Complete Lax Logical Relations for Cryptographic
Lambda-Calculi *

Jean Goubault-Larre¢q Stawomir Lasot®* David Nowak Yu Zhang***

1 LSVICNRS & INRIA Futurs & ENS Cachan, Cachan, France
{goubaul t, nowak, zhang} @ sv. ens-cachan. fr
2 |nstitute of Informatics, Warsaw University, WarszawalgPal
sl @ri muw. edu. pl

Abstract. Security properties are profitably expressed using notidre®ntex-
tual equivalence, and logical relations are a powerful prechnique to establish
contextual equivalence in typed lambda calculi, see e.miiSand Pierce’s log-
ical relation for a cryptographic lambda-calculus. We ifyaBumii and Pierce’s
approach, showing that the right tool is prelogical relagioor lax logical rela-
tions in general: relations should be lax at encryption syp®tably. To explore
the difficult aspect of fresh nhame creation, we use Moggi'shadic lambda-
calculus with constants for cryptographic primitives, é&tdrk’s name creation
monad. We define logical relations which are lax at encryydiod function types
but strict (non-lax) at various other types, and show they #ire sound and com-
plete for contextual equivalence at all types.

Keywords: Logical relations, Monads, Cryptographic lambda-calsp&ubscone

1 Introduction

There are nowadays many existing models for cryptograpbiopol verification. The
most well-known are perhaps the Dolev-Yao model (after§@g [6] for a survey) and
the spi-calculus of [1]. A lesser known model was introdulcg&umii and Pierce [18],
the cryptographic lambda-calculug his has certain advantages; notably, higher-order
behaviors are naturally taken into account, which is igd@meother models (although,
at the moment, higher order is not perceived as a neededdeaattryptographic proto-
cols). Better, second-order terms naturally encode asyrim@acryption. It may also
be appealing to consider that proving security propertighé cryptographic lambda-
calculus can be achieved through the use of well-craftgidal relations a tool that has
been used many times with considerable success ik-ttadculus: see [12, Chapter 8],
for numerous examples. Sumii and Pierce [18] in particudding three logical relations
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that can be used to establish contextual equivalence, lpeoge security properties, but
completeness remains open.

Our contributions are twofold: first, we clarify the impoft®umii and Pierce as far
as the behavior of logical relations on encryption type®iscerned, and simplify it to
the point that we reduce it to prelogical relations [10] armtegenerally to lax logical
relations [16]; while standard recourses to the latter westgally required because of
arrow types, here we require the logical relations to be tanaryption typesSecond,
we prove various completeness results: two terms are cotiék equivalent if and
only if they are related by some lax logical relation. Thiddsoat all types, not just
first-order types as in previous works. An added bonus ofgulsir logical relations is
that they extend directly to more complex models of encoyptivhere cryptographic
primitives may obey algebraic laws. Proofs omitted in theust are to be found in the
full version of this paper, available as a technical rep@jt [

Outline. We survey related work in Section 2. We focus on the appro&8aimii and
Pierce, in which they define several rather complex logiekdtions as sound criteria
of contextual equivalence. We take a new look at this appraa&ection 3 and Sec-
tion 4, and gradually deconstruct their work to the point rehwe show the power of
prelogical relations in action. This is shown in the absesfdeesh name creation, for
added clarity. We tackle the difficult issue of names in $&ch, using Moggi's elegant
computationah-calculus framework with Stark’s name creation monad.

2 Related Work

Logical relations have often been used to prove variousetigs of typed lambda
calculi. We are interested here in using logical relationsariants thereof as sound
criteria for establishingontextual equivalenaa two programs. This is instrumental in
defining security properties. As noticed in [1, 18], a datuhof typer is secretin some
term¢(M) of typer’ if and only if no intruder can say anything abdutjust by looking
att(M),i.e.,ifand only ift(M) ~,, t(M’) for any twoM andM’, where~,, denotes
contextual equivalence at typé We are using\-calculus notions here, following [18],
but the idea of using contextual equivalence to define siyquroperties was pioneered
by Abadi and Gordon [1], where both secrecy and authenticatie investigated.

We shall define precisely what we mean by contextual equicalén a calculus
without names (Section 3.2), then with names (Section B&h notions are standard,
the latter being inspired by [15], only adapted to Moggi'snputational\-calculus
[14]. In [15] and some other places, this kind of equivalengkich states that two
values (or termsy anda’ are equivalent provided every context of typeol must
give identical results om and ond/, is called observational equivalence. We stress
that this should not be confused with observational eqeiveg as it is defined for data
refinement [12], wherenodelsare related, notaluesin the same model as here.

The main point in passing from contextual equivalence tacklgrelations is to
avoid the universal quantification over contexts in the fernBut there are two kinds
of technical difficulties one must face in defining logicdhtens for cryptographia.-
calculi. The first, and hardest one,fissh name creatianThe second is dealing with
encryption and decryption. We shall see that the latter hadegyant solution in terms



of prelogical relations [10], which we believe is both simpler and moreagahthan
Sumii and Pierce’s proposal [18]; this is described in $ec8, although we ignore
fresh name creation there, for clarity.

Dealing with fresh name creation is harder. The work of Swanid Pierce [18] is
inspired in this respect by Pitts and Stark [15], who propasa-calculus devoted to
the study of fresh name creation, the-calculus They define a so-called operational
logical relation to establish observational equivalerfaeuscalculus expressions. They
prove that this logical relation is complete up to first-artypes.

