
Preservation of proof obligations for hybrid verification methods

Gilles Barthe
IMDEA Software, Spain

César Kunz
INRIA Sophia Antipolis, France

David Pichardie
INRIA Rennes/IRISA, France

Julián Samborski-Forlese
IMDEA Software, Spain

Abstract

Program verification environments increasingly rely on
hybrid methods that combine static analyses and verifica-
tion condition generation. While such verification environ-
ments operate on source programs, it is often preferable to
achieve guarantees about executable code. We show that,
for a hybrid verification method based on numerical static
analysis, it is possible to transfer evidence from source to
compiled programs. More concretely, we formalize a hy-
brid verification method for compiled programs and show
that compilation preserves proof obligations. The crux of
our result is a proof that compilation preserves solutions of
analysis; this is achieved by relying on a bytecode analy-
sis that performs symbolic execution of stack expressions in
order to overcome the loss of precision incurred by perform-
ing static analyses on compiled (rather than source) code.
Then, we show that hybrid verification methods are sound
by proving that every program provable by hybrid methods
is also provable (at a higher cost) by standard methods. Our
results generalize to hybrid methods our earlier work on
preservation of proof obligations, and warrant their use in
Proof Carrying Code scenarios where certificates are gen-
erated from source code verification.

1 Introduction

Program verification techniques are widely used to rea-
son about the correctness of applications, and play an im-
portant role in fields such as mobile code and embedded
systems where strong guarantees are required. However,
program verification, and in particular deductive program
verification, is traditionally applied to source code, whereas
guarantees are often required about executable code. This
discrepancy is particularly acute in the context of mobile
code, where code consumers do not trust code producers

An extended version of the paper is available online at:
http://www-sop.inria.fr/everest/research/Hybrid/

and may not have access to the source code. Therefore, it
is of interest to develop methods to transfer evidence from
source code verification to the code consumers. In earlier
work [3], we focus on transferring proofs from source to
compiled programs in the context of verification methods
based on verification condition generators, that are com-
monly used in Proof Carrying Code [16] and program veri-
fication environments. We have shown that non-optimizing
compilation preserves proof obligations, and therefore that
the certificates of source programs can be reused directly to
validate compiled programs. However, state-of-the-art ver-
ification tools do not use plain verification condition gen-
eration; instead, they rely on hybrid methods, that combine
static analyses and verification condition generation.

The objective of the paper is to extend preservation of
proof obligations to hybrid verification methods. For con-
creteness, we consider a small imperative language with ar-
rays, and we focus on a hybrid method based on a generic
numerical analysis, inspired by [14, 6], and that can be in-
stantiated to several numeric domains, including polyhedra.

We first define a hybrid verification method in which pro-
grams are subjected to static analysis, and then to verifica-
tion condition generation. The VCgen exploits the informa-
tion of the analysis in two useful ways: on the one hand,
verification conditions that originate from spurious edges in
the control-flow graph are discarded: more precisely, the
VCgen ignores the case of out-of-bound accesses whenever
the analysis ensures that accesses are within bounds. This
leads to fewer, smaller verification conditions. Furthermore,
the VCgen adds the results of the analysis as additional as-
sumptions to help the user prove the verification conditions.
This is particularly useful for the relational analyses con-
sidered as they can provide part of the invariants required to
prove programs correct.

Then, we prove preservation of proof obligations us-
ing the techniques of [5, 3]. The proof relies on knowing
that the solutions of the analysis are preserved by compila-
tion. Although analyzing compiled programs is known to be
less precise than analyzing source programs, see e.g. [13],
we achieve preservation of solutions by defining at byte-

1

code level an analysis that performs a symbolic execution
of stacks, as in [22, 21, 6].

Finally, we relate hybrid verification to standard verifica-
tion. We show that programs that are provably correct using
our hybrid method, remain provably correct using standard
verification condition generation; to this end, we define a
compiler that transforms a hybrid specification (combing
logical assertions and analysis results) into a logical one by
giving a logical interpretation of the analysis results.

2 Setting

This section introduces the source language (an impera-
tive language with arrays of integers), the target language (a
stack-based language with jumps), and the compiler.

We assume given two disjoint sets Vs of scalar variables
and Va of array variables, and let V denote Vs + Va. Each
variable in Va has an associated size. Furthermore, we as-
sume given two sets V olds and V olda in 1-1 correspondence
with Vs and Va, which are used to store initial values. We
also consider a special variable res, which is used to rep-
resent the value of the program result. Finally, we assume
given a set Lab ⊂ N of labels.

Source Language

Programs are defined as commands, and are decorated with
labels in order to express analysis results:

e ::= e op e | n | x | a[e]
c ::= Skip | [x:=e]k | [a[e]:=e]k | c; c | [return e]k

| if [e on e]k then c else c
| while [e on e]k do c

where x, a, n and k respectively range over Vs, Va, Z and
Lab, op ranges over (binary) arithmetic operations, and on
over arithmetic comparisons. We assume that labels occur
at most once in commands.

The semantics of source programs is formalized by a
small-step transition relation between states. States may
be intermediate, in which case they consist of a statement
and of a memory, or final, in which case they consist of
a memory, and possibly a tag to denote abnormal termina-
tion. Memories are modeled as pairs of mappings respec-
tively from variables to values and from arrays to indices to
values. We assume that each array a comes equipped with
its size |a| and define the semantic domains of the source
language as follows:

VMem = Vs → Z
AMem = Πa ∈ Va. {i | 1 ≤ i ≤ |a|} → Z
Mem = VMem×AMem
StatesI = Stmt× VMem×AMem
StatesF = VMem×AMem× (Z + {AOB})
States = StatesI + StatesF

The operational semantics of programs is standard and,
thus, omitted. (See the next subsection for the semantics
of instructions that manipulate arrays.)

Bytecode Language

A bytecode programs is defined as a list of instructions. In-
structions either manipulate the memory that stores the val-
ues of variables and the contents of arrays, or manipulate
the operand stack, or perform a conditional or unconditional
jump. The set of instructions is defined by the following
grammar:

ins ::= prim op | push v | load x | store x | return
| aload a | astore a | cjmpon l | jmp l | nop

We denote by ṗ[l] the instruction at position l of a bytecode
program ṗ. The semantics of bytecode programs is formal-
ized using a transition relation between states. States may
either be intermediate or final; intermediate states consist
of a program counter, an operand stack, that stores the re-
sults of intermediate computations, and a memory. The se-
mantic domains of the bytecode language are defined as fol-
lows, where we implicitly assume that the program counter
is within the bounds of programs.

