
Complete Lax Logical Relations for Cryptographic
Lambda-Calculi ?

Jean Goubault-Larrecq1 Sławomir Lasota2?? David Nowak1 Yu Zhang1? ? ?

1 LSV/CNRS & INRIA Futurs & ENS Cachan, Cachan, France
{goubault,nowak,zhang}@lsv.ens-cachan.fr

2 Institute of Informatics, Warsaw University, Warszawa, Poland
sl@mimuw.edu.pl

Abstract. Security properties are profitably expressed using notionsof contex-
tual equivalence, and logical relations are a powerful proof technique to establish
contextual equivalence in typed lambda calculi, see e.g. Sumii and Pierce’s log-
ical relation for a cryptographic lambda-calculus. We clarify Sumii and Pierce’s
approach, showing that the right tool is prelogical relations, or lax logical rela-
tions in general: relations should be lax at encryption types, notably. To explore
the difficult aspect of fresh name creation, we use Moggi’s monadic lambda-
calculus with constants for cryptographic primitives, andStark’s name creation
monad. We define logical relations which are lax at encryption and function types
but strict (non-lax) at various other types, and show that they are sound and com-
plete for contextual equivalence at all types.
Keywords: Logical relations, Monads, Cryptographic lambda-calculus, Subscone

1 Introduction

There are nowadays many existing models for cryptographic protocol verification. The
most well-known are perhaps the Dolev-Yao model (after [7],see [6] for a survey) and
the spi-calculus of [1]. A lesser known model was introducedby Sumii and Pierce [18],
thecryptographic lambda-calculus. This has certain advantages; notably, higher-order
behaviors are naturally taken into account, which is ignored in other models (although,
at the moment, higher order is not perceived as a needed feature in cryptographic proto-
cols). Better, second-order terms naturally encode asymmetric encryption. It may also
be appealing to consider that proving security properties in the cryptographic lambda-
calculus can be achieved through the use of well-craftedlogical relations, a tool that has
been used many times with considerable success in theλ-calculus: see [12, Chapter 8],
for numerous examples. Sumii and Pierce [18] in particular define three logical relations

? Partially supported by the RNTL project Prouvé, the ACI Sécurité Informatique Rossignol,
the ACI jeunes chercheurs “Sécurité informatique, protocoles cryptographiques et détection
d’intrusions”, and the ACI Cryptologie “PSI-Robuste”.

?? Partially supported by the KBN grant 7 T11C 002 21 and by the Research Training Network
Games. Part of this work was performed during the author’s stay at LSV.

? ? ? PhD student under an MENRT grant on ACI Cryptologie funding,École Doctorale Sciences
Pratiques (Cachan).

that can be used to establish contextual equivalence, henceprove security properties, but
completeness remains open.

Our contributions are twofold: first, we clarify the import of Sumii and Pierce as far
as the behavior of logical relations on encryption types is concerned, and simplify it to
the point that we reduce it to prelogical relations [10] and more generally to lax logical
relations [16]; while standard recourses to the latter wereusually required because of
arrow types, here we require the logical relations to be lax at encryption types. Second,
we prove various completeness results: two terms are contextually equivalent if and
only if they are related by some lax logical relation. This holds at all types, not just
first-order types as in previous works. An added bonus of using lax logical relations is
that they extend directly to more complex models of encryption, where cryptographic
primitives may obey algebraic laws. Proofs omitted in the sequel are to be found in the
full version of this paper, available as a technical report [9].
Outline. We survey related work in Section 2. We focus on the approach of Sumii and
Pierce, in which they define several rather complex logical relations as sound criteria
of contextual equivalence. We take a new look at this approach in Section 3 and Sec-
tion 4, and gradually deconstruct their work to the point where we show the power of
prelogical relations in action. This is shown in the absenceof fresh name creation, for
added clarity. We tackle the difficult issue of names in Section 5, using Moggi’s elegant
computationalλ-calculus framework with Stark’s name creation monad.

2 Related Work

Logical relations have often been used to prove various properties of typed lambda
calculi. We are interested here in using logical relations or variants thereof as sound
criteria for establishingcontextual equivalenceof two programs. This is instrumental in
defining security properties. As noticed in [1, 18], a datumM of typeτ is secretin some
termt(M) of typeτ ′ if and only if no intruder can say anything aboutM just by looking
att(M), i.e., if and only ift(M) ≈τ ′ t(M ′) for any twoM andM ′, where≈τ ′ denotes
contextual equivalence at typeτ ′. We are usingλ-calculus notions here, following [18],
but the idea of using contextual equivalence to define security properties was pioneered
by Abadi and Gordon [1], where both secrecy and authentication are investigated.

We shall define precisely what we mean by contextual equivalence in a calculus
without names (Section 3.2), then with names (Section 5.3).Both notions are standard,
the latter being inspired by [15], only adapted to Moggi’s computationalλ-calculus
[14]. In [15] and some other places, this kind of equivalence, which states that two
values (or terms)a anda′ are equivalent provided every context of typebool must
give identical results ona and ona′, is called observational equivalence. We stress
that this should not be confused with observational equivalence as it is defined for data
refinement [12], wheremodelsare related, notvaluesin the same model as here.

The main point in passing from contextual equivalence to logical relations is to
avoid the universal quantification over contexts in the former. But there are two kinds
of technical difficulties one must face in defining logical relations for cryptographicλ-
calculi. The first, and hardest one, isfresh name creation. The second is dealing with
encryption and decryption. We shall see that the latter has an elegant solution in terms

of prelogical relations [10], which we believe is both simpler and more general than
Sumii and Pierce’s proposal [18]; this is described in Section 3, although we ignore
fresh name creation there, for clarity.

Dealing with fresh name creation is harder. The work of Sumiiand Pierce [18] is
inspired in this respect by Pitts and Stark [15], who proposed aλ-calculus devoted to
the study of fresh name creation, thenu-calculus. They define a so-called operational
logical relation to establish observational equivalence of nu-calculus expressions. They
prove that this logical relation is complete up to first-order types.

In [8], Goubault-Larrecq, Lasota and Nowak define a Kripke logical relation for the
dynamic name creation monad, which is extended by Zhang and Nowak in [19] so that
it coincides with Pitts and Stark’s operational logical relation up to first-order types. We
continue this work here, relying on the elegance of Moggi’s computationalλ-calculus
[14] to describe side effects, and in particular name creation, using Stark’s insights [17].

