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Abstract. The objective of this work is to study the interaction be-
tween program verification and program compilation, and to show that
the proof that a source program meets its specification can be reused to
show that the corresponding compiled program meets the same specifi-
cation. More concretely, we introduce a core imperative language, and
a bytecode language for a stack-based abstract machine, and a non-
optimizing compiler. Then we consider for both languages verification
condition generators that operate on programs annotated with loop in-
variants and procedure specifications. In such a setting, we show that
compilation preserves proof obligations, in the sense that the proof obli-
gations generated for the source annotated program are the same that
those generated for the compiled annotated program (using the same
loop invariants and procedure specifications). Furthermore, we discuss
the relevance of our results to Proof Carrying Code.

1 Introduction

1.1 Background and contribution

Interactive verification techniques provide a means to guarantee that programs
are correct with respect to a formal specification, and are increasingly being
supported by interactive verification environments that can be used to prove
the correctness of safety critical or security sensitive software. For example, in-
teractive verification environments are being used to certify the correctness of
smartcard software, both for platforms and applications.

However interactive verification environments typically operate on source
code programs whereas it is clearly desirable to obtain correctness guarantees
for compiled programs, especially in the context of mobile code where code
consumers may not have access to the source program. Therefore it seems natural
to study the relation between interactive program verification and compilation.

In this paper, we focus on the interaction between compilation and verifica-
tion condition generators (VC generators), which are used in many interactive
verification environments to guarantee the correctness of source programs, and
by several proof carrying code (PCC) architectures to check the correctness of
compiled programs. Such VC generators operate on annotated programs that
carry loop invariants and procedure specifications expressed as preconditions



and postconditions, and yield a set of proof obligations that must be discharged
in order to establish the correctness of the program.

The main technical contribution of the paper is to show in a particular set-
ting that compilation preserves proof obligations, in the sense that the set of
proof obligations generated for an annotated source code program P is equal to
the set of proof obligations generated for the corresponding annotated compiled
program C(P ) (we let C(.) be some compilation function), where annotations
for C(P ) are directly inherited from annotations in P . The immediate practical
consequence of the equivalence is that the results of interactive source program
verification (i.e. the proofs that are built interactively) can be reused for check-
ing compiled programs, and hence that it is possible to bring the benefits of
interactive program verification (at source code level) to the code consumer.

One important question is whether preservation of proof obligations can be
derived from the semantical correctness of the compiler (in the sense that com-
piled programs have the same semantics as their source counterpart), and thus
can be established independently of the exact definition of the compiler. The
answer is negative: our results hold for a specific compiler that does not perform
any optimization, and simple program optimizations invalidate preservation of
proof obligations. We return to this point in Section 5.

Another question is the choice of the source and target languages: our source
and target languages are loosely inspired from Java (e.g. we handle procedure
calls differently), as our main application scenario deals with Java-enabled mobile
phones.

1.2 Application scenarios

In this paragraph, we propose a scenario that exploits preservation of proof
obligations to bring the benefits of interactive source program verification to the
code consumer. The scenario may be viewed as an instance of Proof Carrying
Code (PCC) [9], from which it inherits benefits including its robustness under the
code/specification being modified while transiting from producer to consumer
and/or under the assumption of a malicious producer, and issues including the
difficulty of expressing security policies for applications, etc.

Scenario Consider a mobile phone operator that is keen of offering its customers
a new service and has the possibility to do so by deploying a program C(P )
originating from an untrusted software company. The operator is worried about
the negative impact on its business if the code is malicious or simply erroneous,
and wants to be given guarantees for C(P ). For liability reasons, the operator
does not want to see the source code, and for intellectual property reasons, the
software company does not want to disclose its source code nor does it authorize
the operator to modify the compiled code to insert additional checks.

