Basic Lemma holds, but only for a very limited set of arphi .
- This logical relation fails in relating equivalent programs:

 $\texttt{let} \ k \Leftarrow \texttt{new} \ \texttt{in} \ \texttt{val}(\langle \{\texttt{true}\}_k, \ \{\texttt{false}\}_k, \ \lambda\{x\}_k.x\rangle)$

let $k \leftarrow \texttt{new in val}(\langle \{\texttt{false}\}_k, \; \{\texttt{true}\}_k, \; \lambda\{x\}_k.\texttt{not}(x) \rangle)$

Secret keys get known by attackers at a larger "world".

The "frame" category (revised)

- In our model, secret keys must NOT be exposed at any larger "world".
 - A "world" represents a stage based on keys, not on time.

Cryptographic logical relations

• Cryptographic logical relations derived over $Set^{\mathcal{PI}}$:

$$\mathcal{R}_{\tau}^{\langle w, i, s \rangle, \varphi} \subseteq \llbracket \tau \rrbracket s \times \llbracket \tau \rrbracket s$$

- Cipher function φ a group of "world"-indexed functions, each determining the relation between secret cipher-texts at the "world".
- Basic Lemma holds for a non-trivial set of cipher functions.
- Recognize Pitts and Stark's operational logical relations for name creation.

Cryptographic Logical Relations

- ☑ Introduction
- ☑ The cryptographic metalanguage
- ☑ Denotational semantics
- ☑ Cryptographic logical relations
- Contextual equivalence
- □ Conclusion

Contexts for cryptographic protocols

 In the computational lambda-calculus, contexts are allowed to do computations:

$x:\tau\vdash\mathcal{C}:\mathsf{T}o$

Contexts represent exactly the knowledge of attackers:

Cryptographic contextual equivalence

$$\approx_{\tau}^{\langle w,i,s\rangle,\kappa} \subseteq \llbracket \tau \rrbracket s \times \llbracket \tau \rrbracket s$$

defined using category $\mathcal{PI}^{\rightarrow}$:

- $\overline{w'}$: key, \overline{m} : msg, $x : \tau \vdash C$: To holds;
- κ context knowledge, sets of secret cipher-texts that contexts can access;
- κ -honest environment, mapping every message variable to a ciphertext in κ .

Verifying the secrecy property

Secrecy property:

∀ msg1, msg2, Protocol(msg1) ≈ Protocol(msg2)

• Theorem:

Cryptographic logical relations are sound:

$$\mathcal{R}_{\tau}^{\langle w,i,s \rangle} \; \Rightarrow \; pprox_{\tau}^{\langle w,i,s
angle}$$

• Proposition:

This technique shows that Lowe's fixed version of the Needham-Shroeder protocol satisfies the secrecy property (for multisessions).

Completeness

- A logical relation $\mathcal{R}_{ au}$ is complete if $\,pprox_{ au} \, \Rightarrow \, \mathcal{R}_{ au}$
- Completeness for monadic logical relations is hard to achieve, even for first-order types.

Our results:

• The cryptographic logical relations are complete for types:

$$\tau_c^1 \quad ::= \quad \text{key} \mid \text{msg} \mid \text{Tkey} \mid \text{key} \to \tau_c^1 \mid \text{msg} \to \tau_c^1$$

A lax logical relation that is complete for all types.

Decidability

- In general, contextual equivalence in the cryptographic metalanguage is undecidable.
- Cryptographic logical relations are decidable for types: $au_d^1::= \ker \mid {
 m msg} \mid {
 m T} au_d^1 \mid \ker o au_d^1$
- Contextual equivalence is decidable for types:

$$au_{pprox}^1 ::= \mathsf{key} \mid \mathsf{msg} \mid \mathsf{Tkey} \mid \mathsf{key} \to au_{pprox}^1$$

Cryptographic Logical Relations

- ☑ Introduction
- ☑ The cryptographic metalanguage
- ☑ Denotational semantics
- ☑ Cryptographic logical relations
- ☑ Contextual equivalence
- Conclusion

Main results

- The category Set^{PI[→]} for deriving cryptographic logical relations.
- A proper notion of contextual equivalence for cryptographic protocols.
- Cryptographic logical relations:
 - sound (can deduce contextual equivalence);
 - complete for types:

 $\tau_c^1 \quad ::= \quad \mathrm{key} \mid \mathrm{msg} \mid \mathrm{Tkey} \mid \mathrm{key} \to \tau_c^1 \mid \mathrm{msg} \to \tau_c^1$

- A complete lax logical relation.
- Decidability for contextual equivalence for types:

 $\tau^1_\approx ::= \mathsf{key} \mid \mathsf{msg} \mid \mathsf{Tkey} \mid \mathsf{key} \to \tau^1_\approx$

Future work

- On programming languages:
 - Extend the model for dealing with recursion.
 - Freshness: nominal techniques based on FM-sets (nameswapping) [Pitts et al.].
- On security:
 - Protocols aiming at other security properties, e.g., anonymity.
 - The computational model:
 - Lambda-calculi might be a better language for expressing games, oracle calls, etc.
 - Typing systems enforcing complexity constraints [Hofmann 1997, Mitchell et al. 1998]
 - Logical relations might help!