Further comparisons will be made in the course of this paper,especially with bisim-
ulations for spi-calculus [1, 4, 5]. This continues the observations pioneered in [8],
where notions of logical relations for various monads were shown to be proper exten-
sions of known notions of bisimulations. The precise relation with hedged and framed
bisimulation [5] remains to be stated precisely.

3 Deconstructing Sumii and Pierce’s approach

The starting point of this paper was the realization that therather complex family of
logical relations proposed by Sumii and Pierce [18] could besimplified in such a way
that it could be described as merelyoneway of building logical relations that have all
desired properties. It turned out that the only property we really need to be able to deal
with encryption and decryption primitives is that the logical relations should relate the
encryption function with itself, and the decryption function with itself.

3.1 The Toy Cryptographicλ-Calculus

To show the idea in action, let us use a minimal extension of the simply-typedλ-calculus
with encryption and decryption, and call it thetoy cryptographicλ-calculus. We shall
show how the idea works on this calculus, which is just a fragment of Sumii and Pierce’s
[18] cryptographicλ-calculus. The main thing that is missing here is nonce creation,
i.e., fresh name creation.

For this moment, we restrict the types to:

τ ::= b | τ1 → τ2 | key[τ] | bits[τ]

whereb ranges over a setΣ of so-calledbase types, e.g., integers, booleans, etc. Sumii
and Pierce’s calculus in addition has cartesian product andcoproduct types.key[τ] is
the type of (symmetric) keys that can be used to encrypt values of typeτ , bits[τ] is
the type ofciphertextsobtained by encrypting some value of typeτ—necessarily with
a key of typekey[τ]. There is no special type for nonces, which are being thoughtas
objects of typekey[τ] for someτ .

The terms of the toy cryptographicλ-calculus are given by the grammar:

t, u, v, ... ::= x | λx · t | tu | {t}u | let {x}t = u in v1 else v2

wherex ranges over a countable set of variables,{t}u denotes the ciphertext obtained
by encryptingt with keyu (t is called theplaintext), andlet {x}t = u in v1 else v2
is meant to evaluateu, attempt to decrypt it using keyt, then proceed to evaluatev1
with plaintext stored inx if decryption succeeded, or evaluatev2 if decryption failed.
Definitions of free and bound variables andα-renaming are standard, hence omitted;x
is bound inλx · t, with scopet, as well inlet {x}t = u in v1 else v2, with scopev1.

Typing is as one would expect.Judgmentsare of the formΓ ` t : τ , whereΓ is a
context, i.e., a finite mapping from variables to types. IfΓ mapsx1 to τ1, . . . ,xn to τn,
we write itx1 : τ1, . . . , xn : τn. Typing rules for encryption and decryption are

Γ ` t : τ Γ ` u : key[τ]
(Enc)

Γ ` {t}u : bits[τ]

Γ ` t : key[τ] Γ ` u : bits[τ] Γ, x : τ ` v1 : τ ′ Γ ` v2 : τ ′
(Dec)

Γ ` let {x}t = u in v1 else v2 : τ ′

A simple denotational semantics for the typed toy cryptographic calculus is as fol-
lows. Let J_K be any function mapping typesτ to sets so thatJτ1 → τ2K is the set
Jτ1K → Jτ2K of all functions fromJτ1K to Jτ2K, for all typesτ1 andτ2. Let JbK be arbi-
trary for every base typeb, Jkey[τ]K be arbitrary. For everyV ∈ JτK, K ∈ Jkey[τ]K,
write E(V,K) the pair(V,K), to suggest that this really denotes the encryption ofV
with keyK. (That ciphertexts are just modeled as pairs is exactly as inmodern versions
of the Dolev-Yao model [7], or in the spi-calculus [1].) Then, let Jbits[τ]K be the set
of all pairsE(V,K), V ∈ JτK,K ∈ Jkey[τ]K.

For any setA, let A⊥ be the disjoint sum ofA with {⊥}, where⊥ is an element
outsideA, and letι be the canonical injection ofA into A⊥. While we have defined
E(V,K) as the pair(V,K), we define the inverse decryption function fromJbits[τ]K×
Jkey[τ]K to JτK⊥ by lettingD(V ′,K ′) beι(V) if V ′ is of the form(V,K) withK = K ′,
and⊥ otherwise. We then describe the valueJtK ρ of the termt in the environmentρ by
structural induction ont,

JΓ, x : τ ` x : τK ρ = ρ(x)

JΓ ` λx · t : τ1 → τ2K ρ = (V ∈ Jτ1K 7→ JΓ, x : τ1 ` t : τ2K ρ[x := V])

JΓ ` tu : τ2K ρ = JΓ ` t : τ1 → τ2K ρ(JΓ ` u : τ1K ρ)

JΓ ` {t}u : bits[τ]K ρ = E(JΓ ` t : τK ρ, JΓ ` u : key[τ]K ρ)

Jlet {x}t = u in v1 else v2K ρ =

{

Jv1K ρ[x := V1] if V = ι(V1)
Jv2K ρ if V = ⊥

whereV = D(JuK ρ, JtK ρ)

More formally, for any contextΓ , aΓ -environmentρ is a map such that, for everyx : τ
in Γ , ρ(x) is an element ofJτK. Write ρ[x := V] the environment mappingx to V and
every other variabley to ρ(y). Write [x := V] the environment mapping justx to V .

We write (V ∈ A 7→ f(V)) the (set-theoretic) function mappingV in A to f(V) to
distinguish it from the (syntactic)λ-abstractionλx·f(x). In JΓ ` tu : τ2K ρ, we assume
that the premises of the last rule of the implicit typing derivation areΓ ` t : τ1 → τ2
andΓ ` u : τ1. We writeJtK instead ofJtK ρ when the environmentρ is irrelevant, e.g.,
an empty environment.

3.2 What Are Logical Relations for Encryption?

We first fix a subsetObs of Σ, of so-calledobservation types. Typically,Obs will con-
tain just the typebool of Booleans, one of the base types. We say thata, a′ ∈ JτK
arecontextually equivalent, and we writea ≈τ a′, in the set-theoretic model above
if and only if, whatever the termC such thatx : τ ` C : o is derivable (o ∈ Obs),
JCK [x := a] = JCK [x := a′].

In theλ-calculus setting, a (binary)logical relationis a family(Rτ)τ type of binary
relationsRτ , one for each typeτ , onJτK, such that:

(Log) ∀f, f ′ ∈ Jτ1 → τ2K , f Rτ1→τ2 f
′ ⇔ (∀a Rτ1 a

′, f(a) Rτ2 f
′(a′).