The equivalence of proof obligations can be used to justify the following
scenario: the operator provides a partial specification of the program, e.g. a pre-
condition φ and a postcondition ψ for the program main procedure, and requires
the company to show that the program meets this partial specification. There
are two possibilities: either the software company verifies directly C(P ), which



is definitely a possibility but not the most comfortable one, or thanks to preser-
vation of proof obligations, it can also set to verify P , and benefits from the
structured nature of modern programming languages in which we assume that
P has been written. To verify P , the software company suitably annotates the
program, leading to an annotated program P ′. Then it generates the set of proof
obligations for P ′ and discharges each proof obligation using some verification
tool that produces proofs. The compiled annotated program is sent to the oper-
ator, together with the set of proof obligations and their proofs. Upon reception,
the operator checks that the compiled annotated program provided by the soft-
ware company matches the partial specification it formulated in the first place
(here it has to check that the precondition and postcondition are unchanged),
and then run its own verification condition generator, and checks with the help
of the proofs provided by the software company that these proof obligations can
be discharged.

Our application scenario is being considered for specific application domains,
such as midlets, where operators currently dispose of a large number of GSM
applications that they do not want to distribute to their customers due to a lack
of confidence in the code. Of course, we do not underestimate that our approach
is costly, both by the infrastructure it requires, and by the effort involved in using
it (notably by involving program verification). However, the pay-off is that our
approach enables to prove precisely properties of programs, i.e. in particular
correct programs will not be rejected because of some automatic method which
is overly conservative (i.e. rejects correct programs).

Our approach can also be used in other mobile code scenarios. Consider for
example a repository of certified algorithms; the algorithms have been written
in different programming languages, but they are stored in the directory as
compiled programs, e.g. as CLR programs. Prior to adding a new algorithm,
say an efficient algorithm to verify square root, the maintainer of the repository
asks for a certificate that the algorithm indeed computes the square root. The
correctness of the algorithm must be established through interactive verification,
say by the implementer of the algorithm. The implementer has the choice to
write a proof using a program logic for the language in which the algorithm was
developed, or using an appropriate bytecode logic. Once again, it seems likely
that the first approach would be favored, and therefore that proof obligation
preserving compilation would be useful.

1.3 Related work

There are several lines of work concerned with establishing a relation between
source programs and compiled programs. The most established line of work is
undoubtedly compiler verification [7], which aims at showing that a compiler
preserves the semantics of programs.

A more recent line of work is translation validation, proposed by A. Pnueli,
M. Siegel and E. Singerman [11], and credible compilation, proposed by M. Ri-
nard [13], aim at showing for each individual run of the compiler that the result-
ing target program implements correctly the source program, i.e. has the same



semantics. This is achieved by the automatic generation of invariants for each
program point in the source code that must be satisfied at the corresponding
program points in the source code. This technique does not allow to verify that a
given specification is satisfied. Related work has also been done by X. Rival [14,
15], who uses abstract interpretation techniques to infer invariants at the source
level and compile these invariants for the target level.

Our work is complementary to approaches to Proof-Carrying Code based
on certifying compilation. In [10], Necula and Lee propose to focus on safety
properties which can be proved automatically through an extended compiler
that synthesizes annotations from the information it gathers about a program,
and a checker that discharges proof obligations generated by the verification
condition generator. Certifying compilers are very important for the scalability
of PCC, but of course the requirement of producing certificates automatically
reduces the scope of properties it can handle.

There are also some recent works on program specification and verification
that involve at source level and target levels: the Spec# project [3] has defined
an extension of C# with annotations and type support for nullity discrimina-
tion. Such annotated programs are then compiled (with their specifications) to
extended .NET files, which can be run using the .NET platform. Specifications
are checked at run-time or verified using a static checker (called Boogie). This
work does not consider explicitly the relationship between source and compiled
program verification (but the Spec# methodology implicitly assumes some re-
lation between the two, otherwise letting users to specify source code and have
Boogie verifying the corresponding compiled program would be meaningless).
In a similar line of work, L. Burdy and M. Pavlova [6] have extended the proof
environment Jack, which provides a verification condition generator for JML-
annotated sequential Java programs, with a verification condition generator for
extended Java class files that accommodate compiled JML annotations. How-
ever, they do not establish any formal relation between the two VC generators.
Independently of this work, F. Bannwart and P. Müller [2] have considered proof
compilation for a substantial fragment of sequential Java, and have discuss the
translation of proofs from source code to bytecode. However, their work does not
discuss automatic proof verification, neither establishes the correctness of proof
compilation in their setting. None of these works discusses optimizations.