In [8], Goubault-Larrecq, Lasota and Nowak define a Kriplgidal relation for the
dynamic name creation monad, which is extended by Zhang amdhlin [19] so that
it coincides with Pitts and Stark’s operational logicahten up to first-order types. We
continue this work here, relying on the elegance of Moggisputational\-calculus
[14] to describe side effects, and in particular name apeatising Stark’s insights [17].

Further comparisons will be made in the course of this paspecially with bisim-
ulations for spi-calculus [1,4,5]. This continues the alaBons pioneered in [8],
where notions of logical relations for various monads wéraas to be proper exten-
sions of known notions of bisimulations. The precise relaitvith hedged and framed
bisimulation [5] remains to be stated precisely.

3 Deconstructing Sumii and Pierce’s approach

The starting point of this paper was the realization thatrttter complex family of
logical relations proposed by Sumii and Pierce [18] couldipbeplified in such a way
that it could be described as mera@geway of building logical relations that have all
desired properties. It turned out that the only property @aly need to be able to deal
with encryption and decryption primitives is that the lagicelations should relate the
encryption function with itself, and the decryption furetiwith itself.

3.1 The Toy Cryptographic A-Calculus

To show the idea in action, let us use a minimal extensioneo$imply-typed\-calculus
with encryption and decryption, and call it tk@y cryptographich-calculus We shall
show how the idea works on this calculus, which is just a fragtof Sumii and Pierce’s
[18] cryptographich-calculus. The main thing that is missing here is nonce imeat
i.e., fresh name creation.

For this moment, we restrict the types to:

Tu=b|m — 72 | key[r] | bits[r]

whereb ranges over a séf' of so-calledbase typese.g., integers, booleans, etc. Sumii
and Pierce’s calculus in addition has cartesian producttapdoduct typeskey|7] is
the type of (symmetric) keys that can be used to encrypt sabfi¢yper, bits|[r] is
the type ofciphertextobtained by encrypting some value of type-necessarily with

a key of typekey|[r]. There is no special type for nonces, which are being thoaght
objects of typeey[r] for somer.



The terms of the toy cryptographlecalculus are given by the grammar:
tu,v,... i= x| Ax-t]tu] {t},|let {z}s =u inv; else vy

wherex ranges over a countable set of variablgs,, denotes the ciphertext obtained
by encrypting with keyu (¢ is called theplaintex), andlet {z}; = u in v else vy
is meant to evaluate, attempt to decrypt it using kety then proceed to evaluate
with plaintext stored inc if decryption succeeded, or evaluateif decryption failed.
Definitions of free and bound variables amdenaming are standard, hence omitted;
is bound in\x - ¢, with scope, as well inlet {z}; = u in v; else vy, with scopev;.
Typing is as one would expectudgmentsre of the forml™ + ¢ : 7, wherel" is a
contexti.e., a finite mapping from variables to types/limapsz; to 7y, ..., x, t0 7,
we write itzy : 71,...,x, : T,. Typing rules for encryption and decryption are

r-t:r 't u:key[r]

I'F {t}, : bits[7]
I'Ft: key[7] I'Fw:bits[7] Ne:tkwv 7 I'kFog:1!

(Enc)

Dec)
I'1let {z}; =uinwv; elsewy : 7’

A simple denotational semantics for the typed toy cryptpgr@acalculus is as fol-
lows. Let[_]] be any function mapping typesto sets so thafr; — 2] is the set
[m1] — [r=2] of all functions from[r] to [7=], for all typesm; ands. Let [b] be arbi-
trary for every base typg, [key|[7]] be arbitrary. For every € [r], K € [key[7]],
write E(V, K) the pair(V, K), to suggest that this really denotes the encryptiofr of
with key K. (That ciphertexts are just modeled as pairs is exactly asitern versions
of the Dolev-Yao model [7], or in the spi-calculus [1].) Theet [bits[r]] be the set
of all pairse(V, K), V € 7], K € [key[7]].

For any set4, let A, be the disjoint sum ofA with { L}, where_L is an element
outside A, and let. be the canonical injection od into A, . While we have defined
E(V, K) as the paifV, K'), we define the inverse decryption function frpits|r]] x
[key[r]] to[7] | bylettingD(V’, K') be.(V) if V'is of the form(V, K) with K = K’,
and_L otherwise. We then describe the vallafp of the termt in the environmenp by
structural induction om,

[Dz:T7hx:7]p=px)
[I'FXxz-t:n—wlp=Ven]l—[Lz:mFt:mn]px:=V])
[FFtu:m]p=[Trtt:71 = ]p([l'+u:m]p)
[I'E {t}y :bits[r]]p=E(["'Ft:7]p, [T F u:key[7]] p)
[let {}; =uinwv else vy p= { %z;% Z[JC =¥l :I K ; ﬁVI)
whereV = D([u] p, [t] p)

More formally, for any context’, a I"-environmenp is a map such that, for eveny: 7
in I, p(z) is an element ofr]. Write p[z := V] the environment mappingto V and
every other variablg to p(y). Write [z := V] the environment mapping justto V.



We write (V € A — f(V)) the (set-theoretic) function mappiigin A to f(V) to
distinguish it from the (syntactic)-abstraction\z- f (). In[I" - tu : 2] p, we assume
that the premises of the last rule of the implicit typing dation arel' + ¢ : 71 — 7
andl" F u : 7. We write[t] instead offt] p when the environmentis irrelevant, e.g.,
an empty environment.