Stack = Z?
StatebI = N× VMem×AMem× Stack
StatebF = VMem×AMem× (Z + {AOB})
Stateb = StatebI + StatebF

The operational semantics of programs is standard. We only
provide the operational semantics of the instructions aload
and astore; these instructions may cause abrupt termina-
tion if array accesses are out-of-bound. The rules are given
in Figure 2, where we use the notation [f | s → r] to refer
the function that is identical to f everywhere except in r that
returns s, for any setsR and S and any function f : R→ S.

Compiler

The compiler is standard, and defined in Figure 1; we use
the function init : Stm → Lab to associate to each state-
ment its initial label. We assume label compatibility, i.e.
that the label of a source statement is the same as the label
of the program point for its compilation.

Throughout the rest of the paper we let P be a source
program, and the bytecode program ṗ the result of the com-
pilation of program P .

3 Preservation of solutions

It is folklore that compilation potentially yields a loss of
precision for relational analyses. The purpose of this sec-
tion is to show that solutions of abstract interpretations are

2

JnKe = push n
JxKe = load x
Jx[e]Ke = JeKe; aload x
Je1 op e2Ke = Je2Ke; Je1Ke; prim op

J[x:=e]kK = k : JeKe; store x
J[a[e1]:=e2]kK = k : Je2Ke; Je1Ke; astore a
Js1; s2K = Js1K; Js2K
J[return e]kK = k : JeKe; return
J[Skip]kK = k : nop
Jif [e1 on e2]k then s1 else s2K =
k : Je2Ke; Je1Ke; cjmpon k1; k2 : Js2K; jmp l; k1 : Js1K

where k1 = init(s1) = k2 + |Js2K|+ 1
k2 = init(s2) = k + |Je2Ke; Je1Ke|+ 1
l= k1 + |Js1K|

Jwhile [e1 on e2]k do sK =
k : Je2Ke; Je1Ke; cjmpon k1; jmp l; k1 : JsK; jmp k

where k1 = k + |Je2Ke|+ |Je1Ke|+ 2
l= k1 + |JsK|+ 1

Figure 1. Compiler

P [i] = aload a 0 ≤ n < |a|
〈i, ρv, ρa, n :: s〉 〈i+ 1, ρv, ρa, ρa a n :: s〉

P [i] = aload a ¬ 0 ≤ n < |a|
〈i, ρv, ρa, n :: s〉 EX 〈ρv, ρa,AOB〉

P [i] = astore a 0 ≤ n < |a|
〈i, ρv, ρa, n :: v :: s〉 〈i+1, ρv, [ρa | a→ [ρa a | n→ v]], s〉

P [i] = astore a ¬ 0 ≤ n < |a|
〈i, ρv, ρa, n :: v :: s〉 EX 〈ρv, ρa,AOB〉

P [i] = return

〈i, ρv, ρa, n : s〉 〈ρv, ρa, n〉

Figure 2. Semantics of bytecode (excerpts)

preserved by compilation, provided one uses symbolic ex-
pressions, as done in [22, 21, 6], to mitigate the presence
of the operand stack and to recover the loss of precision in-
curred by compilation.

Symbolic Expressions

Expressions and guards serve as the interface with the nu-
merical relational domain in the analysis for bytecode. Be-
low we let x range over V .

Expr 3 e ::= n |x |x[e] | ? | ?[e] | e op e x ∈ V
Guard 3 t ::= e on e

The expression ? represents an unknown value; therefore,
expressions are interpreted as sets of possible values. For-
mally, the semantics JeKρ and JtKρ of expressions with re-

spect to an environment ρ = 〈ρv, ρa〉 are defined by the
clauses:

JnKρ = {n} JxKρ = ρv x J?Kρ = Z J?[e]Kρ = Z
Jx[e]Kρ = {ρa x v | v ∈ JeKρ}

Je1 op e2Kρ = {n1 op n2 | n1 ∈ Je1Kρ, n2 ∈ Je2Kρ}
Je1 on e2Kρ ⇐⇒ ∃ n1 ∈ Je1Kρ, n2 ∈ Je2Kρ • n1 on n2

Note that the expression ? is not required for analyz-
ing bytecode programs that are achieved by compilation of
the source program, since the stack is empty after storing a
value in an array. However, it provides more precision when
dealing with programs that are not obtained by compilation.

Abstract domain

Following Miné [14], we assume given an abstract numer-
ical domain interface, which can be instantiated with stan-
dard relational abstract domains. The interface consists of a
domain D equipped with a partial order v ⊆ D × D, meet
and join operators u,t : D × D → D, a least element ⊥
and a greater element >. We also assume given abstract as-
signment functions Jx:=eK], Jx[e1]:=e2K] : D → D, and a
function assume] that maps guards to abstract elements.

Finally, we assume given a monotone concretization
function γ : D→ P(VMem×AMem) mapping abstract
elements to sets of environments in VMem×AMem, and
satisfying the following properties:

γ(d1 u d2) ⊇ γ(d1) ∩ γ(d2)
γ(d1 t d2) ⊇ γ(d1) ∪ γ(d2)

γ(Jx:=eK](d)) ⊇
{〈ρv[x 7→ v], ρa〉 | 〈ρv, ρa〉 ∈ γ(d)

∧ v ∈ JeK〈ρv,ρa〉}
γ(Jx[e1]:=e2K](d)) ⊇

{〈ρv, ρa[x 7→ v1 7→ v2]〉 | ρ = 〈ρv, ρa〉 ∈ γ(d)
∧ v1 ∈ Je1Kρ ∧ v2 ∈ Je2Kρ}

{ρ | JtKρ} ⊆ γ(assume](t))

We define the abstract test JtK] : D → D of a guard t ∈
Guard by JtK](l]) = assume](t) u l].

Source Code Analysis

The source code analysis is specified by abstract transfer
functions that map elements of the abstract domain into el-
ements of the abstract domain.

Definition 1 (Abstract Domain for High-Level) A result
of the analysis for the source program P is described by
a mapping Loc in the lattice

State] = Lab→ D .

3

stm Fstm
Skip l] → l]

x:=e l] → Jx:=eK](l])
a[x]:=y l] → Ja[x]:=yK](l])

stm 6∈ {if t then s1 else s2, while t do c, s1 ; s2, return e}
Loc ` {Loc(i)} [stm]i {Fstm(Loc(i))} Loc ` {Loc(i)} [return e]i {⊥}

Loc ` {JtK](Loc(i))} s1 {l]1} Loc ` {J¬tK](Loc(i))} s2 {l]2}
Loc ` {Loc(i)} if [t]i then s1 else s2 {l]1 t l

]
2}

Loc ` {JtK](Loc(i))} s {l]} l] v Loc(i)
Loc ` {Loc(i)} while [t]i do s {J¬tK](Loc(i))}

Loc ` {l]} s1 {l]1} Loc ` {l]1} s2 {l
]
2}

Loc ` {l]} s1 ; s2 {l]2}

Loc ` {>} P {l]}
Loc ` P

Figure 3. Definition of the constraint system for the source code analysis.