For completeness, we also mention the existence of many Hoare-like logics
and weakest precondition calculi for low-level languages such as the JVM or
.NET or assembly languages, see e.g. [1, 5, 8, 12, 16]; many of these works have
been proposed in the context of PCC.

Contents The remaining of the paper is organized as follows. Section 2 introduces
syntax and annotation language, and VC generators for the assembly and source
languages. Preservation of proof obligations is addressed in Section 3. Section 4
illustrates how our approach can be applied to guarantee program correctness.
Finally, we conclude in Section 5 with related work and directions for future
research.



2 Language and Proof Systems Definitions

In the sequel, we let V be the set of values that are manipulated by programs
(here V = Z), and assume given a set A ⊆ V × V → V of arithmetic operations
and a set C ⊆ V ×V → {0, 1} of comparison operators. Furthermore, we assume
given a set M of procedure names and a set X of program variables.

2.1 The assembly language

The assembly language SAL is a stack-based language with conditional and
unconditional jumps, procedure calls and exceptions. It is powerful enough to
compile the core imperative language described in Section 2.2.

instr ::= prim op primitive arithmetic operation
| push n push n on stack
| load x load value of x on stack
| store x store top of stack in x
| if cmp j conditional jump
| goto j unconditional jump
| assert Φ assertion Φ
| nop no operation
| invoke m procedure invocation
| throw throw an exception
| return end of program

where op : A, and cmp : C, and x : X , and n : V, j : N, m : M and Φ is an assertion.

Fig. 1. Instruction set

SAL programs are sets of procedures with a distinguished procedure main.
Each procedure m consists of a function from its set Pm of program points to
instructions where the set of instructions is defined in Figure 1, and of a partial
function Handlerm : Pm ⇀ Pm which specifies for each program point its han-
dler, if any. We write Handlerm(l) ↑ if Handlerm(l) is undefined, and Handlerm(l) ↓
otherwise. Program states are pairs consisting of a global register map, and a
stack of frames, which correspond to the execution context of a procedure, and
which consist of an operand stack, a program counter and the name of the pro-
cedure being executed. The operational semantics is standard (except for assert

that does not change the state, i.e. it is like a no operation instruction). Note
that upon a procedure invocation, a new frame is created with an empty operand
stack and with the program pointer set to 1 (the initial instruction of a proce-
dure). As to exception handling, the intuitive meaning is that if the execution
at program point l in procedure m raises an exception and Handlerm(l) = t,
then control is transfered to t with an empty operand stack. If on the contrary
Handlerm(l) is not defined, then the top frame is popped from the stack and the
exception is transfered to the next frame.



In the sequel, we use the successor relation 7→⊆ Pm × Pm which relates in-
struction to their successors. We assume that the successor of an assert instruc-
tion always belongs to the instructions of the procedure (we need this assumption
for the sake of simplicity of definition of proof obligations further on).

Assertion language The assertion language is a standard-first order language
that contains comparison between arithmetic expressions as base assertions, and
is closed under conjunction and implication. One unusual feature of arithmetic
expressions is that there are two special constants st and top for reasoning about
the stack. The constant top represents the size of the stack in the current state,
while the constant st can be thought of as an array used for an abstract repre-
sentation of the operand stack. Thus we can refer to the elements of an array via
expressions of the form st(top− i). The set of arithmetic expressions is defined
inductively as follows:

se ::= top | se− 1
aexpr ::= n | x | aexpr op aexpr | st(se)

where op : A.
The semantics of assertions is standard, except that assertions that refer to

an undefined arithmetic expression, i.e. that contain a reference to an element
outside the stack bounds, are considered to be false.

The definition of the VC generator relies extensively on substitution oper-
ators. Besides the rules for substituting variables, which are standard, we also
have substitution rules for top and for the non-atomic expressions, namely st(top)
and top− 1.

Well-annotated programs Verification condition generators compute from
partially annotated programs a fully annotated program, in which all program
points of each procedure of the program have an explicit precondition attached
to them. VCGens are partial functions that require programs to be sufficiently
annotated in the first place. We call such programs well-annotated.

The property of being well-annotated can be formalized through an induction
principle that is reminiscent of the accessible fragment of a binary relation: that
is, given a procedure Pm, a predicate R on Pm, we define ext R inductively by
the clauses: i) if i ∈ R then i ∈ ext R; ii) if for all j ∈ Pm such that i 7→ j,
we have j ∈ ext R, then i ∈ ext R. Informally, ext R is the set of points from
which all paths eventually arrive at R.