3.2 What Are Logical Relations for Encryption?

We first fix a subseDbs of Y, of so-calledobservation typesTypically, Obs will con-
tain just the typebool of Booleans, one of the base types. We say that € [7]
are contextually equivalenand we writea =, o/, in the set-theoretic model above
if and only if, whatever the tern@ such thatr : 7 = C : o is derivable ¢ € Obs),
[C] [z :=a] = [C] [z := d].

In the A-calculus setting, a (binaryggical relationis a family (R ;)
relationsR -, one for each type, on[r], such that:

+ type Of DiNary

(Log) Vf,f €lrn — ], f Rewn ['& (YaR:y d, f(a) Rr, f'(d).

Here we writea R o’ to say thata anda’ are related by the binary relatioR. In
other words, logical relations relate exactly those fuonithat map related arguments
to related results. This is the standard definition of loigietations in the\-calculus
[12]. Note that there is no constraint on base types. In thedy-calculus, i.e., with-
out encryption and decryption, the condition above for@es)_ type 10 De uniquely
determined, by induction on types, from the relati@tys b € X'. More importantly, it
entails the so-callebdasic lemmaTo state it, first say that twb-environments, p’ are
related by the logical relation, in notatiop R o/, if and only if p(z) R, p'(x) for
everyz : 7 in I'. The basic lemma states thatlif+- ¢y : 7 is derivable, angh, p’ are
two relatedl"-environments, thefito] p R, [to] p’. This is a simple induction on (the
typing derivation of},.

We are interested in the basic lemma because, as observéu [@.8], this implies
that for any logical relation that coincides with equality @bservation types, any two
terms with logically related values are contextually eqiéwnt.

In the toy cryptographig-calculus, we have left the definition &y () andRyp; (7|
open. Here are conditions under which the basic lemma holtheitoy cryptographic
A-calculus. For any type, let R; opti0n e the binary relation ofir] ;| defined by
V R;option V' ifandonly if V.=V' = 1, orV = ((V1), V' = (V) for someVy,
Vi, andV; R, V/.

Lemma 1. Assume that:

1. foreveryV R, V' and K Ryeyjr] K', E(V, K) Ruiesir) E(V', K');

2. for everyV Ryitsir) V' and K Ryeyi7] K, D(V, K) R+ option D(V', K').

Then the basic lemma holds: if - ¢, : 7 is derivable, andp, p’ are two related
I'-environments, thefto] p R, [to] p'-

Before we proceed, let us remark that we do not neegproperty ofE or D in the
proof of this lemma. The property thB{E(V, K'), K) = «(V') is only needed to show
thatlet {z}; = {u}: in v; else vy andv;[u/x] have the same semantics, which we



do not care about here. The property tB&V, K) is the pair(V, K), or thatE is even
injective, is just never needed. This means that Lemma lhallsts if we use encryption
primitives that obey algebraic laws.

There is a kind of converse to Lemma 1. Assume that we have diticaadhl type
formerr option, with constructorSOME : 7 — 7 option andNONE : T option. As-
sume their semantics is given fy option] = [7] |, [SOME ¢] = «([¢]), [NONE] = L.
Finally, assume thak . .ti0n iS defined as above. Then we may define an encryp-
tion primitive enc = v - Ak - {v};, and a decryption primitive in the toy crypto-
graphic lambda-calculus bjec = Av - Ak - let {z}; = v in SOME z else NONE.

If the basic lemma holds, then we must hgv@c] R, _xeyrj—bits[r] [enc] and
[dec] Reuitsr]—key[r]—r option [dec]. These are just conditions 1. and 2.

Call cryptographic logical relation any logical relatioor fwhich the basic lemma
holds. Conditions 1. and 2. can therefore be rephrased &sliitveing motto: a crypto-
graphic logical relation should relate encryption witleifsand decryption with itself.

3.3 Existence of Logical Relations for Encryption

How can webuild a cryptographic logical relation inductively on types? Wstfheed
to address the question eXistenceof logical relations satisfying the basic lemma.

Let us fix a typer, and assume that we have already construite@nd Ry (-
Let Rbﬁtsh be the smallest relation ofpits|r]] satisfying condition 1., i.e., such
that E(V, K) Riier E(V, K) forall VR, V' and K Ryeyr) K'. Lt Ry,
be the largest relation o[blts[ |] satisfying condition 2., i.e., such that whenever
\%4 Rans[T] V', thenD(V, K) R+ option D(V', K') for every K Ryey() K'. These two
relations clearly exist. Conditions 1. and 2. state that ekl choosézblts[T] so that

Rﬁtsm C Reivsir] S Rbn:s ) This exists if and only |be1ts i C R;tsm
C R

Inturn, Rblts[r] piss(r] IS €quivalentto: forevery” R V' andK Ryey(r) K,
for every Ky Ryeyir) K1, D(E(V, K), K1) R option D(E(V', K'), K7) (). Let there-
fore V. R, V', and fix K Ry,) K'. By choosingk; = K, (x) becomes
t(V) Ry option D(E(V', K'), K1), which is equivalent ta” = K{ andV R, V'
Similarly by choosingk” = K/, we getK = K; andV R, V. In other words, as
soon ask is not emptyRy.y(;] Must be gartial bijectionon [key|7]], i.e., the graph
of a bijection between two subsets[aky|r]].