Definition 2 (Solution) A mapping Loc for the source pro-
gram P is a solution of the analysis if it verifies the con-
straint system defined in Figure 3, i.e. Loc ` P holds.

Byte Code Analysis

As for the source code analysis, the bytecode analysis is de-
fined by abstract transfer functions that map abstract states
into abstract states. In this case, the abstract states are pairs
of the form (s], l]) where l] is an element of the abstract do-
main, and the list of symbolic expressions s] abstracts the
operand stack. The symbolic abstract domain for stacks is
Expr?, where for any set A, A? denotes the domain of lists
with elements in A. The set of variables considered by the
bytecode analysis is the same as in the source code analysis.

Definition 3 (Bytecode Abstract Domain) A result of the
analysis for ṗ is described by a mapping lȯc in the lattice

˙state
] = Lab→ (Expr?L × D) .

An analysis result is a solution of the analysis if it satis-
fies the constraint system associated to each program. The
constraint system is defined in Figure 4. For instructions
other than branching or return instructions, the constraint
is defined by partial transfer functions in Expr? × D ⇀
(Expr?×D), most of them defined as a symbolic execution
affecting the abstract representation of the operand stack.

Definition 4 (Solution) A mapping lȯc for the bytecode
program ṗ is a solution of the analysis if it satisfies the con-
straint system of Figure 4, i.e. if lȯc ` ṗ holds.

Preservation of Solutions

We define first the compilation of a source code analysis
solution and then show that it is a solution for the byte
code analysis. For notational convenience, we denote by
ḟs1;··· ;sn

(s], l]) the composition ḟsn
(· · · (ḟs1(s], l])) · · ·),

where s1; · · · ; sn is a sequence of byte code instructions.
Let succ(l) denotes the set of successors of a label l, e.g.
succ(l) = ∅ and succ(l) = {l + 1, l′} respectively for
ṗ[l] = return and ṗ[l] = cjmpon l′. The set pred(l) is
defined as {l′ | l ∈ succ(l′)}.

Remark 5 For each byte code program ṗ, we can extract
from the previous constraint system a set of transfer func-
tions (ġi,j)(i,j)∈Lab2 such that lȯc ` ṗ if and only if⊔
k′∈pred(k) ġk′,k(lȯc(k′)) v lȯc(k) for all k ∈ dom(ṗ).

We can extend a partial function ˙locpartial ∈ ˙state
]

to a
total function lȯc on dom(ṗ) if we set lȯc(k) equal to:

if k ∈ dom(˙locpartial) then ˙locpartial(k)
else if k ∈ dom(ṗ) then

⊔
k′∈pred(k) ġk′,k(lȯc(k′))

else undef

This definition only make sens if, by considering the control
flow graph of ṗ whose edges are {(i, j)|i ∈ dom(ṗ) ∧ j ∈
succ(i)}, every loop contain a label in dom(˙locpartial). We
call completion of ˙locpartial this function lȯc.

Definition 6 (Compiled analysis results) Given an analy-
sis result Loc for the program P , an analysis result com-
piled from Loc is the completion of the function ˙locpartial de-
fined on each k ∈ dom(Loc) by ˙locpartial(k) = ([], Loc(k)).

This definition can be shown to be well defined from the
facts that Loc annotates every loop in P and each loop in
the control flow graph of ṗ contains a label of a loop in P .

4

instr ḟinstr
prim op (e1 :: e2 :: s], l])→ (xe1 op e2y :: s], l])

push n (s], l])→ (n :: s], l])
load r (s], l])→ (xry :: s], l])
store r (e :: s], l])→ (s][?/r], Jr:=eK](l]))
aload a (e :: s], l])→ (xa[e]y :: s], l])
astore a (e1 :: e2 :: s], l])→ (s][?/a], Ja[e1]:=e2K](l]))
nop (s], l])→ (s], l])

Instr 6∈ { jmp i′, cjmpon i′, return} ḟinstr(lȯc(i)) v lȯc(i+ 1)

lȯc ` i : Instr lȯc ` i : return

lȯc(i) = (e1 :: e2 :: s], l]) (s], J¬(e1 on e2)K](l])) v lȯc(i+ 1) (s], Je1 on e2K](l])) v lȯc(j)
lȯc ` i : cjmpon j

lȯc(i) v lȯc(j)
lȯc ` i : jmp j

> v lȯc(0) ∀i ∈ dom(ṗ) • lȯc ` i : ṗ[i]

lȯc ` ṗ

Figure 4. Definition of the constraint system for the byte code analysis.

Lemma 7 Let ṗ1, ṗ2 and e such that ṗ = ṗ1 :: l : JeKe ::
l′ : ṗ2. Then, lȯc(l′) = fi1;...;ik(s], l]) = (e :: s], l]) where
(s], l]) = lȯc(l) and [i1; . . . ; ik] = JeKe.

PROOF. We prove the lemma by structural induction over
expression e.

Lemma 8 Let ṗ1, ṗ2 and e such that ṗ = ṗ1 :: k1 : JeKe ::
k2 : ṗ2. Then

∀k ∈ [k1, k2), lȯc ` k : ṗ[k].

PROOF. We shall prove it by induction over expression e.
Note that k2 6∈ dom(Loc) since ṗ is a compiled program.

Case e = n. In this case JeKe = push n, [k1, k2) =
{k1} and since pred(k1 + 1) = {k1}, lȯc(k1 + 1) =
ḟpush n(lȯc(k1)), which implies that lȯc ` k1 : push n.

Case e = x. We have JeKe = load x, [k1, k2) = {k1} and
since pred(k1+1) = {k1}, lȯc(k1+1) = ḟload x(lȯc(k1)),
which implies that lȯc ` k1 : load x.

Case e = a[e′]. Here JeKe = Je′Ke; aload a. Let k′ =
k1 + |Je′Ke|. By induction hypothesis we have that ∀k ∈
[k1, k

′), lȯc ` k : ṗ[k] and since pred(k′+1) = {k′} then
ḟaload a(lȯc(k′)) which implies that lȯc ` k′ : aload a.

Case e = e1op e2. This give JeKe = Je2Ke; Je1Ke; prim op.
Let k′′ = k1 + |Je′′Ke| and k′ = k′′+ |Je′Ke|. By induction
hypothesis, ∀k ∈ [k1, k

′′) ∪ [k′′, k′), lȯc ` k : ṗ[k] and
since the only predecessor of k1 + 1 is k, lȯc(k′ + 1) =
ḟprim op(lȯc(k′)), which means that lȯc ` k′ : prim op.

Thus, we have proved that ∀k ∈ [k1, k2), lȯc ` k : ṗ[k].

The following lemma states the main result of this sec-
tion: compilation preserves analysis solutions.