Definition 1 (Well-annotated program).

1. Let Passert

m and P return

m be the set of program points i such that Pm[i] is an
assert instruction and return instruction respectively. Then Pm is a well-
annotated procedure code iff ext (Passert

m ∪ P return

m ) = Pm.
2. A program is well-annotated if it comes equipped with functions EPost :

M → Assn and NPost : M → Assn that give the exceptional and normal
postcondition of each procedure, and a function Pre : M → Assn which gives
the precondition of a procedure, preconditions and postconditions assertions
do not contain st or top, and each procedure is well-annotated.



Given a well-annotated program, one can generate a precondition for each pro-
gram point. Indeed, the assertion at any given program point can be computed
from the assertions for all its successors; the latter may either be given initially
(as part of the partially annotated program), or have been computed previously.
Note that the definition of well-annotated program does not require programs to
have any particular structure, e.g. unlike [12], they do not rule out overlapping
loops.

Verification condition generator The verification condition generator for
assembly programs, vcga, is defined as a function that takes as input a well-
annotated program P and returns an assertion for each program point in P .
This assertion represents the weakest liberal precondition that an initial state
before the execution of the corresponding program point should satisfy for the
method to terminate in a state satisfying its postcondition, that is NPost(m)
in case of normal termination or EPost(m) in case the method terminates with
an unhandled exception.

The computation of vcga proceeds in a modular way, i.e. procedure by pro-
cedure, and uses annotations from the procedure under consideration, as well as
the preconditions and post-conditions of procedures called by m. Concretely for
each program point, vcga is defined by a case analysis on the instruction Pm[i].

Its definition is given in Figure 2. Notice that we use −2, that does not belong
to the assertion language, instead of −1− 1 as syntactic sugar in the definition.
After calculating vcga of the procedure Pm (w.r.t. the annotations of Pm), we
define the set of proof obligations POm as

POm(Pm, NPost(m), EPost(m))

= {Φi ⇒ vcga(i+ 1) | i ∈ Passert

m }

∪ {NPost(m′) ⇒ vcga(i+ 1) | Pm[i] = invoke m′}

∪ {Pre(m) ⇒ vcga(1)} ∪Mh(m) ∪Mh(m)

where

Mh(m) = {EPost(m′) ⇒ vcga(t) | Pm[i] = invoke m′ ∧ Handlerm(i) = t}

Mh(m) = {EPost(m′) ⇒ EPost(m) | Pm[i] = invoke m′ ∧ Handlerm(i) ↑}

Proof obligations fall in one of the following categories:

– proof obligations that correspond to assertions in code;
– proof obligations triggered by procedure calls, where one has to verify that

the postcondition of the invoked procedure implies the normal precondition
computed for the program point that corresponds to the program point of
the procedure invocation;

– the proof obligation that establishes that the normal precondition computed
for the first program point follows from the procedure precondition;

– proof obligations triggered by procedure calls for the case that such calls raise
an exception that is handled by the procedure m. Here one has to verify



that the exceptional postcondition of m implies the normal precondition
computed for the handler of the program point where procedure invocation
occurs;

– proof obligations triggered by procedure calls for the case that such calls
raise an exception that is not handled by the procedure m. Here one has to
verify that the exceptional postcondition of the procedure called implies the
exceptional postcondition of m.

We define the set of proof obligation of a program as the union of the proof
obligations of all its methods:

PO(P ) =
⋃

m∈M

POm(Pm, NPost(m), EPost(m))

One can prove that the verification condition generator is sound, in the sense
that if the program P is called with registers set to values that verify the precon-
dition of the procedure main, and P terminates normally, then the final state will
verify the normal postcondition of main. Likewise, if P terminates abnormally,
that is if an exception is thrown and there is no handler, then the final state
will verify the exceptional postcondition of main. Soundness is proved first for
one step of execution, and then extended to execution traces by induction on
the length of the execution.