Proposition 1 LetRY be given binary relations ofb] for every base type LetRkey[T]
be any partial bijection orfkey[7]] for every typer. There exists a cryptographic
logical relation (R, ). type SUCh thatR, = RY for every base typé, and such that
Rxeylr] = RY for every typer. We may defin&,;..(, for any typer, as any

key|[7]
c Rblts[‘l’] - R

relation such thaiR.-
Proposition 1 shows that cryptographic logical relatioxistethat coincide with given
relations on base types. But contrarily to logical relasionthe\-calculus, they are far
from being uniquely determined: we have considerable fyeeds to the choice of the
relations at key and bits types.

To defineRy.y(-}, Notably, we may use the intuition that some keys are obblva
by an intruder, and some others are not. Letffiing be the set of observable keys, define

bits|7] bits[r]"



Riey[-] as relating the key< with itself providedk € fr., and not relating any non-
observable key with any key. This is clearly a partial bict in fact the identity on
the subsefr, of [key[7]]. This is a popular choicefr, is what Abadi and Gordon [2]
call aframe up to the fact that frames are defined there as sets of naotesf, keys.

To defineRy;s(-, we may choose any relation sandwiched betWE%ncs[T and
Ryses(r)- FOr everyly, Vg € [bits(7]], Vo Ry, Vo if and only if Vg is of the form

E(V,K), V§ is of the formE(V',K’), V R, V' andK = K’ € fr,. In other words,
Vo andVj are related bR . es[r] if and only if they are encryptions of related plaintexts
by a unique key that the intruder may observe. On the othet hQanlts (7] Vy ifand
only if Vo = E(V, K) andVy = E(V’/, K') with eitherV R, V' andK = K’ € fr,,
orK,K' ¢ fr, (whateverl//, V).

S0, Ruits|r) IS cOmpletely characterized by the datumfof,, plus a functiorw,
mapping pairs of keyd(, K’ in [key[r]] \ fr. to a binary relation), (K, K’) on
[7]: if Ryiesi7) is given, then let), (K, K') be defined as relatiny with v if and
only if E(V, K') Ruies-) E(V', K'); on the other hand, given,, the relatiorRy; s
that relate€(V, K) with E(V’/, K’) ifand only if V R, V' andK = K’ € fr;, or
K,K'¢ frr andV ¢ (K,K') V', is such thaRy;, .1 C Rustsir] © Ryjeefr-

Given parametergr and«, we then get the following definition of aniquecryp-
tographic logical relation by induction on types, so thabiincides with given relations
on base types:

Proposition 2 Let fr, be some subset ¢key|[r]], for each typer, and . be any
function from([key[7]] \ fr-)? to the se®([7] x [r]) of binary relations or{r]. For

any familyRY of binary relations or{b], b a base type, letRI™¥) be the family
of relations defined by:

o RI{T"” = R} for each base typ&

o foreveryf,f’ € [rn — 7], f RI™Y_ f if and only if for everya RI™" o,

fla) REPY f'(a');

o for everyK, K’ € [key[7]], K Rf”” K'ifandonlyif K = K’ € fr;

key[7]

o for everyV, V'’ € [7], for everyK, K’ € [key|r]], E(V,K) RI"Y  E(V',K') if

bits|7]
andonly if RI™¥ V' andK = K' € fr,,or K, K' & fr, andV ¢, (K,K') V'
Whatever the choices ¢f-, andv,, (RI™Y) is a cryptographic logical relation.

T

T type

T type

Clearly, Proposition 2 generalizes to the case wifereandq), are not givera priori,
but defined using the relanrl%fT ¥ for (not necessarily strict) subtypesof 7. That
is, when not jus®R/™¥ but aIsofrT andv .- are defined by mutual induction on types.

It is interesting, too, to relate the definition &™¥ to selected parts of the notion
of framed bisimulation [2]. Slightly adapting [2] again licatheory(on typebits|r])
anyfinite binary relationth. on [bits[7]]. By finite, we mean that it should be finite
as a set of pairs of values. A frame-theory p@ir., th.) is consistenif and only if
th, is a partial bijection, an&(V, K) th, E(V’, K’) impliesK ¢ fr, andK' & fr,.
Any consistent frame-theory pair determineg.afunction byV ¢ (K, K’') V' if and
only if E(V, K) th, E(V', K’). It follows that frame-theory pairs, as explained here,
are special cases of pairs of a frajfie and a functionp...



4 A Uniform Cryptographic A-Calculus, and Prelogical Relations

Reflecting on the developments above, we see that it woulddye natural to use, in-

stead of the toy cryptographiecalculus, a simply-typed-calculus with two constants
enc anddec, with respective semantics given ByandD. While we are at it, it is clear

from the way we defin®}_ 7] in Proposition 2 that the typesy[7] behaves more like

a base type than a type constructed from another type. leieftre relevant to change
the algebra of types to something like:

Tu=b| 1T — 72| bits[r] | key | 7 option]| ...

whereb ranges ovel’, X' now contains a collection &y typekey,, ..., key,, (wlog.,
we shall use just one, which we wrikey), and ther option type is used to give a
typing todec : bits[r] — key — 7 option; enc is assumed to have type —
key — bits[7]. The final ellipsis is meant to indicate that there may be rotyyee
formers (products, etc.): we do not wish to be too specifie her

The language we get is just the simply-typedalculus with constants. .. up to the
fact that we need option typesoption. The constants to consider here are at least
enc, SOME : 7 — 7 option, NONE : 7 option, andcase : 7 option — (7 — 7/) —

7' — 7', (Thecase constant implements the elimination principle fooption; we
write case s of SOME = ¢ | NONE = ¢’ instead ofcase s(\x - t)t/, and leave the
semantics otase as an exercise to the reader.)