Here we writea R a′ to say thata anda′ are related by the binary relationR. In
other words, logical relations relate exactly those functions that map related arguments
to related results. This is the standard definition of logical relations in theλ-calculus
[12]. Note that there is no constraint on base types. In the typedλ-calculus, i.e., with-
out encryption and decryption, the condition above forces(Rτ)τ type to be uniquely
determined, by induction on types, from the relationsRb, b ∈ Σ. More importantly, it
entails the so-calledbasic lemma. To state it, first say that twoΓ -environmentsρ, ρ′ are
relatedby the logical relation, in notationρ RΓ ρ′, if and only if ρ(x) Rτ ρ

′(x) for
everyx : τ in Γ . The basic lemma states that ifΓ ` t0 : τ is derivable, andρ, ρ′ are
two relatedΓ -environments, thenJt0K ρ Rτ Jt0K ρ

′. This is a simple induction on (the
typing derivation of)t0.

We are interested in the basic lemma because, as observed e.g. in [18], this implies
that for any logical relation that coincides with equality on observation types, any two
terms with logically related values are contextually equivalent.

In the toy cryptographicλ-calculus, we have left the definition ofRkey[τ] andRbits[τ]

open. Here are conditions under which the basic lemma holds in the toy cryptographic
λ-calculus. For any typeτ , let Rτ option be the binary relation onJτK⊥ defined by
V Rτ option V

′ if and only if V = V ′ = ⊥, or V = ι(V1), V ′ = ι(V ′
1) for someV1,

V ′
1 , andV1 Rτ V

′
1 .

Lemma 1. Assume that:
1. for everyV Rτ V

′ andK Rkey[τ] K
′, E(V,K) Rbits[τ] E(V ′,K ′);

2. for everyV Rbits[τ] V
′ andK Rkey[τ] K

′, D(V,K) Rτ option D(V ′,K ′).
Then the basic lemma holds: ifΓ ` t0 : τ is derivable, andρ, ρ′ are two related
Γ -environments, thenJt0K ρ Rτ Jt0K ρ

′.

Before we proceed, let us remark that we do not needany property ofE or D in the
proof of this lemma. The property thatD(E(V,K),K) = ι(V) is only needed to show
thatlet {x}t = {u}t in v1 else v2 andv1[u/x] have the same semantics, which we

do not care about here. The property thatE(V,K) is the pair(V,K), or thatE is even
injective, is just never needed. This means that Lemma 1 alsoholds if we use encryption
primitives that obey algebraic laws.

There is a kind of converse to Lemma 1. Assume that we have an additional type
formerτ option, with constructorsSOME : τ → τ option andNONE : τ option. As-
sume their semantics is given byJτ optionK = JτK⊥, JSOME tK = ι(JtK), JNONEK = ⊥.
Finally, assume thatRτ option is defined as above. Then we may define an encryp-
tion primitive enc = λv · λk · {v}k and a decryption primitive in the toy crypto-
graphic lambda-calculus bydec = λv · λk · let {x}k = v in SOME x else NONE.
If the basic lemma holds, then we must haveJencK Rτ→key[τ]→bits[τ] JencK and
JdecK Rbits[τ]→key[τ]→τ option JdecK. These are just conditions 1. and 2.

Call cryptographic logical relation any logical relation for which the basic lemma
holds. Conditions 1. and 2. can therefore be rephrased as thefollowing motto: a crypto-
graphic logical relation should relate encryption with itself, and decryption with itself.

3.3 Existence of Logical Relations for Encryption

How can webuild a cryptographic logical relation inductively on types? We first need
to address the question ofexistenceof logical relations satisfying the basic lemma.

Let us fix a typeτ , and assume that we have already constructedRτ andRkey[τ].
Let R⊥

bits[τ] be the smallest relation onJbits[τ]K satisfying condition 1., i.e., such

that E(V,K) R⊥
bits[τ] E(V ′,K) for all V Rτ V ′ andK Rkey[τ] K

′. Let R>
bits[τ]

be the largest relation onJbits[τ]K satisfying condition 2., i.e., such that whenever
V R>

bits[τ] V
′, thenD(V,K) Rτ option D(V ′,K ′) for everyK Rkey[τ] K

′. These two
relations clearly exist. Conditions 1. and 2. state that we should chooseRbits[τ] so that
R⊥

bits[τ] ⊆ Rbits[τ] ⊆ R>
bits[τ]. This exists if and only ifR⊥

bits[τ] ⊆ R>
bits[τ].

In turn,R⊥
bits[τ] ⊆ R>

bits[τ] is equivalent to: for everyV Rτ V
′ andK Rkey[τ] K

′,
for everyK1 Rkey[τ] K

′
1, D(E(V,K),K1) Rτ option D(E(V ′,K ′),K ′

1) (∗). Let there-
fore V Rτ V ′, and fix K Rkey[τ] K ′. By choosingK1 = K, (∗) becomes
ι(V) Rτ option D(E(V ′,K ′),K ′

1), which is equivalent toK ′ = K ′
1 andV Rτ V ′.

Similarly by choosingK ′ = K ′
1, we getK = K1 andV Rτ V

′. In other words, as
soon asRτ is not empty,Rkey[τ] must be apartial bijectionon Jkey[τ]K, i.e., the graph
of a bijection between two subsets ofJkey[τ]K.

Proposition 1 LetR0
b be given binary relations onJbK for every base typeb. LetR0

key[τ]

be any partial bijection onJkey[τ]K for every typeτ . There exists a cryptographic
logical relation (Rτ)τ type such thatRb = R0

b for every base typeb, and such that
Rkey[τ] = R0

key[τ] for every typeτ . We may defineRbits[τ], for any typeτ , as any

relation such thatR⊥
bits[τ] ⊆ Rbits[τ] ⊆ R>

bits[τ].

Proposition 1 shows that cryptographic logical relations exist that coincide with given
relations on base types. But contrarily to logical relations in theλ-calculus, they are far
from being uniquely determined: we have considerable freedom as to the choice of the
relations at key and bits types.

To defineRkey[τ], notably, we may use the intuition that some keys are observable
by an intruder, and some others are not. Lettingfrτ be the set of observable keys, define

Rkey[τ] as relating the keyK with itself providedK ∈ frτ , and not relating any non-
observable key with any key. This is clearly a partial bijection, in fact the identity on
the subsetfrτ of Jkey[τ]K. This is a popular choice:frτ is what Abadi and Gordon [2]
call aframe, up to the fact that frames are defined there as sets of names, not of keys.