Lemma 9 If Loc is s.t. Loc ` P , then the analysis result
lȯc compiled from Loc is s.t. lȯc ` ṗ, i.e. it is a solution of
the bytecode analysis.

PROOF. Let suppose that ṗ = ṗ1 :: k1 : JsK :: k2 : ṗ2 and
that there exists l] such that Loc ` {Loc(k1)} s {l]} and
([], l]) v lȯc(k2). We shall prove that ∀k ∈ [k1, k2), lȯc `
k : ṗ[k]. In order to do that, we proceed by induction over
statement s. In this proof we omit the calculus of the primed
labels.

Case s = [Skip]k1 . We have JsK = nop. Since

ḟnop(lȯc(k1)) = lȯc(k1)
= ([], Loc(k1))
= ([], FSkip(lȯc(k1)))

= ([], l])
v lȯc(k2)
= lȯc(k1 + 1),

then lȯc ` k1 : nop.

Case s = [x:=e]k1 . Here JsK = JeKe; k1
′ : store x. By

Lemma 8, ∀k ∈ [k1, k1
′), lȯc ` k : ṗ[k] and since

ḟstore x(lȯc(k1
′)) = ḟstore x(([e], Loc(k1

′)))

= ([], Jx:=eK](Loc(k1)))
= ([], Fx:=e(lȯc(k1)))

= ([], l])
v lȯc(k2)
= lȯc(k1

′ + 1),

5

also lȯc ` k1
′ : x:=e.

Case s = [a[e1]:=e2]k1 . JsK = Je2Ke; Je1Ke; k1
′ :astore a.

By Lemma 8, ∀k ∈ [k1, k1
′), lȯc ` k : ṗ[k] and since

ḟastore a(lȯc(k1
′)) = ḟastore a(([e1, e2], Loc(k1

′)))

= ([], Ja[e1]:=e2K](Loc(k1)))
= ([], Fa[e1]:=e2(lȯc(k1)))

= ([], l])
v lȯc(k2)
= lȯc(k1

′ + 1),

also lȯc ` k1
′ : a[e1]:=e2.

Case s = s1; s2. In this case JsK = Js1K; k1
′ : Js2K. By

Induction Hypothesis we know that ∀k ∈ [k1, k1
′) ∪

[k1
′, k2), lȯc ` k : ṗ[k].

Case s = [return e]k1 . Here JsK = JeKe; k1
′ : return. By

Lemma 8, ∀k ∈ [k1, k1
′), lȯc ` k : ṗ[k]. Also, lȯc ` k1

′ :
return is always true.

Case s = if [e1 on e2]k1 then s1 else s2. We have
JsK=Je2Ke; Je1Ke; k1

′ :cjmpon k4
′; k2
′ : Js2K; k3

′ :jmp k2; k4
′ :

Js1Ke. By Lemma 8 and Induction Hypothesis we know
that ∀k ∈ [k1, k1

′) ∪ [k2
′, k3
′) ∪ [k4

′, k2), lȯc ` k : ṗ[k]

Assuming our hypothesis,

Loc ` {Je1 on e2K](Loc(k1))} s1 {l]1}
and Loc ` {J¬(e1 on e2)K](Loc(k1))} s2 {l]2}

where l]1 t l
]
2 = l].

It can be proved that for every judgement of the form
Loc ` {d#

1 } s {d
#
2 }, d

#
1 = Loc(init(s)). Therefore,

lȯc(k4
′) = ([], Loc(k4

′)) = ([], Je1 on e2K](Loc(k1))) and
lȯc(k2

′) = ([], Loc(k2
′)) = ([], J¬(e1 on e2)K](Loc(k1))).

Additionally, Loc(k1
′) = ([e1, e2], Loc(k1)) by Lemma 7.

Thus, lȯc ` k1
′ : cjmpon k4

′.

One can show that for all s s.t. ṗ = ṗ1 :: k : JsK :: k′ : ṗ2

and k′ 6∈ dom(Loc) and Loc ` {Loc(init(s))} s {l]},
lȯc(k′) v ([], l]). Since k3

′ 6∈ dom(Loc), lȯc(k3
′) v

([], l]2). Also, ([], l]2) v ([], l]) v lȯc(k2). Then, lȯc(k3
′) v

lȯc(k2) implies lȯc ` k3
′ : jmp k2, which complete de

proof for this case.

Case s = while [e1 on e2]k1 do s′.
JsK = Je2Ke; Je1Ke; k1

′ : cjmpon k3
′; k2
′ : jmp k2; k3

′ :
Js′K; k4

′ : jmp k1. By Lemma 8 and Induction Hypothesis
we know that ∀k ∈ [k1, k1

′) ∪ [k3
′, k4
′), lȯc ` k : ṗ[k].

Using Lemma 7,

lȯc(k1
′) = ([e1, e2], Loc(k1)) (1)

Since k2
′ 6∈ Loc and pred(k2

′) = {k1
′},

lȯc(k2
′) = ġk1′,k2′(lȯc(k1

′))

= ([], J¬(e1 on e2)K](Loc(k1)))
(2)

Given that Loc ` {Je1 on e2K](Loc(k1))} s′ {l]s′} holds
assuming our hypothesis and k3

′ = init(s′),

lȯc(k3
′) = ([], Je1 on e2K](Loc(k1))) (3)

As we said, lȯc(k4
′) v l]s′ because k4

′ 6∈ Loc. This gives us

lȯc(k4
′) v lȯc(k2) (4)

Also, by hypothesis,

J¬(e1 on e2)K](Loc(k1)) v lȯc(k2) (5)

Then, (1), (2) and (3) implies lȯc ` k1
′ : cjmpon k3

′. (2)
and (5) implies lȯc ` k2

′ : jmp k2, and (4) implies lȯc `
k4
′ : jmp k1, which complete the proof for this last case.

Therefore, we showed that ∀kı[k1, k2), lȯc ` k : ṗ[k].

4 Preservation of proof obligations

In this section we define two verification frameworks,
respectively for source programs and for unstructured byte-
code of previous sections. As a specification language we
consider first order formulae, namely the domain of asser-
tions A. The validity of an assertions in a particular execu-
tion state η ∈ States is standard. In particular, an assertion
that contains the expression a[e] is invalid in those execu-
tion states in which e is out of the bounds of the array a.

We consider as a program specification a tuple
(pre, annot, post, χ), where the assertion pre is a precon-
dition, post and post are respectively normal and abnormal
postconditions, and the partial function annot : Lab ⇀ A
maps program labels to internal points specifications. The
special variable res may only occur in post, and pre only
refers to variables from V . When specifying a bytecode
program, assertions may refer to the special variable s rep-
resenting the operand stack.