push n : vcg
a
(i) = vcg

a
(i + 1)[n/st(top), top/top − 1]

prim op : vcg
a
(i) = vcg

a
(i + 1)[st(top − 1) op st(top)/st(top), top − 1/top]

load x : vcg
a
(i) = vcg

a
(i + 1)[x/st(top), top/top − 1]

store x : vcg
a
(i) = vcg

a
(i + 1)[top − 1/top, st(top)/x]

if cmp j : vcg
a
(i) = st(top− 1) cmp st(top) ⇒ vcg

a
(i + j)[top − 2/top]

∧¬(st(top − 1) cmp st(top)) ⇒ vcg
a
(i + 1)[top − 2/top]

goto j : vcg
a
(i) = vcg

a
(i + j)

assert Φ : vcg
a
(i) = Φ,

nop : vcg
a
(i) = vcg

a
(i + 1)

throw : vcg
a
(i) = EPost(m) if Handlerm(i) ↑

throw : vcg
a
(i) = vcg

a
(t) if Handlerm(i) = t

invoke m′ : vcg
a
(i) = Pre(m′)

return : vcg
a
(i) = NPost(m)

Fig. 2. Verification Condition Generator for SAL Procedures

2.2 Source language

The source language IMP is an imperative language with loops and conditionals,
procedures and exceptions.



Definition 2. 1. The set AExpr of arithmetic expressions, and AProgIMP of
commands are given by the following syntaxes:

expr ::= x | n | expr op expr
cmpexpr ::= expr cmp expr
comm ::= skip | x := expr | comm; comm | while {I} cmpexpr do comm |

if cmpexpr then comm else comm|try comm catch comm |
throw | call m

where op and cmp are as in Section 2.1 and I is an assertion as defined in
Section 2.1, but without the constants top and st.

2. We define a program P in IMP as a set of procedures (we use m to name
a procedure), and their corresponding bodies, which are a command from
AProgIMP (we use Pm to name a procedure code).

We define a standard verification condition generator vcg, which takes as input
a command and an assertion, and returns an assertion. The function is im-
plicitly parameterized by assertions; concretely, we assume that all procedures
are annotated with a precondition, a normal postcondition, and an exceptional
postcondition.

vcg(skip, Q, R) = Q
vcg(x := e, Q, R) = Q[e/x]
vcg(c1; c2, Q, R) = vcg(c1, vcg(c2, Q, R), R)
vcg(while {I} e do c1, Q, R) = I
vcg(if e1 cmp e2 then c1 else c2, Q, R) =

(e1 cmp e2) ⇒ vcg(c1, Q, R)∧
¬(e1 cmp e2) ⇒ vcg(c2, Q, R)

vcg(try c catch c′, Q, R) = vcg(c, Q, vcg(c′, Q, R))
vcg(throw, Q,R) = R
vcg(call m′), Q, R) = Pre(m′)

Fig. 3. Verification Condition Generator for IMP Procedures

We also define inductively the set POc of proof obligations for a command
as follows:



POc(skip, Q,R) = ∅
POc(x := e,Q,R) = ∅
POc(c1; c2, Q,R) = POc(c1, vcg(c2, Q,R), R) ∪ POc(c2, Q,R)
POc(while {I} e do c1, Q,R) =

POc(c1, Q,R) ∪ {I ⇒ (e⇒ vcg(c1, I, R) ∧ ¬e⇒ Q)}
POc(if e1 cmp e2 then c1 else c2, Q,R) =

POc(c1, Q,R) ∪ POc(c2, Q,R)
POc(throw, Q,R) = ∅
POc(call m

′, Q,R) = {EPost(m′) ⇒ R} ∪ {NPost(m′) ⇒ Q}
POc(try c catch c′, Q,R) = POc(c,Q, vcg(c′, Q,R)) ∪ POc(c

′, Q,R)

As in SAL, proof obligations fall in one of the following categories:

– proof obligations that correspond to annotations in while loops;
– proof obligations triggered by procedure calls,
– proof obligations triggered by procedure calls for the case that such calls

raise an exception that is handled by the procedure m.

We define for every procedure m with body c, the set of proof obligations
POm(c,NPost(m), EPost(m)) as:

POc(c,NPost(m), EPost(m))∪
{Pre(m) ⇒ vcg(c,NPost(m), EPost(m))}

That is, the proof obligations of a method are those generated by the body
of the methods plus the proof obligation that establishes that the precondition
computed for the body of the methods follows from the procedure precondition.