To defineRbits[τ], we may choose any relation sandwiched betweenR⊥
bits[τ] and

R>
bits[τ]. For everyV0, V

′
0 ∈ Jbits[τ]K, V0 R⊥

bits[τ] V
′
0 if and only if V0 is of the form

E(V,K), V ′
0 is of the formE(V ′,K ′), V Rτ V

′ andK = K ′ ∈ frτ . In other words,
V0 andV ′

0 are related byR⊥
bits[τ] if and only if they are encryptions of related plaintexts

by a unique key that the intruder may observe. On the other hand,V0 R>
bits[τ] V

′
0 if and

only if V0 = E(V,K) andV ′
0 = E(V ′,K ′) with eitherV Rτ V

′ andK = K ′ ∈ frτ ,
orK,K ′ 6∈ frτ (whateverV , V ′).

So,Rbits[τ] is completely characterized by the datum offrτ , plus a functionψτ
mapping pairs of keysK, K ′ in Jkey[τ]K \ frτ to a binary relationψτ (K,K ′) on
JτK: if Rbits[τ] is given, then letψτ (K,K ′) be defined as relatingV with V ′ if and
only if E(V,K) Rbits[τ] E(V ′,K ′); on the other hand, givenψτ , the relationRbits[τ]

that relatesE(V,K) with E(V ′,K ′) if and only if V Rτ V
′ andK = K ′ ∈ frτ , or

K,K ′ 6∈ frτ andV ψτ (K,K
′) V ′, is such thatR⊥

bits[τ] ⊆ Rbits[τ] ⊆ R>
bits[τ].

Given parametersfr andψ, we then get the following definition of auniquecryp-
tographic logical relation by induction on types, so that itcoincides with given relations
on base types:

Proposition 2 Let frτ be some subset ofJkey[τ]K, for each typeτ , andψτ be any
function from(Jkey[τ]K \ frτ)2 to the set

�
(JτK × JτK) of binary relations onJτK. For

any familyR0
b of binary relations onJbK, b a base type, let(Rfr,ψ

τ)τ type be the family
of relations defined by:
• Rfr,ψ

b = R0
b for each base typeb;

• for everyf, f ′ ∈ Jτ1 → τ2K, f Rfr,ψ
τ1→τ2

f ′ if and only if for everya Rfr,ψ
τ1

a′,
f(a) Rfr,ψ

τ2
f ′(a′);

• for everyK,K ′ ∈ Jkey[τ]K,K Rfr,ψ

key[τ] K
′ if and only ifK = K ′ ∈ frτ ;

• for everyV, V ′ ∈ JτK, for everyK,K ′ ∈ Jkey[τ]K, E(V,K) Rfr,ψ

bits[τ] E(V ′,K ′) if

and only ifV Rfr,ψ
τ V ′ andK = K ′ ∈ frτ , orK,K ′ 6∈ frτ andV ψτ (K,K

′) V ′.
Whatever the choices offrτ andψτ , (Rfr,ψ

τ)τ type is a cryptographic logical relation.

Clearly, Proposition 2 generalizes to the case wherefrτ andψτ are not givena priori,
but defined using the relationsRfr,ψ

τ ′ for (not necessarily strict) subtypesτ ′ of τ . That
is, when not justRfr,ψ

τ but alsofrτ andψτ are defined by mutual induction on types.
It is interesting, too, to relate the definition ofRfr,ψ

τ to selected parts of the notion
of framed bisimulation [2]. Slightly adapting [2] again, call a theory(on typebits[τ])
anyfinite binary relationthτ on Jbits[τ]K. By finite, we mean that it should be finite
as a set of pairs of values. A frame-theory pair(frτ , thτ) is consistentif and only if
thτ is a partial bijection, andE(V,K) thτ E(V ′,K ′) impliesK 6∈ frτ andK ′ 6∈ frτ .
Any consistent frame-theory pair determines aψτ function byV ψτ (K,K

′) V ′ if and
only if E(V,K) thτ E(V ′,K ′). It follows that frame-theory pairs, as explained here,
are special cases of pairs of a framefrτ and a functionψτ .

4 A Uniform Cryptographic λ-Calculus, and Prelogical Relations

Reflecting on the developments above, we see that it would be more natural to use, in-
stead of the toy cryptographicλ-calculus, a simply-typedλ-calculus with two constants
enc anddec, with respective semantics given byE andD. While we are at it, it is clear
from the way we defineR0

key[τ] in Proposition 2 that the typekey[τ] behaves more like
a base type than a type constructed from another type. It is therefore relevant to change
the algebra of types to something like:

τ ::= b | τ1 → τ2 | bits[τ] | key | τ option | . . .

whereb ranges overΣ,Σ now contains a collection ofkey typeskey1, . . . ,keyn (wlog.,
we shall use just one, which we writekey), and theτ option type is used to give a
typing to dec : bits[τ] → key → τ option; enc is assumed to have typeτ →
key → bits[τ]. The final ellipsis is meant to indicate that there may be other type
formers (products, etc.): we do not wish to be too specific here.

The language we get is just the simply-typedλ-calculus with constants. . . up to the
fact that we need option typesτ option. The constants to consider here are at leastdec,
enc, SOME : τ → τ option, NONE : τ option, andcase : τ option → (τ → τ ′) →
τ ′ → τ ′. (Thecase constant implements the elimination principle forτ option; we
write case s of SOME x ⇒ t | NONE ⇒ t′ instead ofcase s(λx · t)t′, and leave the
semantics ofcase as an exercise to the reader.)

The fact that the constantsdec, enc, are required to have their denotations,D and
E, related to themselves is reminiscent ofprelogical relations[10]. These can be de-
fined in a variety of ways. Following [10, Definition 3.1, Proposition 3.3], aprelogical
relation is any family(Rτ)τ type of relations such that:
1. for everyf, f ′ ∈ Jτ1 → τ2K, if f Rτ1→τ2 f

′ anda Rτ1 a
′ thenf(a) Rτ2 f

′(a′);
2. K Rτ1→τ2→τ1 K, whereK is the function mappingx ∈ Jτ1K, y ∈ Jτ2K to x;
3. S R(τ1→τ2→τ3)→(τ1→τ2)→τ1→τ3 S, where S is the function mapping
x ∈ Jτ1 → τ2 → τ3K, y ∈ Jτ1 → τ2K, z ∈ Jτ1K to x(z)(y(z));
4. and for every constanta : τ , JaK Rτ JaK.
whereJaK denotesJaK ρ for any environmentρ. Condition 1. is just one half of(Log).
The basic lemma for prelogical relations [10, Lemma 4.1] is stronger than for logical
relations: prelogical relations areexactlythose families of relations indexed by types
such that the basic lemma holds.