We say that a program satisfies the specification
(pre, annot, post, χ), if every execution starting in a state
that satisfies pre only reaches normal final states satisfying
post or abnormal states satisfying χ, and only reaches inter-
mediate l-labeled points satisfying annot(l). Given a pro-
gram specification (pre, annot, post, χ), a verification con-
dition generator (VCgen) framework provides a set of suf-
ficient proof obligations that ensures that the program satis-
fies the specification.

The VCgen’s defined in this section are hybrid in the
sense that they take advantage of a previously computed

6

analysis to reduce the size of proof obligations. We assume
that the result of a relational analysis (Loc and lȯc respec-
tively for source and bytecode programs) is given as input
to the VCgen. For the abstract domain D, we consider a
relation |= ⊆ D × A such that for any guard b and any
d ∈ D, d |= b indicates that the interpretation of the abstract
element d ensures the validity of the condition b. For exam-
ple, when accessing an array in the expression a[x] we shall
check that the value of the variable x is within the bounds of
the array a. If we instantiate D with the domain of convex
polyhedra, each element d ∈ D represents a set of linear
constraints from which we can discover whether the condi-
tion 0 ≤ x < |a| is satisfied.

A further improvement over standard VCgen’s consists
of reusing the result of the analysis to strengthen loop in-
variants. This technique helps reducing the size of anno-
tations and the burden of interactive specification. To that
end, we assume a concretization function γa : D → A to
interpret abstract elements d ∈ D as assertions.

VCgen for Source Programs

Consider a specification (pre, annot, post, χ) for the source
program P . Throughout this section, we assume that
annot sufficiently annotates the program P , that is, for ev-
ery subprogram while [t]l do c of P , we have that l ∈
dom(annot).

A VCgen for source programs is defined by the set of
proof obligations:

PO = {pre⇒ φ[~V/~V old]} ∪ θ

where 〈φ, θ〉 = WP(P, post), φ[~V/~V old] represents the re-
sult of substituting in φ any array or scalar variable xold

in V olds + V olda by x, and the function WP is defined in
Figure 5. In the figure, the assertion inB(e) stands for the
condition that must satisfy an execution state to ensure that
every array access in e is within bounds. For instance, if e
does not contain array expressions inB(e) is defined as true
and inB(a[e]) as 0 ≤ e < |a|. We follow the simplifying
assumption that expressions contain no more than one array
access. For any array variable a and expressions e1 and e2,
upd(a, e1, e2) is interpreted as the array a′ such that a′[e] is
evaluated to e2 if e1 = e and to a[e] otherwise. To simplify
the presentation of examples, proof obligations for while
statements are split into two assertions corresponding to the
true and false branches.

The function WP considers the result of the analysis
Loc to reduce the size of proof obligations. That is, if
the abstract value Loc(l) associated to the program point
under consideration indicates that any array access in the
statement is within bounds, the returned predicate is sim-
plified by omitting the exceptional postcondition. Con-
sider the program of Figure 6. If the analysis is able to

compute at label k1 an abstract value d such that d |=
0 ≤ i < |A|, the WP function will return the assertion
upd(A, i, A[0])[i+ 1− 1] = A[0], which together with the
loop invariant at label k yields the proof obligation

A[i− 1] = 0 ∧ 0 ≤ i ≤ |A| ⇒
i < |A| ⇒ upd(A, i, A[0])[i+ 1− 1] = A[0]

where the boxed assertion 0 ≤ i ≤ |A| represents the in-
terpretation of the result of the analysis at the loop entry
point.

In contrast, if we do not take advantage of the result of
the analysis we are due to prove the equivalent but bigger
formula:

A[i− 1] = 0 ∧ 0 ≤ i ≤ |A| ⇒
i < |A| ⇒

(0 ≤ i < |A| ⇒ upd(A, i, A[0])[i+ 1− 1] = A[0]
∧¬(0 ≤ i < |A|)⇒ false) .

As can be seen from the definition of WP, proof obliga-
tions are of the form φ1∧ γa(d) ⇒ φ2, whereas a standard
VCgen outputs the stronger proof obligation φ1 ⇒ φ2. In
consequence, one can provide the code with a weaker in-
variant φ1 as long as the analyzer is able to eventually infer
the missing information γa(d). For instance, for the sim-
ple program of Figure 6, a standard VCgen will return the
invalid proof obligation

A[i− 1] = A[0]⇒ ¬(i < |A|)⇒ A[|A| − 1] = A[0]

for the path that does not enter the loop. It is sufficient to
provide a stronger invariant, i.e. in conjunction with the
condition i ≤ |A|, to prove the program correct. However,
as an alternative to increasing the size of the program an-
notations, assuming the condition i ≤ |A| is inferred by the
analysis, the hybrid VCgen generates the weaker (and valid)
proof obligation

A[i− 1] = A[0] ∧ 0 ≤ i ≤ |A| ⇒
¬(i < |A|)⇒ A[|A| − 1] = A[0] .

VCgen for Bytecode Programs

Let (pre, annot, post, χ) be a specification for the bytecode
program ṗ. As with the VCgen for source programs de-
fined above, the precondition pre and the internal annota-
tions annot(l) are strengthened with the result of the analy-
sis. To that end, we interpret the result of the analysis with
the aid of the concretization functions γa : D → A and
γ̄a : (Expr? × D) → A. A VCgen for bytecode is defined
by extracting the set of proof obligations:

po = {pre⇒ wpi(0)[V/ ~V old]}∪
{annot(l) ∧ γ̄a(lȯc(l))⇒ wpi(l) | l ∈ dom(annot)}

7

WP(Skip, φ) = 〈φ, ∅〉 WP([return e]l, φ) = 〈ckB(e, post[e/res]), ∅〉 WP([x:=e]l, φ) = 〈ckB(e, φ[e/x]), ∅〉

WP([a[e1]:=e2]l, φ) = 〈ckB(e2, ckB(a[e1], φ[upd(a,e1,e2)/a])), ∅〉
WP(c1, φ) = φ1, θ1 WP(c2, φ) = φ2, θ2

WP(if [t]l then c1 else c2, φ) = 〈ckB(t, t⇒ φ1 ∧ ¬t⇒ φ2), θ1 ∪ θ2〉

WP(c, φ) = 〈φ1, θ〉 Φ = (t⇒ φ1) ∧ (¬t⇒ φ)

WP(while [t]l do c, φ) = 〈annot(l), {annot(l) ∧ γa(Loc(l))⇒ ckB(t,Φ)} ∪ θ1〉
WP(c1, φ2) = 〈φ1, θ1〉 WP(c2, φ) = 〈φ2, θ2〉

WP(c1; c2, φ) = 〈φ1, θ1 ∪ θ2〉

where the expression ckB(e, ϕ) stands for ϕ if Loc(l) |= inB(e) and the formula inB(e)⇒ ϕ ∧ ¬inB(e)⇒ χ otherwise.