Finally, the set of proof obligation for a program P is defined as the union
of proof obligations for each method in P :

PO(P ) =
⋃

m∈M

POm(Pm, NPost(m), EPost(m))

3 Proof obligations preserving compilation

This section shows that the sets of proof obligations are preserved by a standard
non-optimizing compiler. The consequence of this result is that having annota-
tions and proofs of proof obligations for the source code, the same evidence can
be used to prove automatically the correctness of its corresponding compiled
program.

Definition 3. The compilation function Cp : AProgIMP → AProgSAL is defined
in Figure 4, using an auxiliary function Ce : AExpr → AProgSAL (also defined in
Figure 4), and another auxiliary function to define exception tables (defined in
Figure 5).



The compilation of exception tables defines handlers for program points of in-
structions enclose in the ”try” part of try-catch commands as the first program
point of the code enclose in their ”catch” part.

Throughout this section, we use vcg(p,Q,R) to denote both verification con-
dition generator at source code and bytecode. For the bytecode, vcg(p,Q,R) is
vcga(i) where the normal and exceptional postconditions are Q and R resp. and
where i is the first program point in p.

We begin with an auxiliary lemma about expressions. Given a list P of in-
structions, we use the notation P [i...j] to denote the list of instructions from
instruction at i up to j.

Lemma 1. Let e be an arithmetic expression in AExpr which appears in program
P , and suppose that we have that Ce(e) = Cc(P )[i...j]. Let Q be an assertion in
Assn that includes an arithmetic expression st(top). Assume vcga(j + 1) = Q.
Then vcg(i) = Q[e/st(top), top/top− 1].

The following lemma states that if there exists a handler c′ at source level
for a command c, then any exception thrown in the compilation of c will have a
handler that corresponds to the compilation of c′.

Lemma 2 (Handler Preserving Compiler). Let command try c catch c′ s.t.
it is the inner-most try-catch command enclosing c and let Pm[i . . . j] = Cc(c)
and Pm[i′ . . . j′] = Cc(c

′) be compilations of c and c′. Then for any h ∈ {i . . . j}
that can throw an exception in Pm, Handlerm(h) = i′ and if c is not enclosed in
a try-catch command Handlerm(h) ↑.

The following proposition establishes that compilation “commutes” with ver-
ification condition generation.

Proposition 1. vcg(Cc(c), Q,R) = vcg(c,Q,R)

The following theorem claims that the set of proof obligations of the original
program are the same of the proof obligations generated after compilation.

Theorem 1 (Proof Obligation Preserving Compilation).

POm(Cc(c), Q,R) = POm(c,Q,R)

4 Example

The purpose of this section is to illustrate how the application scenario from
the introduction can be applied to guarantee that compiled applications meet
high-level security properties, such as the absence of uncaught exceptions, as well
as specific security properties, such as non-interference; the latter is encoded in
our language using self-composition as described in [4]. Here the operator will
determine which program variables (in a more realistic language one would focus
on method parameters) of the program P to be certified are to be considered
confidential. In turn, this choice sets the precondition and the postcondition,



Ce(x) = load x
Ce(n) = push n

Ce(e op e′) = Ce(e) :: Ce(e
′) :: prim op

Cc(skip) = nop

Cc(x := e) = Ce(e) :: store x
Cc(c1; c2) = Cc(c1) :: Cc(c2)

Cc(while {I} e1 cmp e2 do c) = let l1 = Ce(e1); l2 = Ce(e2); l3 = Cc(c); x = #l3;
y = #l1 + #l2 in goto (#l3 + 1) :: l3 ::

assert I :: l2 :: l1 :: if cmp (pc − x − y)
Cc(if e1 cmp e2 then c1 else c2) = let le = Ce(e1) :: Ce(e2); lc1 = Cc(c1); lc2 = Cc(c2);

x = #lc2; y = #lc1 in le :: if cmp (pc + x + 2) :: lc2

:: goto (y + 1) :: lc1

Cc(call m′((e))) = Ce((e)) :: invoke m′

Cc(throw) = throw

Cc(try c1 catch c2) = let lc1 = Cc(c1); lc2 = Cc(c2);
x = #lc2; in
lc1 :: goto (x + 1) :: lc2