Note that the use of prelogical relations also requires us torelate the semantics of
SOME with itself, that ofNONE with itself, and that ofcase with itself.

Then, we may observe that prelogical relations are not just sound for contextual
equivalence, they arecomplete, at all types, even higher-order. Recall that a valuea ∈
JτK is definableif and only if there exists a (necessarily closed) termt such that̀ t : τ
is derivable, anda = JtK. The main point in our completeness argument is that there
is a lax logical relation built by considering the trace of≈τ on definable elements. The
relation is necessarily a partial equality on observation typeso ∈ Obs.

Theorem 3 (Completeness)Prelogical relations are complete for contextual equiva-
lence in theλ-calculus, in the strong sense that there is a prelogical relation(Rτ)τ type

such that for everyt1, t2 s.t. ` t1 : τ,` t′2 : τ , Jt1K ≈τ Jt2K if and only ifJt1K Rτ Jt2K.

The argument before Proposition 2 applies here without further ado: every prelog-
ical relation must be a partial bijection at thekey type, and conversely, any prelogical
relation that is the equality onfr ⊆ JkeyK at thekey type satisfies the basic lemma,
hence can be used to establish contextual equivalence. Specializing the prelogical rela-
tion (Rτ)τ type of Theorem 3 (its proof is in the full version [9]), we get thatRkey is
exactly equality on the setfr = {JtK | ` t : key} of definable keys.

Similarly, we may define the binary relationψτ (K,K ′), for every
K,K ′ ∈ JkeyK \ fr, (i.e., for all non-definable keys) byV ψτ (K,K

′) V ′ if and only if
E(V,K)Rbits[τ]E(V ′,K ′), i.e., if and only ifE(V,K) andE(V ′,K ′) are definable at
typebits[τ], andE(V,K) ≈bits[τ] E(V ′,K ′).

From this, we infer immediately the following combination of the analogue of
Proposition 2 (soundness) with Theorem 3 (completeness):

Proposition 4 There is a prelogical relation(Rfr,ψ
τ)τ type, parameterized byfr and

ψ, which is:
• strict at thekey type: i.e., for everyK,K ′ ∈ JkeyK, K Rfr,ψ

key K ′ if and only if
K = K ′ ∈ fr;
• strict at bits[τ] types: i.e., for everyV, V ′ ∈ JτK, for everyK,K ′ ∈ JkeyK,
E(V,K) Rfr,ψ

bits[τ] E(V ′,K ′) if and only if V Rfr,ψ
τ V ′ and K = K ′ ∈ fr, or

K,K ′ 6∈ fr andV ψτ (K,K
′) V ′;

• and such that, for somefr andψ, for every closed termst, t′ of typeτ , JtK ≈τ Jt′K if
and only ifJtK Rfr,ψ

τ Jt′K.

The idea of beingstrict at some typeτ is, in all cases, that the (pre)logical relation
at typeτ should be defined uniquely as a function of the (pre)logical relations at all
immediate subterms ofτ . The prelogical relation of Proposition 4 is strict at option
types, too, provided there is a closed term of typeτ or JτK has no junk.

While the point in prelogical relations in [10] is mainly of being not strict at arrow
types, the point here is to argue that it is meaningful eithernot to be strict atbits[τ]
types, as in Section 3.2 (in the sense thatRbits[τ] was not determined uniquely from
Rτ), or equivalently to be strict atbits[τ], given parametersfr andτ . We believe
that just saying that we do not require strictness atbits[τ], thus omitting thefr andτ
parameters, leads to some simplification.

5 Name Creation and Lax Logical Relations

No decent calculus for cryptographic protocols can dispense with fresh name creation.
This is most easily done by following Stark [17], who defined acategorical semantics
for a calculus with fresh name creation based on Moggi’s monadicλ-calculus [14]. We
just take his language, adding all needed constants as in Section 4.

5.1 The Moggi-Stark Calculus

TheMoggi-Stark calculusis obtained by adding a new type formerT (themonad), to
the types of theλ-calculus of Section 4, so thatTτ is a type as soon asτ is:

τ ::= b | τ1 → τ2 | bits[τ] | key|τ option | Tτ | . . .

(We continue to leave the definition of our calculi open, as shown with the ellipsis. . .,
to facilitate the addition of new types and constants, if needed.) Following Stark, we
also require the existence of a new base typeννν ∈ Σ of names. (This will take the place
of the typekey of keys, which we shall equate with names.) Theλ-calculus of Section 4
is enriched with constructsval t andlet x⇐ t in u (not to be confused with thelet
construct of Section 3.1), with typing rules as following, and two constantsnew : Tννν
(fresh name creation) and

.
=: ννν → ννν → bool (equality of names).

Γ ` t : τ
(val)

Γ ` val t : Tτ

Γ ` t : Tτ Γ, x : τ ` u : Tτ ′

(let)
Γ ` let x⇐ t in u : Tτ ′

In Stark’s semantics (notations are ours here), given any finite sets (of names),
JtK sρ is the value oft in environmentρ assuming that all previously created names
are in s. This allows one to describe the creation of fresh names as returning any name
outsides. This is most elegantly described by letting the values of terms be taken in
the presheaf categorySetSetSetI [17], whereI is the category whose objects are finite sets

and whose morphismss
i
→s′ are injections. Given any typeτ , JτK s is intuitively the

set of all values of typeτ in a world where all created names are ins. SinceJτK is a

functor, for every injections
i
→s′ there is a conversionJτK i that sends any valuea of

JτK s to one inJτK s′, intuitively by renaming the names ina usingi. By extension, if
Γ is any contextx1 : τ1, . . . , xn : τn, let JΓ K beJτ1K × . . .× JτnK, using the products
in SetSetSetI—i.e., products at each worlds. Then, as usual in categorical semantics [11],
given any termt such thatΓ ` t : τ is derivable,JtK is a morphism fromJΓ K to JτK.
This means thatJtK is a natural transformation fromJΓ K to JτK, in particular that, for
every finite sets, JtK s maps anyΓ, s-environmentρ (a map sending eachxi such that
xi : τi is in Γ to some element ofJτiK s) to some valueJtK sρ in JτK s; and all this is
natural ins, i.e., compatible with renaming of names.