Figure 5. Definition of WP function

// pre : true, χ : false

[i := 1]k0 ;
// A[i− 1] = A[0]

while [i < |A|]k do {

[A[i] := A[0]]k1 ; [i := i+ 1]k2

}
// A[|A| − 1] = A[0]

...

Figure 6. Program example

where the predicate transformer wp is shown in Figure 7.
If the program point is annotated, the function wp returns
annot(l). Otherwise it applies the weakest precondition
transformer wpi, defined in terms of the instruction at pro-
gram point l, taking as parameters the annotations computed
for the successor program points. The definition of wp and
wpi is done by induction along the control flow paths of
the program. We say that a program ṗ is sufficiently anno-
tated if the control flow graph of the program ṗ does not
contain unannotated loops. The induction principle follow-
ing from the definition of sufficiently annotated programs is
sufficient to ensure that wp and wpi are well defined For a
list s, s[0] and s[1] represent the first and second element of
s, and ↑ s denotes the result of removing the first element
from s.

Preservation of Proof Obligations

Consider the specification (pre, annot, post, χ) for source
program P , and assume that annot is a sufficient annotation
for P , i.e. every loop is annotated. Let (pre, annot, post, χ)
define as well the specification for the bytecode program ṗ.
From previous results [5], we know that if annot is a suffi-
cient annotation for P then it is also a sufficient annotation
for the result of the compilation ṗ. Let Loc be a solution
of the analysis for the source program P , and lȯc a solution

wpi(l) = wp(l + 1)[s[0] op s[1]::↑2s/s] ṗ[l] = prim op
wpi(l) = wp(l + 1)[v::s/s] ṗ[l] = push v

wpi(l) = wp(l + 1)[s[0],↑s/x,s] ṗ[l] = store x
wpi(l) = wp(l + 1)[x::s/s] ṗ[l] = load x

wpi(l) = ckB(wp(l + 1)[upd(a,s[0],s[1]),↑2s/a,s]) ṗ[l] = astore a

wpi(l) = ckB(wp(l + 1)[a[s[0]]::↑s/s]) ṗ[l] = aload a

wpi(l) = s[0] on s[1]⇒ wp(l′)[↑
2s/s] ṗ[l] = cjmpon l′

∧¬(s[0] on s[1])⇒ wp(l + 1)[↑
2s/s]

wpi(l) = wp(l′) ṗ[l] = jmp l′

wpi(l) = wp(l + 1) ṗ[l] = nop

wpi(l) = post[s[0]/res] ṗ[l] = return

where ckB(ψ) stands for ψ if lȯc(l) |= inB(x[s[0]]) and inB(x[s[0]])⇒
ψ ∧ ¬inB(x[s[0]])⇒ χ otherwise.

wp(l) =

annot(l) if l ∈ dom(annot)
wpi(l) otherwise

Figure 7. VCgen for bytecode programs

of the analysis for the bytecode program ṗ, compiled from
Loc as described in Section 3.

We assume that the concretization functions satisfy the
property γ̄a([], d) = γa(d), so that the interpretation of ab-
stract analysis results in the source and bytecode sides co-
incides (recall that by definition lȯc(l) = ([], Loc(l)) for
every l in dom(Loc).) In addition, for any expression e
and any d ∈ D, if e does not contain array expressions, i.e.
inB(e) = true, then d |= inB(e).

The following auxiliary result about the compilation of
expressions is helpful to prove the preservation of proof
obligations:

Lemma 10 Assume that ṗ is of the form ṗ1 :: l1 : JeKe ::
l2 : ṗ2. Then wpi(l1) is equal to wpi(l2)[e::s/s] if lȯc(l1) |=
inB(e) and equal to inB(e)⇒ wpi(l2)[e::s/s]∧¬inB(e)⇒ χ
otherwise.

PROOF. The result holds under the assumption stated be-
fore that the expression e contains at most a variable ac-

8

k0 : push 1
store i

k : jmp k′

k1 : push 0
aload A
load i
astore A

k2 : push 1

load i
prim +
store i

k′ : push |A|
load i
cjmp<k1

k′′ : . . .

Figure 8. Program example

cess. Otherwise, the syntactic equality of predicates does
not hold, but it is straightforward to show a logical equiv-
alence. The proof proceeds by structural induction on the
expression e.

The coincidence of the sets of proof obligations PO and
po is stated in the following lemma, from the fact that the
bytecode program ṗ is the result of compiling the source
program P .

Proposition 11 For every subprogram c of P , proof obli-
gations corresponding to the subprogram c are equal to the
proof obligations in ṗ that correspond to the subsequence
JcK.

PROOF. Assume ṗ is of the form ṗ1 :: l:JcKe :: l′ :ṗ2. Let
〈φ, θ〉 = WP(c,wp(l′)) then one can prove by structural
induction on c that wp(l) = φ and that θ is equal to

{annot(k)∧γ̄a(lȯc(k))⇒wpi(k) |k∈dom(annot)∩Labc},

where Labc denotes the set of labels in the statement c.

Consider, the bytecode program of Figure 8 compiled from
the example in Figure 6. One can see that the proof obliga-
tion at label k is

A[i− 1] = A[0] ∧ 0 ≤ i ≤ |A| ⇒
(i < |A| ⇒ (A[i− 1] = A[0])[upd(A,i,A[0]),i+1/A,i]) ∧
(¬(i < |A|)⇒ A[|A| − 1] = A[0])

which is equal to the proof obligation at label k for the
source program of Figure 6.

5 From hybrid VCgen to VCgen

In this section we show a correspondence between the
hybrid VCgen for bytecode of previous sections with a stan-
dard VCgen that does not take advantage of the result of
the analysis. More precisely, interpreting the abstract re-
sult as logical formulae, we show an equivalence between

ŵpi(l) = ckB(ŵp(l + 1)[upd(x,s[0],s[1]),↑2s/x,s]) ṗ[l] = astore x

ŵpi(l) = ckB(ŵp(l + 1)[x[s[0]]::↑s/s]) ṗ[l] = aload x

ŵpi(l) = wpi(l) otherwise

where ckB(ψ) stands for

inB(x[s[0]])⇒ ψ ∧ ¬inB(x[s[0]])⇒ χ

regardless of whether lȯc(l) |= inB(x[s[0]]) is satisfied.

ŵp(l) =

annot(l) if l ∈ dom(annot)

ŵpi(l) otherwise

p̂o = { ˆannot(l)⇒ ŵpi(l) | l ∈ dom(ˆannot)}

Figure 9. Non-hybrid bytecode VCgen

the proof obligations of both VCgen’s. Assuming that the
relation |= satisfies a correctness condition, soundness of
the hybrid VCgen follows from soundness of the standard
VCgen. In addition, soundness of the VCgen for source
programs follows if the compiler is semantics preserving.