The fact that the constandec, enc, are required to have their denotatioBsand
E, related to themselves is reminiscentpoélogical relations[10]. These can be de-
fined in a variety of ways. Following [10, Definition 3.1, Pagition 3.3], aprelogical
relationis any family(R-)_ .. of relations such that:
1.foreveryf, f' € [ — =], if f Ryy—r, f/anda R., o’ thenf(a) R, f'(a’);

2.K R+, —r—n K, whereK is the function mapping € [r1], y € [7=] to z;

3. S Riromor)—(r—m)—m—om O Where S is the function mapping
x € — 1 —m],y€[n — ] ze[n]tox(z)(y(z));

4. and for every constant: 7, [a] R [a].

where[a] denoteqa] p for any environmenp. Condition 1. is just one half qlLog).
The basic lemma for prelogical relations [10, Lemma 4.1}isrger than for logical
relations: prelogical relations aexactlythose families of relations indexed by types
such that the basic lemma holds.

Note that the use of prelogical relations also requires usltde the semantics of
SOME with itself, that ofNONE with itself, and that otase with itself.

Then, we may observe that prelogical relations are not joshd for contextual
equivalence, they armompleteat all types, even higher-order. Recall that a value
[7] is definablef and only if there exists a (necessarily closed) térsauch that-¢ :
is derivable, and: = [t]. The main point in our completeness argument is that there
is a lax logical relation built by considering the trace=of on definable elements. The
relation is necessarily a partial equality on observatygeso € Obs.

Theorem 3 (Completeness)Prelogical relations are complete for contextual equiva-
lence in the\-calculus, in the strong sense that there is a prelogicaltieh (R ;) . type
suchthatforeveryy, to s.t. ¢ : 7, -t : 7, [t1] =, [t2] ifand only if[t1] R, [t2].



The argument before Proposition 2 applies here withoubh&urado: every prelog-
ical relation must be a partial bijection at tkey type, and conversely, any prelogical
relation that is the equality ofir C [key] at thekey type satisfies the basic lemma,
hence can be used to establish contextual equivalenceiapieg the prelogical rela-
tion (R). type Of Theorem 3 (its proof is in the full version [9]), we get that.y is
exactly equality on the sgt- = {[t] | - ¢ : key} of definable keys.

Similarly, we may define the binary relation),(K,K’), for every
K,K' € [key]\ fr, (i.e., for all non-definable keys) By . (K, K') V' if and only if
E(V, K)Ryiss[r)E(V', K'), i.e., if and only ifE(V, K') andE(V’, K') are definable at
typebits[r], andE(V, K) ~pies7) E(V', K').

From this, we infer immediately the following combinatiof the analogue of
Proposition 2 (soundness) with Theorem 3 (completeness):

Proposition 4 There is a prelogical relatioiR/"¥ ) _, ., parameterized byr and
1, which is:

e strict at thekey type: i.e., for everyK, K’ € [key], K R{:;;”’ K’ if and only if
K=K'e€ fr;

e strict at bits[r] types: i.e., for every, V' € [r], for every K, K’ € [key],
E(V,K) Rii%. E(V/,K') if and only if V. RI™ V' and K = K' € fr, or
K,K' ¢ frandV ¢.(K,K') V/;

¢ and such that, for somgr and+, for every closed termst’ of typer, [t] ~, [t'] if
and only if[t] RI™% [¢'].

The idea of beingstrict at some typer is, in all cases, that the (pre)logical relation
at typer should be defined uniquely as a function of the (pre)logiekdtions at alll
immediate subterms af. The prelogical relation of Proposition 4 is strict at optio
types, too, provided there is a closed term of typ® [7] has no junk.

While the point in prelogical relations in [10] is mainly oéimg not strict at arrow
types, the point here is to argue that it is meaningful eitiwrto be strict abits|r]
types, as in Section 3.2 (in the sense tRat.;; was not determined uniquely from
R.), or equivalently to be strict atits|r], given parametergr and . We believe
that just saying that we do not require strictnessiats|7], thus omitting thefr andr
parameters, leads to some simplification.

5 Name Creation and Lax Logical Relations

No decent calculus for cryptographic protocols can dispavith fresh name creation.
This is most easily done by following Stark [17], who definedagegorical semantics
for a calculus with fresh name creation based on Moggi’s diamgcalculus [14]. We
just take his language, adding all needed constants as filoSdc

5.1 The Moggi-Stark Calculus

The Moggi-Stark calculuss obtained by adding a new type formiErthe monad, to
the types of the\-calculus of Section 4, so thdtr is a type as soon asis:

Tu= b| 7 — T2 |bits[r] | key|T option |T7 | ...