Interestingly,Tτ , the type of computations that result in a value of typeτ , pos-
sibly creating fresh names during the course of computation, is defined semantically
by JTτK = TTT JτK, where(TTT ,ηηη,µµµ, ttt) is the strong monad defined in [17, 8, 19].TTTA
is defined bycolims′ A(_ + s′) : I → SetSetSet. On objects, this is given byTTTAs =
colims′ A(s+ s′), i.e.,TTTAs is the set of all equivalence classes of pairs(s′, a) with s′

a finite set anda ∈ A(s + s′), modulo the smallest equivalence relation≡ such that

(s′, a) ≡ (s′′, A(ids + j)a) for every morphisms′
j

−→s′′ in I. Intuitively, given a set
of namess, elements ofTTTAs are formal expressions(νs′)a where all names ins′ are
bound and every name free ina is in s+ s′—modulo the fact that(νs′, s′′)a ≡ (νs′)a
for any additional set of new namess′′ not free ina. We shall in fact write(νs′)a the
equivalence class of(s′, a), to aid intuition.

The semantics oflet andval is standard [14]. Making it explicit on this particular
monad, we obtain:Jval tK sρ = (ν∅) JtK sρ andJlet x⇐ t in uK sρ = (ν s′ + s′′)b,
whereJtK sρ = (νs′)a, we assume thatΓ ` t : Tτ andΓ, x : τ ` u : Tτ ′, and where
JuK (s + s′)((JΓ K (inls,s′)ρ)[x := a]) = (νs′′)b. (Concretely, ifΓ is x1 : τ1, . . . , xn :
τn, ρ = [x1 := a1, . . . , xn := an] whereai ∈ JτiK s for everyi, thenJΓ K (inls,s′)ρ is
[x1 := Jτ1K (inls,s′)a1, . . . , xn := JτnK (inls,s′)an].)

The semantics of base typesb ∈ Σ, exceptννν, is given by constant functors:JbK s
is a fixed set, independent ofs; e.g.,JboolK s = �. The semantics ofννν is JνννK s = s,

JνννK i = i; i.e., the names that exist ats are just the elements ofs. SetSetSetI is a presheaf
category, hence cartesian-closed [11]. This provides a semantics forλ-abstraction and
applications.

Finally, the semantics ofnew : Tννν is given byJnewK sρ = (ν{n})n, wheren
is any element not ins, andJ

.
=K is defined as the only morphism inSetSetSetI such that

J
.
= xyK s[x := a, y := b] is true if a = b, andfalse otherwise.

5.2 Lax Logical Relations for Monads

Given that terms now take values in some category (SetSetSetI), not inSetSetSet as in Section 3,
the proper generalization of prelogical relations is givenby lax logical relations[16].
We introduce this notion as gently as possible.

Let Σ be the set of base types, seen as a discrete category. The simply-typedλ-
calculus gives rise to thefree CCCλλλ(Σ) overΣ as follows: the objects ofλλλ(Σ) are
typing contextsΓ , a morphism fromΓ to ∆ = y1 : τ1, . . . , yn : τn is a substitution
[y1 := t1, . . . , yn := tn], whereΓ ` ti : τi (1 ≤ i ≤ n), moduloβη-conversion. (In
particular,Γ -environments are exactly morphisms from the terminal object, the empty
contextε, to Γ .) Composition is substitution. Being the free CCC means that, for any
CCCCCC, for any functorJ_K0 fromΣ toCCC (i.e., for any function
J_K0 mapping each base type inΣ to some object inCCC), there
is a unique representationJ_K1 of CCCs fromλ(Σ) toCCC such
that the right diagram commutes. A representation of CCCs is
any functor that preserves products and exponentials. WhenCCC

Σ
⊆

//

J_K
0

!!D
D

D
D

D
D

D
D

D
λλλ(Σ)

J_K
1

��

CCC

(1)

is SetSetSet, this describes all at once all the constructionsJτK1 (denotation of typesτ) and
JtK1 (denotations of typedλ-termst) as used in Section 3.

Let Subscone
�

CCC be thesubsconecategory, defined as follows. Assume
�

is another
CCC, such that

�
has pullbacks. Let|_| be a functor fromCCC to

�
that preserves finite

products. ThenSubscone
�

CCC is the category whose objects are triples〈S,m,A〉, wherem
is a monoS

�

�

// |A| in
�

, and whose morphisms from〈S,m,A〉 to 〈S′,m′, A′〉 are

pairs of morphisms〈u, v〉 (u in
�

, fromS to S′, andv inCCC, fromA toA′), making the
obvious square commute. Noting thatSubscone

�

CCC is again a CCC (Mitchell and Scedrov
[13] make this remark when

�
isSetSetSet, and|_| is the global section functorCCC(1, _)), the

following purely diagrammatic argument obtains. Assume weare given a functor from
Σ toSubscone

�

CCC , i.e., a collectionRo of objects inSubscone
�

CCC , one for each base type
o. Then there is a unique representationR of CCCs
from λλλ(Σ) such that the right diagram commutes.
Now the crux of the argument is the following. The
forgetful functorU : Subscone

�

CCC → CCC mapping
the object〈S,m,A〉 to A and the morphism〈u, v〉
to v is also a representation of CCCs. It follows that

Σ
⊆

//

(Ro)o∈Σ

��

λλλ(Σ)

R
yysssssssss

Subscone
�

CCC

(2)

U ◦ R is a representation of CCCs again, fromλλλ(Σ)
toCCC. If U ◦ (Ro)o∈Σ = J_K0, then by the uniqueness property ofJ_K1, we must have
U ◦R = J_K1, i.e., diagram (3) commutes. As observed in [13], and extended to CCCs
in [3], when

�
= SetSetSet, CCC is the product of two CCCsAAA andBBB, and|_| is the functor

AAA(1, _) × BBB(1, _), (R(τ))τ type behaves like a logical relation. It is really a logical

relation, as we have defined it earlier, when bothAAA andBBB areSetSetSet. (In this case, an

objectR(τ) is of the form S
�

�

// JτK2 , whereS, up to isomorphism, is just a subset

of the cartesian product ofJτK with itself.) In caseAAA andBBB are the same presheaf
categorySetSetSetI , (R(τ))τ type is a Kripke logical relation with base categoryI.