Given a specification (pre, ˆannot, post, χ) for the byte-
code program ṗ, a non-hybrid VCgen extracts the set of
proof obligations:

p̂o ∪ {pre⇒ ŵpi(0)[V/V old]}

where ŵpi and p̂o are defined in Figure 9. To avoid ambigu-
ity, in the sequel we make explicit some parameters needed
in the definition of wpi, wp, ŵpi and ŵp. We write for in-
stance ŵpi(l, ˆannot, post, χ) instead of simply ŵpi(l).

Let lȯc be a result of the analysis for the bytecode pro-
gram ṗ. Consider the specifications (pre, annot, post, χ)
and (pre, ˆannot, post, χ) for program ṗ, such that for all l in
dom(annot), ˆannot(l) is defined as annot(l) ∧ γ̄a(lȯc(l)).
We say that the relation |= ⊆ D×Guard is valid if for ev-
ery abstract element d ∈ D and b ∈ Guard we have that
d |= b implies the universal validity of γa(d) ⇒ b. The
result of the analysis lȯc is said verifiable if the set of proof
obligations po(true, γ̄a ◦ lȯc, true, true) are provable.

Lemma 12 For every label l in the program ṗ:

wpi(l, annot, post, χ)∧γ̄a(lȯc(l))⇒ ŵpi(l, ˆannot, post, χ)

provided the relation |= ⊆ D × Guard is valid, and the
analysis lȯc is verifiable.

PROOF. Following the induction principle induced by the
definition of sufficiently annotated programs, for every label
l we prove the goal above simultaneously with:

wp(l, annot, post, χ) ∧ γ̄a(lȯc(l))⇒ ŵp(l, ˆannot, post, χ)

9

The soundness of the VCgen po follows from the follow-
ing result and the hypothesis that the standard VCgen p̂o is
sound:

Proposition 13 The provability of the set of proof obliga-
tions p̂o(pre, ˆannot, post, χ) follows from the provability of
po(pre, annot, post, χ).

Consider for instance the sequence of bytecode in Fig-
ure 8. Recall that annot is defined as A[i − 1] = A[0] and
A[|A| − 1] = A[0] in k and k′′ respectively. Let ˆannot be
defined by strengthening annot with the result of the anal-
ysis, i.e. ˆannot(k) = annot(k) ∧ 0 ≤ i ≤ |A| (we can let

ˆannot(k′′) = annot(k′′)). Let Ψ be the weakest precondi-
tion computed by the non hybrid VCgen at label k1:

0 ≤ i < |A| ⇒ (upd(A, i, A[0])[i+ 1− 1] = A[0]
∧ 0 ≤ i+ 1 ≤ |A|)

∧¬(0 ≤ i < |A|)⇒ false

which, from Lemma 12 is implied by the hybrid wp and the
result of the analysis, i.e. by

upd(A, i, A[0])[i+ 1− 1] = A[0] ∧ 0 ≤ i < |A| .

As stated in Proposition 13, if the proof obligations returned
by the hybrid VCgen are valid, and assuming the analysis is
verifiable, we have that

A[i− 1] = A[0] ∧ 0 ≤ i ≤ |A| ⇒ i < |A| ⇒
upd(A, i, A[0])[i+ 1− 1] = A[0]

and
0 ≤ i ≤ |A| ⇒ i < |A| ⇒ 0 ≤ i < |A|

are provable. Then, it follows that the verification condition
returned by the standard VCgen

A[i− 1] = A[0] ∧ 0 ≤ i ≤ |A| ⇒ i < |A| ⇒ Ψ

is provable.
The above results establish that hybrid verification meth-

ods can be mapped to standard verification methods. In the
context of Proof Carrying Code, one would like to establish
the stronger result that hybrid certificates can be compiled
into standard certificates. It is in fact possible to prove such
a result, using the framework of [4]. However, the com-
pilation of hybrid certificates into standard certificates re-
quires using a certifying analyzer, that generates automati-
cally logical proofs of correctness of the results of the analy-
sis. While it is possible to avoid hybrid methods altogether,
e.g. to rely on standard Proof Carrying Code architectures,
hybrid methods are beneficial both for the code producer
because they reduce significantly the number of proof obli-
gations required to certify code, and for the code consumer,

because they yield certificates that are more compact and
more efficient to check. Translating certificates of proof
obligations from a hybrid to a standard VCgen is interest-
ing to complete a certificate translation process [2] in which
original proof obligations are generated by a hybrid VC-
gen, but in which the targeted Trusted Computed Base has
no support for hybrid certificates.

6 Related work

There are two approaches to hybrid methods. In the ex-
plicit approach, the user provides safety annotations that are
used by the verification condition generator, and checked by
a annotation checker. In contrast, the implicit approach ad-
vocates that the safety annotations are inferred by a static
analyzer, and then used by verification condition genera-
tion. Both approaches are used (sometimes in conjunction)
in deductive program verification, as well as in type-based
analyses.

In addition, some authors have formalized and proved
the soundness of hybrid verification methods. For exam-
ple, Wildmoser, Chaieb and Nipkow [20] have used Is-
abelle/HOL to prove the soundness of hybrid methods for
Java bytecode; they rely on interval analyses to detect arrays
out of bounds, and implement a proof-producing version of
the analysis that generates proofs that the results of the anal-
ysis is correct. More recently, Grégoire and Sacchini [9]
have formalized in Coq a hybrid verification method for
JVM programs. They focus on a null-pointer analysis; al-
though the analyzer is not formalized in Coq, Hubert and
co-workers [12] provides a good starting point for carrying
such an implementation. The method of [9] supports bidi-
rectional interaction between the analysis and verification
condition generation, as the static analysis can extract use-
ful information from the program annotations, at the same
time as the results of the analysis are exploited by the ver-
ification condition generator to reduce the number of proof
obligations (although we have not done so, it is possible and
relatively easy to integrate such bidirectional interaction in
our work).

It is folklore that deductive verification methods can be
viewed as abstract interpretation [8, 7]. Logical abstract in-
terpretation [10] explores the interaction between analysis
and verification from the perspective of using theorem prov-
ing to improve the precision of abstract interpretations, and
combinations of them.

Finally, the paper is closely related to previous works on
proof-transforming compilation, and proof-producing pro-
gram analyses. Saabas and Uustalu [18] provide an al-
gorithm to transform proofs in Hoare logic into proofs in
compositional proof systems for assembly programs. Mov-
ing to more realistic languages, Müller and co-authors
define proof-transforming compilation for Java and Eif-

10

fel [1, 15, 17],
The aforementioned works, as the current paper, focus

on non-optimizing compilation. Compiling proofs along
program optimizations require using proof-producing anal-
yses, that produce formal proofs of their correctness. Such
analyses are also required to extend the results of Section 2
to certificates. Proof-producing analyses have been studied
by several authors, including Wildmoser, Chaieb and Nip-
kow [20] in the context of verification condition generation
for a bytecode language and Seo, Yang and Yi [19] in the
context of a Hoare logic for a simple imperative language.