(We continue to leave the definition of our calculi open, asshwith the ellipsis . .,
to facilitate the addition of new types and constants, ifdeek) Following Stark, we
also require the existence of a new base tyge Y’ of names(This will take the place
of the typekey of keys, which we shall equate with names.) Thealculus of Section 4
is enriched with constructsl ¢ andlet x < ¢ in u (not to be confused with theet
construct of Section 3.1), with typing rules as followingdawo constantaew : Tv
(fresh name creation) and: v — v — bool (equality of names).

I'Ht:r I't:Tr Nax:7ku:TT
— (val) (let)
I'valt: Tt I'Fletz<=tinu:T7
In Stark’s semantics (notations are ours here), given arite féets (of names),

[t] sp is the value oft in environmentp assuming that all previously created names
are in s. This allows one to describe the creation of fresh namestamirg any name
outsides. This is most elegantly described by letting the values ohiebe taken in
the presheaf categoSet” [17], whereZ is the category whose objects are finite sets

and whose morphisms® s’ are injections. Given any type, [7] s is intuitively the
set of all values of type in a world where all created names aresirSince[r] is a

functor, for every injections—s’ there is a conversiofr] i that sends any value of

[7] s to one in[7] ¢, intuitively by renaming the names inusingi. By extension, if
I'isany contextry : 71,...,&y, : o, let[I] be[r1] x ... x [r.], using the products
in Set’—i.e., products at each world Then, as usual in categorical semantics [11],
given any ternt such thatl” + ¢ : 7 is derivable|[t] is a morphism fron{ "] to [r].
This means thaft] is a natural transformation froffi"] to [7], in particular that, for
every finite set, [t] s maps anyl’, s-environmenp (a map sending each such that

x; : T; is in I' to some element dfr;] s) to some valudt] sp in [7] s; and all this is
natural ins, i.e., compatible with renaming of names.

Interestingly,T'r, the type of computations that result in a value of typeos-
sibly creating fresh names during the course of computatsodefined semantically
by [T7] = T [r], where(T,n, u,t) is the strong monad defined in [17, 8, 19]A
is defined bycolimy A(_+ s’) : T — Set. On objects, this is given bf As =
colimy A(s + '), i.e., T As is the set of all equivalence classes of pgifsa) with s’

a finite set andr € A(s + s’), modulo the smallest equivalence relatisrsuch that
(s',a) = (s, A(ids + j)a) for every morphisms’—-s” in Z. Intuitively, given a set
of namess, elements o' As are formal expression®s’)a where all names g’ are
bound and every name freednis in s + s'—modulo the fact thatvs’, s")a = (vs')a
for any additional set of new name% not free ina. We shall in fact writqvs’)a the
equivalence class @¥’, a), to aid intuition.

The semantics afet andval is standard [14]. Making it explicit on this particular
monad, we obtainfval t] sp = (v0) [¢] sp and[let z <t inu]sp = (v s’ + s”)b,
where[t] sp = (vs')a, we assume that + ¢ : Trandl,z : 7 F w : T7/, and where
[u] (s + s")(([I] (inls,sr)p)[x := a]) = (vs")b. (Concretely, if["iSzq : T1,..., 2y :
Tn, P = [T1 1= a1,...,%, := a,] Wherea,; € [1;] s for everyi, then[I'] (inls s )p is
[x1 =[] (inls,s)ar, ..., T =[] (inls,s )an].)

The semantics of base types Y, excepty, is given by constant functor§b] s
is a fixed set, independent ef e.g.,[bool] s = B. The semantics af is [v] s = s,




[v]i = i; i.e., the names that exist atare just the elements of Set” is a presheaf
category, hence cartesian-closed [11]. This provides as#es for\-abstraction and
applications.

Finally, the semantics ofew : Tv is given by[new] sp = (v{n})n, wheren
is any element not is, and[=] is defined as the only morphism Bet’ such that
[= zy] s[x := a,y := b] is true if a = b, andfalse otherwise.

5.2 Lax Logical Relations for Monads

Given that terms now take values in some categSet{), not in Set as in Section 3,
the proper generalization of prelogical relations is gibgriax logical relations[16].
We introduce this notion as gently as possible.

Let X be the set of base types, seen as a discrete category. Thig-sjmed \-
calculus gives rise to thisree CCCA(X') over X' as follows: the objects ak(X') are
typing contextsl", a morphism froml"to A = y; : 71,...,y, : T, IS @ Substitution
[y1 := t1,...,Yn = t,], wherel' - ¢; : 7; (1 < i < n), modulogn-conversion. (In
particular,I"-environments are exactly morphisms from the terminal cbjae empty
contexte, to I".) Composition is substitution. Being the free CCC means fioa any

CCCC, for any functor]_], from X to C (i.e., for any function C 1)
[_], mapping each base type ki to some object irC'), there > AZ)
is a unique representatidn], of CCCs from\(X) to C such l[[_ﬂl

that the right diagram commutes. A representation of CCCs i

any functor that preserves products and exponentials. When

is Set, this describes all at once all the constructi§nf, (denotation of types) and
[t], (denotations of typed-termst) as used in Section 3.