While the object part of functorR, (R(τ))τ type, yields logical relations (or exten-
sions), the morphism part maps each morphism inλλλ(Σ), namely a typed termtmodulo
βη, of typeτ , to a morphism in the subscone, i.e., a pair〈u, v〉. The fact that diagram
(3) commutes states thatv is just the pair of the semantics oft inAAA and the semantics
of t inBBB, and the fact that〈u, v〉 is a morphism (saying that a certain square commutes)
states that these two semantics are related byR(τ): this establishes the basic lemma.

The important property to makeR satisfy the basic
lemma is just the equality in the right diagram. Logi-
cal relations are the case whereR is a representation
of CCCs, in which case, as we have seen, this diagram
necessarily commutes.Lax logical relations are prod-
uct preserving functorsR such that Diagram (3) com-

λλλ(Σ)

R

yysssssssss

J_K
1

��

Subscone
�

CCC U
// CCC

(3)

mutes [16, Section 6]. The difference is that, with lax logical relations, we do not re-
quireR to be representations of CCCs, just product preserving functors. We say thatR
is strict at arrow typesif and only ifR preserves exponentials, too.

Defining lax logical relations for Moggi’s monadic meta-language follows the same
pattern. The monadicλ-calculus gives rise to thefree let-CCCCompCompComp(Σ) overΣ, where
a let-CCC is a CCC with a strong monad. We then get Diagram (1) again, only with
λλλ(Σ) replaced byCompCompComp(Σ),CCC is a let-CCC, andJ_K1 is a representation of let-CCCs,
i.e., a functor that preserves products, exponentials, andthe monad (functor, unit, mul-
tiplication, strength).

5.3 Contextual Equivalence

Defining contextual equivalence in a calculus with names is abit tricky. First, we have to
consider contextsC of typeTo (o ∈ Obs), not of typeo. Intuitively, contexts should be
allowed to do some computations; were they of typeo, they could only return values. In
particular, note that contextsC such thatx : Tτ ` C : o, meant to observe computations
at typeτ , cannot observe anything. This is because the(let) typing rule only allows
one to use computations to build other computations, never values.

Another tricky aspect is that we cannot take contextsC that only depend on one
variablex : τ . We must assume thatC can also depend on an arbitrary set of pub-
lic names. Given namesn1, . . . , nm, the only wayC can be made to depend on them
is to assume thatC hasm free variablesz1, . . . , zm of typeννν, which are mapped to
n1, . . . , nm. (It is more standard [15, 1] to consider expressions built on separate sets
of variables and names, thus introducing the semantic notion of names in the syntax.
It is more natural here to consider that there are variableszl mapped, in a one-to-
one way, to namesnl.) Let s1 be any set of names containingn1, . . . , nm, let w1 be

{z1, . . . , zm}, andw1
i1→s1 the injection mapping eachzl to nl, 1 ≤ l ≤ m. Write

w1 := i1(w1) for z1 := n1, . . . , zm := nm, andw1 : ννν for z1 : ννν, . . . , zm : ννν. We shall
then consider contextsC such thatw1 : ννν, x : τ ` C : To is derivable, and evaluate

JCK s1[x := a,w1 := i1(w1)] and compare it withJCK s1[x := a′, w1 := i1(w1)] to
decide whethera anda′ are contextually equivalent. This represents the fact thatC is
evaluated in a world where all names ins1 have been created, and whereC has access
to all (public) names ini(w1).

This definition is not yet correct, as this requiresa anda′ to be inJτK s1, but they
are inJτK s for some possibly different sets of names. This is repaired by considering

coercionJτK k1, wheres
k1→s1 is any injection.

To sum up, say thata, a′ ∈ JτK s arecontextually equivalent ats, and writea ≈sτ a
′,

if and only if, for every finite set of variablesw1, for every injectionsw1
i1→s1 and

s
k1→s1, for every termC such thatw1 : ννν, x : τ ` C : To is derivable (o ∈ Obs),

JCK s1[x := JτK k1(a), w1 := i1(w1)] = JCK s1[x := JτK k1(a
′), w1 := i1(w1)].

The notion we use here is inspired by [15, Definition 4], although it may not
look so at first sight. We may simplify it a bit by noting that welose no general-
ity in considering thatC has access toall names ins1. Without loss of generality,
we equatew1 with s1, and notice thata ≈sτ a′ if and only if, for every injection
s
k1→s1, for every termC such thats1 : ννν, x : τ ` C : To is derivable (o ∈ Obs),

JCK s1[x := JτK k1(a), s1 := s1] = JCK s1[x := JτK k1(a
′), s1 := s1]. (Remember we

see thevariablesin s1 as denoting thenamesin s1 here, equating names with vari-
ables.) The use of injections between finite sets leads us naturally to switch fromSetSetSetI

to the categorySetSetSetI
→

, where I→, the arrow categoryof I, has
as objects all morphismsw

i
→s in I, and as morphisms fromw

i
→s

to w′ i
′

→s′ all pairs(j, k) of morphisms such that the right diagram
commutes. This is in accordance with [19], where it is noticed that

w
i

//

j

��

s

k

��

w′

i′
// s′

(4)

SetSetSetI
→

is the right category to define a Kripke logical relation (but
not necessarily lax) that coincides with Pitts and Stark’s on first-order types. We shall
consider here the equivalent category wherew is restricted to be a finite set ofvari-
ables(and continue to call this categoryI→). Objectsw

i
→s are then setsw of variables

denoting those public names ins, together with an injectioni. So we shall work with
lax logical relations in the subscone categorySubscone

�

CCC , whereCCC = SetSetSetI × SetSetSetI ,
�

is the presheaf categorySetSetSetI
→

, and |_| : CCC →
�

is the composite of the binary
product functor× : SetSetSetI × SetSetSetI → SetSetSetI with the functorSetSetSetu : SetSetSetI → SetSetSetI

→

.
Hereu : I→ → I is the obvious forgetful functor that mapsw

i
→s to s. Say that a value

a ∈ JτK s is definable atw
i
→s if and only if there is a termt such thatw : ννν ` t : τ is

derivable anda = JtK s[w := i(w)].

Definition 1 Let w
i
→s be any object ofI→. The valuea, a′ ∈ JτK s are said to be

contextually equivalent atw
i
→s, written a ≈w

i
→s

τ a′, if and only if, for every mor-

phism(j1, k1) from w
i
→s to any objectw1

i1→s1 in I→, for every termC such that
w1 : ννν, x : τ ` C : To (o ∈ Obs) is derivable,JCK s1[x := JτK k1(a), w1 := i1(w1)] =

JCK s1[x := JτK k1(a
′), w1 := i1(w1)]. Define the relationRw

i
→s

τ by:a Rw
i
→s

τ a′ if and

only if a anda′ are definable atw
i
→s anda ≈w

i
→s

τ a′.