We refer to [3, 2] for a more detailed account of related
work in this area.

7 Conclusion

Program verification environments increasingly rely on
hybrid methods to prove correctness of software. Motivated
by applications to Proof Carrying Code, we have shown the
coincidence of hybrid verification methods at source and
bytecode levels. Additionally, we have shown that hybrid
verification methods can be “compiled” into methods based
on verification condition generation, which ensure that hy-
brid methods are sound.

Our next goal is to extend our results to more real-
istic languages and analyses. Modern languages include
features, e.g. exceptions, that can potentially yield very
large control flow graphs, making hybrid certificates par-
ticularly necessary; we expect that our results on preser-
vation of proof obligations for Java [3] will scale without
difficulty to hybrid methods, making it possible to leverage
the proof carrying code architecture of the Mobius project
(see mobius.inria.fr) to hybrid methods.

Besides, it would be beneficial to allow hybrid methods
to rely on more advanced static analyses that provide valu-
able information for proving properties of programs. We in-
tend to focus on the recent analysis of [11], and to develop
a hybrid verification method based on this analysis.

References

[1] F. Y. Bannwart and P. Müller. A program logic for bytecode.
In F. Spoto, editor, Bytecode Semantics, Verification, Anal-
ysis and Transformation, volume 141 of Electronic Notes
in Theoretical Computer Science, pages 255–273. Elsevier,
2005.

[2] G. Barthe, B. Grégoire, C. Kunz, and T. Rezk. Certifi-
cate translation for optimizing compilers. In K. Yi, editor,
Static Analysis Symposium, number 4134 in Lecture Notes
in Computer Science, pages 301–317, Seoul, Korea, Aug.
2006. Springer-Verlag.

[3] G. Barthe, B. Grégoire, and M. Pavlova. Preservation of
proof obligations for Java. In International Joint Confer-

ence on Automated Reasoning, Lecture Notes in Computer
Science. Springer-Verlag, 2008. To appear.

[4] G. Barthe and C. Kunz. Certificate translation in abstract
interpretation. In S. Drossopoulou, editor, European Sym-
posium on Programming, volume 4960 of Lecture Notes in
Computer Science, pages 368–382, Budapest, Hungary, Apr.
2008. Springer-Verlag.

[5] G. Barthe, T.Rezk, and A. Saabas. Proof obligations
preserving compilation. In T. Dimitrakos, F. Martinelli,
P. Ryan, and S. Schneider, editors, Proceedings of FAST’05,
volume 3866 of Lecture Notes in Computer Science, pages
112–126. Springer-Verlag, 2005.

[6] F. Besson, T. Jensen, D. Pichardie, and T. Turpin. Result cer-
tification for relational program analysis. Research Report
6333, IRISA, Sept. 2007.

[7] P. Cousot. Semantic foundations of program analysis. In
S. Muchnick and N. Jones, editors, Program Flow Analy-
sis: Theory and Applications, chapter 10, pages 303–342.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

[8] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Principles of Programming
Languages, pages 238–252, 1977.

[9] B. Grégoire and J. Sacchini. Combining a verification condi-
tion generator for a bytecode language with static analyses.
In Trustworthy Global Computing, volume 4912 of Lecture
Notes in Computer Science, pages 23–40. Springer-Verlag,
2007.

[10] S. Gulwani and A. Tiwari. Combining abstract interpreters.
In M. Schwartzbach and T. Ball, editors, PLDI, pages 376–
386. ACM, 2006.

[11] N. Halbwachs and M. Péron. Discovering properties about
arrays in simple programs. In Programming Languages
Design and Implementation, ACM Sigplan Notices. ACM
Press, June 2008. To appear.

[12] L. Hubert, T. Jensen, and D. Pichardie. Semantic foun-
dations and inference of non-null annotations. In Inter-
national Conference on Formal Methods for Open Object-
based Distributed Systems, Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2008. To appear.

[13] F. Logozzo and M. Fähndrich. On the relative completeness
of bytecode analysis versus source code analysis. In L. Hen-
dren, editor, CC, volume 4959 of Lecture Notes in Computer
Science, pages 197–212. Springer, 2008.

[14] A. Miné. Weakly Relational Numerical Abstract Domains.
PhD thesis, École Polytechnique, Palaiseau, France, Decem-
ber 2004. http://www.di.ens.fr/˜mine/these/
these-color.pdf.

[15] P. Müller and M. Nordio. Proof-transforming compilation
of programs with abrupt termination. In SAVCBS ’07: Pro-
ceedings of the 2007 conference on Specification and ver-
ification of component-based systems, pages 39–46, New
York, NY, USA, 2007. ACM.

[16] G. C. Necula. Proof-carrying code. In Principles of
Programming Languages, pages 106–119, New York, NY,
USA, 1997. ACM Press.

[17] M. Nordio, P. Müller, and B. Meyer. Proof-transforming
compilation of eiffel programs. In R. Paige, editor, TOOLS-
EUROPE, Lecture Notes in Business and Information Pro-
cessing. Springer-Verlag, 2008.

11

[18] A. Saabas and T. Uustalu. A compositional natural seman-
tics and Hoare logic for low-level languages. Theoretical
Computer Science, 373(3):273–302, 2007.

[19] S. Seo, H. Yang, and K. Yi. Automatic Construction
of Hoare Proofs from Abstract Interpretation Results. In
A. Ohori, editor, Asian Programming Languages and Sys-
tems Symposium, volume 2895 of Lecture Notes in Com-
puter Science, pages 230–245. Springer-Verlag, 2003.

[20] M. Wildmoser, A. Chaieb, and T. Nipkow. Bytecode analy-
sis for proof carrying code. In F. Spoto, editor, Bytecode Se-
mantics, Verification, Analysis and Transformation, volume
141 of Electronic Notes in Theoretical Computer Science.
Elsevier, 2005.

[21] M. Wildmoser, T. Nipkow, G. Klein, and S. Nanz. Proto-
typing proof carrying code. In J.-J. Levy, E. W. Mayr, and
J. C. Mitchell, editors, Theoretical Computer Science, pages
333–347. Kluwer Academic Publishing, Aug. 2004.

[22] H. Xi and S. Xia. Towards array bound check elimina-
tion in java tm virtual machine language. In CASCON ’99:
Proceedings of the 1999 conference of the Centre for Ad-
vanced Studies on Collaborative research, page 14. IBM
Press, 1999.

12