Let Subsconeg be thesubsconeategory, defined as follows. Assurfigs another
CCC, such tha€ has pullbacks. Let | be a functor fromC to C that preserves finite
products. TheSubsconeg is the category whose objects are trip|§sm, A), wherem
is amono S—— |4| in C, and whose morphisms frots, m, A) to (S’,m’, A’) are
pairs of morphismsu, v) (v in C, from S to S, andv in C, from A to A’), making the
obvious square commute. Notmg t}$aibsconeo is again a CCC (Mitchell and Scedrov
[13] make this remark whe@ is Set, and|_| is the global section functa?(1,_)), the
following purely diagrammatic argument obtains. Assumeaneegiven a functor from
Jto Subsconeg, i.e., acollectioR, of objects irSubsconeg, one for each base type
o. Then there is a unique representatidf CCCs c
from A(X) such that the right diagram commutes. »———=2A2) @
Now the crux of the argument is the following. Th%z )Oezl /
forgetful functorU Subsconec — C mapping R
the object(S, m, A) to A and the morphisngu, v) Subsconeg
tow is also a representation of CCCs. It follows that
U o R is a representation of CCCs again, fromA(X)
toC. If U o (Ro)ocx = [_],, then by the uniqueness property[of,, we must have
UoR =[], ie., diagram (3) commutes. As observed in [13], and exadrid CCCs
in [3], whenC = Set, C is the product of two CCC4 andB, and|_| is the functor
A(1,_) x B(1, ), (R(7)), 4pe bENAves like a logical relation. It is really a logical



relation, as we have defined it earlier, when bdttand B areSet. (In this case, an
objectR(7) is of the form S~ [r]* , whereS, up to isomorphism, is just a subset

of the cartesian product dfr] with itself.) In caseA and B are the same presheaf
categorySet?, (R(7)). type is a Kripke logical relation with base categdfy

While the object part of functaR, (R(7)), ... Yields logical relations (or exten-
sions), the morphism part maps each morphisi(i'), namely a typed terrhmodulo
On, of typer, to a morphism in the subscone, i.e., a gairv). The fact that diagram
(3) commutes states thatis just the pair of the semantics bfn A and the semantics
of tin B, and the fact thafu, v) is a morphism (saying that a certain square commutes)
states that these two semantics are relateR by): this establishes the basic lemma.

The important property to make satisfy the basic 3)
lemma is just the equality in the right diagram. Logi- AX)
cal relations are the case wheReis a representation / l[[ 1,
of CCCs, in which case, as we have seen, this diagram

necessarily commutekax logical relations are prod-subsconeg
uct preserving functor® such that Diagram (3) com-
mutes [16, Section 6]. The difference is that, with lax l@dielations, we do not re-
quireR to be representations of CCCs, just product preservingdusacVe say thak
is strict at arrow typesf and only if R preserves exponentials, too.

Defining lax logical relations for Moggi’s monadic meta-¢arage follows the same
pattern. The monadik-calculus gives rise to tHeee let-CCCComp(X) overX, where
a let-CCC is a CCC with a strong monad. We then get Diagramdainaonly with
A(X) replaced byComp(X'), C is alet-CCC, and_], is a representation of let-CCCs,
i.e., a functor that preserves products, exponentialsttachonad (functor, unit, mul-
tiplication, strength).

o c

5.3 Contextual Equivalence

Defining contextual equivalence in a calculus with name®istaicky. First, we have to
consider context§ of typeT'o (o € Obs), not of typeo. Intuitively, contexts should be
allowed to do some computations; were they of typiney could only return values. In
particular, note that contexssuch that: : 7'+ + C : o, meant to observe computations
at typer, cannot observe anything. This is because(the) typing rule only allows
one to use computations to build other computations, neslees.

Another tricky aspect is that we cannot take contéxthat only depend on one
variablexz : 7. We must assume that can also depend on an arbitrary set of pub-
lic names. Given names;, ..., n,,, the only wayC can be made to depend on them
is to assume that hasm free variables:, ..., z,, of typev, which are mapped to
ni,...,nm. (It is more standard [15, 1] to consider expressions builseparate sets
of variables and names, thus introducing the semantic maticmames in the syntax.
It is more natural here to consider that there are variablepapped, in a one-to-

one way, to names,;.) Let s; be any set of names containing, . .., n,,, let w; be
{z1,..-,2m}, andw; s, the injection mapping each to n;, 1 < | < m. Write
wy = i1(wy) for z1 :==nq,..., 2 := Ny, @ndwy v forz; 1 v, ..., 2, : v. We shall

then consider contexts such thatwy v,z : 7 = C : To is derivable, and evaluate



[C] s1]z := a,w; :=i1(wy1)] and compare it WitHC] s1[z := o', wy := i1 (w1)] tO
decide whether anda’ are contextually equivalent. This represents the fact@hat
evaluated in a world where all namessphave been created, and whérbas access
to all (public) names in(w ).

This definition is not yet correct, as this requireanda’ to be in[7] s1, but they
are in[[r] s for some possibly different setof names. This is repaired by considering

coercion[r] k1, wheres™s; is any injection.
To sum up, say that, ' € [r] s arecontextually equivalent at and writea ~2 o/,

if and only if, for every finite set of variables;, for every injectionSwlz%lsl and
sﬁsl, for every termC such thatwy - v,x : 7 - C : To is derivable § € Obs),

[C] s1]x := [r] k1(a), w1 :=i1(w1)] = [C] s1[x := [7] k1(a’), w1 := 41 (w1)].