In particular,a ≈sτ a
′ iff a ≈∅→s

τ a′, where∅ → s denotes the unique empty injection.

Note that for every valuea ∈ JτK s definable atw
i
→s, JτK k(a) is also definable at

w′ i
′

→s′, whenever there is a morphism(j, k) from the former to the latter. Indeed, let
a = JtK s[w := i(w)]. Then fort′ obtained from t by renaming according toj,

JτK k(a) = Jt′K s′[w′ := i′(w′)]. (1)

In particular, every valuea ∈ JτK s definable at∅ → s, is definable at everyw
i
→s.

Theorem 5 Lax logical relations are complete for contextual equivalence in the Moggi-
Stark calculus, in the strong sense that there is a lax logical relation R such that,
for every termsu, u′ such thatw : ννν ` u : τ and w : ννν ` u′ : τ are derivable,

JuK s[w := i(w)] ≈w
i
→s

τ Ju′K s[w := i(w)] iff JuK s[w := i(w)] Rw
i
→s

τ Ju′K s[w := i(w)].

The (non-lax) logical relation of [19] is defined onννν by:n Rw
i
→s

ννν n′ iff n = n′ ∈ w.
This is exactly what the lax logical relation of Definition 1 is defined as on theννν type:

Lemma 2. LetRw
i
→s

τ be the logical relation of Definition 1. Thenn Rw
i
→s

ννν n′ if and
only if n = n′ ∈ i(w).

To finish this section, we observe:

Lemma 3. Assume that observation types have no junk, in the sense thatevery value of

JoK s (o ∈ Obs) is definable ats, for everys, equivalently at everyw
i
→s. ThenRw

i
→s

o

is equality onJoK s, andRw
i
→s

To is equality onJToK s for any observation typeo.

We almost forgot to prove soundness! It is easy to see that anylax logical relation
that coincides with partial equality on typesTo is sound for contextual equivalence.

Indeed, by the basic lemmaU ◦ R = J_K1, whenevera Rw
i
→s

τ a′, then for anyC such

thatw1 : ννν, x : τ ` C : To (o ∈ Obs) is derivable, for any morphism(j1, k1) fromw
i
→s

to w1
i1→s1, JCK s1[w1 := i1(w1), x := JτK k1(a)] R

w1

i1
→s1

To JCK s1[w1 := i1(w1), x :=

JτK k1(a
′)]; soa ≈w

i
→s

τ a′.

5.4 Mixing Fresh Name Creation and Encryption

Let us get down to earth. What do we need now to get lax logical relations that are sound
and complete for contextual equivalence when both fresh name creation and crypto-
graphic primitives are involved? The answer is: just lax logical relations onSetSetSetI

→

, as
used in Section 5.3. . . making sure that they relate each constant itself. We have indeed
been careful in being sure that our calculi were open, i.e. they can be extended to ar-
bitrarily many new types and constants. The only requirement that the new constructs
can be given a semantics inSetSetSetI . In particular, a lax logical relation onSetSetSetI

→

is sound
for observational equivalence in the presence of cryptographic primitives if each of the
constantsenc, dec, SOME , NONE, case is related to itself.

Then Theorem 5 shows that lax logical relations are completefor the Moggi-Stark
calculus, which uses a name creation monad. We have in fact proved more, again be-
cause we have been particularly keen on leaving the set of types and constants open:

whatever new constants and types you allow, lax logical relations remain complete. In
particular, takingenc, dec, SOME , NONE, case as new constants, we automatically get
sound and complete lax logical relations for name creationand cryptographic primi-
tives.

Acknowledgements:We would like to thank Michel Bidoit for having directed us to
the notion of prelogical relations in the first place.

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. In
Proc. 4th ACM Conference on Computer and Communications Security (CCS), 1997.

2. M. Abadi and A. D. Gordon. A bisimulation method for cryptographic protocols.Nordic
Journal of Computing, 5(4), 1998.

3. M. Alimohamed. A characterization of lambda definabilityin categorical models of implicit
polymorphism.Theoretical Computer Science, 146(1–2), 1995.

4. M. Boreale, R. de Nicola, and R. Pugliese. Proof techniques for cryptographic processes. In
Proc. LICS’99. IEEE Computer Society Press, 1999.

5. J. Borgström and U. Nestmann. On bisimulations for the spicalculus. InProc. AMAST’02,
volume 2422 ofLNCS. Springer, 2002.

6. H. Comon and V. Shmatikov. Is it possible to decide whethera cryptographic protocol is
secure or not?J. of Telecommunications and Information Technology, 4, 2002.

7. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, IT-29(2), 1983.

8. J. Goubault-Larrecq, S. Lasota, and D. Nowak. Logical relations for monadic types. InProc.
CSL’02, volume 2471 ofLNCS. Springer, 2002.

9. J. Goubault-Larrecq, S. Lasota, D. Nowak, and Y. Zhang. Complete lax logical relations for
cryptographic lambda-calculi. Research Report, LSV, ENS de Cachan, 2004.

10. F. Honsell and D. Sannella. Pre-logical relations. InProc. CSL’99, volume 1683 ofLNCS,
1999.

11. J. Lambek and P. J. Scott.Introduction to Higher Order Categorical Logic, volume 7 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1986.

12. J. C. Mitchell.Foundations for Programming Languages. MIT Press, 1985.
13. J. C. Mitchell and A. Scedrov. Notes on sconing and relators. InProc. CSL’93, volume 702

of LNCS. Springer, 1993.
14. E. Moggi. Notions of computation and monads.Information and Computation, 93, 1991.
15. A. Pitts and I. Stark. Observable properties of higher order functions that dynamically create

local names, or: What’snew? In Proc. Int. Conf. Mathematical Foundations of Computer
Science (MFCS), volume 711 ofLNCS. Springer, 1993.

16. G. D. Plotkin, J. Power, D. Sannella, and R. D. Tennent. Lax logical relations. InProc.
ICALP’00, volume 1853 ofLNCS. Springer, 2000.

17. I. Stark. Categorical models for local names.Lisp and Symbolic Computation, 9(1), 1996.
18. E. Sumii and B. C. Pierce. Logical relations for encryption. In Proc. CSFW-14. IEEE

Computer Society Press, 2001.
19. Y. Zhang and D. Nowak. Logical relations for dynamic namecreation. InProc. CSL/KGL’03,

volume 2803 ofLNCS. Springer, 2003.