The notion we use here is inspired by [15, Definition 4], alifjlo it may not
look so at first sight. We may simplify it a bit by noting that w@se no general-
ity in considering thaC has access tall names ins;. Without loss of generality,
we equatew; with s, and notice that: ~2 o' if and only if, for every injection
sﬁsl, for every termC such thatsy :v,2 : 7 = C : To is derivable ¢ € Obs),
[C] s1]z = [7] k1(a), 51 :=51] = [C] s1]x := [7] k1(a’), 51 = s1]. (Remember we
see thevariablesin s; as denoting th@mamesin s; here, equating names with vari-
ables.) The use of injections between finite sets leads usaligtto switch fromSet”
to the categonSet? ~, where Z—, thearrow categoryof Z, has ,, i _ o (4)
as objects all mOI’phISﬂ”lSHs in Z, and as morphisms from-5 s mL kl

to w’ s’ all pairs(j, k) of morphisms such that the right diagra

commutes. This is in accordance with [19], where it is natiteat «' —— s’

Set’” is the right category to define a Kripke logical relatlon (but
not necessarily lax) that coincides with Pitts and Stark'dicst-order types. We shall
consider here the equivalent category wherés restricted to be a finite set ofri-
ables(and continue to call this categafy~). Objectsw— s are then sets of variables
denoting those public names intogether with an injection. So we shall work with
lax logical relations in the subscone categS[;bsconeg, whereC = Set? x Set?,

C is the presheaf categoSet” , and|_| : C — C is the composite of the binary
product functorx : Set’ x Set’ — Set” with the functorSet" : Set’ — Set’
Hereu : Z— — 7 is the obvious forgetful functor that maps® s to s. Say that a value
a € [r] s is definable atv—s if and only if there is a term such thatw v F ¢ : 7 is
derivable and: = [t] s[w := i(w)].

Definition 1 Let w-5s be any object of . The values,a’ € [r] s are said to be
contextually equalent ab-5s, written a ~$*5 , if and only if, for every mor-

phism (j1, k1) from w55 to any objectw1—>51 in Z—, for every termC such that
wy v,z :7FC:To(o € Obs)is derivable,[C] s1[z := [7] k1(a), w1 :=i1(w1)] =

[C] s1]z := [r] k1(a'), wy = zl(wl)] Define the relatioﬂz;"—i's by:a Rfis a' ifand
only if a anda’ are definable atr-s anda ~ NUHS a.

In particular,a ~2 o' iff a ~?~* o/, wheref) — s denotes the unique empty injection.



Note that for every value € [7] s definable atv-ss, [7] k() is also definable at

w'i—,>s', whenever there is a morphisgn k) from the former to the latter. Indeed, let
a = [t] s|w := i(w)]. Then for¢’ obtained from t by renaming accordingto

[]k(a) = [t] 8 [w" := @' (w)]. (1)
In particular, every value € 7] s definable af) — s, is definable at every-s.

Theorem 5 Lax logical relations are complete for contextual equivede in the Moggi-
Stark calculus, in the strong sense that there is a lax Idgiektion R such that,
for every termsu, v/ such thatw:v + v : 7 andw:v + «' : 7 are derivable,

[u] s[w := i(w)] %ﬁ’LS [u'] s[w := i(w)]iff [u] s[w = i(w)] Rﬁjgs [u'] s[w := i(w)].
The (non-lax) logical relation of [19] is defined erby: n Ryis n'iff n=n'€w.
This is exactly what the lax logical relation of Definitionddefined as on thetype:

Lemma 2. Let Rfi’s be the logical relation of Definition 1. Then Ryi*s n’ if and
onlyifn =n' € i(w).

To finish this section, we observe:

Lemma 3. Assume that observation types have no junk, in the sensevtbigt value of
[o] s (o € Obs) is definable at, for everys, equivalently at everw-—s. ThenRg“Ls
is equality onfo] s, andR%j’S is equality on[T'0] s for any observation type.

We almost forgot to prove soundness! It is easy to see thalaaripgical relation
that coincides with partial equality on typ&% is sound for contextual equivalence.

Indeed, by the basic lemntao R = [_]|,, wheneven R;”—i’s a’, then for anyC such
thatw; T,z : 7 - C : To (o € Obs) is derivable, for any morphisiiy; , k) fromw-s
to wy sy, €] sl[wl.:: ir(wr),z = [r] k1(a)] R [C] s1{wy := i1 (wr), ==

[7] k1(a))]; s0a =% d.

5.4 Mixing Fresh Name Creation and Encryption

Let us get down to earth. What do we need now to get lax log&tations that are sound
and complete for contextual equivalence when both freshenemation and crypto-
graphic primitives are involved? The answer is: just laxdagrelations orSet” , as
used in Section 5.3... making sure that they relate eachauritself. We have indeed
been careful in being sure that our calculi were open, iey ttan be extended to ar-
bitrarily many new types and constants. The only requirdrtieat the new constructs
can be given a semantics$et” . In particular, a lax logical relation aflet”  is sound
for observational equivalence in the presence of crypfagceprimitives if each of the
constantenc, dec, SOME , NONE, case is related to itself.

Then Theorem 5 shows that lax logical relations are comfitetdhe Moggi-Stark
calculus, which uses a name creation monad. We have in face@gmore, again be-
cause we have been particularly keen on leaving the set ebtgpd constants open:



whatever new constants and types you allow, lax logicaticeia remain complete. In
particular, takingenc, dec, SOME , NONE, case as new constants, we automatically get
sound and complete lax logical relations for name creaaiothcryptographic primi-
tives.

Acknowledgements:We would like to thank Michel Bidoit for having directed us to
the notion of prelogical relations in the first place.
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