Fig. 4. Compiling IMP to SAL

X (c1; c2) = X (c1) :: X (c2)

X (while e do c) = X (c)

X (if e then c1 else c2) = X (c1) :: X (c2);

X (try c1 catch c2) = let lc1 = Cc(c1); lc2 = Cc(c2);
x = #lc1; in
X (c1) :: X (c2) :: 〈1, x + 1, x + 2〉

X ( ) = ε

Fig. 5. Definition of exception tables

namely x = x
′, where x are the low variables of P , and x

′ is a renaming of
the low variables of P . Suppose in addition that the operator does not want the
program to raise uncaught exceptions. Then the code producer must establish

{x = x
′}P ;P ′{x = x

′, false}

where P ′ is a renaming of P with fresh variables x
′ for low variables, and y

′ for
high-variables. False as the exceptional postcondition denotes that an exception
should not be thrown. To make matter precise, consider that P is the program
constituted of two procedures main and aux that take one public parameter x



{x = x′}verif == x := y; call aux; x′ := y′; call aux′

{x = x′, false}

{true}
aux == x := 3; while {0 ≤ x} x ≥ 1 do y := y ∗ x; x := x − 1
{x = 0, false}

{x = 0}
aux′ == x′ := 3; while {0 ≤ x′ ∧ x = 0}x′ ≥ 1 do y′ := y′ ∗ x′; x′ := x′ − 1
{x = 0 ∧ x′ = 0, false}

Proof Obligations for main:
x = x′ ⇒ true
false ⇒ false, x = 0 ⇒ x = 0
false ⇒ false x = 0 ∧ x′ = 0 ⇒ x = x′

Proof Obligations for aux:
true ⇒ 0 ≤ 3
0 ≤ x ⇒ (x ≥ 1 ⇒ 0 ≤ x − 1 ∧ x < 1 ⇒ x = 0)

Proof Obligations for aux’:
x = 0 ⇒ 0 ≤ 3 ∧ x = 0
0 ≤ x′ ∧ x = 0 ⇒ (x′ ≥ 1 ⇒ 0 ≤ x′ − 1∧ x = 0 ∧ x < 1 ⇒ x = 0 ∧ x′ = 0)

Fig. 6. Example: Program with specification of Non-Interference

and one private parameter y, with main and aux defined as

main == x := y; call aux

aux == x := 3; while x ≥ 1 do y := y ∗ x;x := x− 1

(Note that the program is non-interfering, since it always return with x = 0.
However, the program is typically rejected by a type system.)

In order to prove the required properties, the software company must pro-
vide appropriate precondition and postcondition for the method aux, as well as
appropriate loop invariants, and discharge the resulting proof obligations for the
program verif defined as

verif == x := y; call aux; x′ := y′; call aux′

The annotated program is given in Figure 6, where we use red to denote the spec-
ification provided by the operator, and green to denote the specification provided
by the software company. We denote with blue the set of proof obligations. In
Figure 7, we show the annotated compiled program.



Precondition x = x′

i P [i] vcg
a
(i)

1 load y true
2 store x true
3 invoke aux true
4 load y’ x =0
5 store x’ x = 0
6 invoke aux’ x =0
7 return x =x’

Posts x = x′, false

POmain :
x = x′ ⇒ true
false ⇒ false, x = 0 ⇒ x = 0
false ⇒ false x = 0 ∧ x′ = 0 ⇒ x = x′

Fig. 7. Compilation of the Example (main procedure)

5 Concluding remarks

This paper shows, in a simple context, that it is possible to transfer evidence
of program correctness from a source program to its compiled counterpart. Fur-
thermore, we have shown on simple examples the possible uses of our results,
and discussed some possible application domains. Although not reported here,
we have also implemented a small prototype compiler and proof obligation gen-
erators to experiment our approach small examples.

We now intend to extend our results to (non-optimizing compilers for) pro-
gramming languages such as Java and C#. Furthermore, we intend to extend
our results to optimizing compilers. However, preservation of proof obligations
may be destroyed by simple program optimizations. If we allow optimizations,
it is necessary to focus on a more general property that involves an explicit
representation of proofs.

Property of Proof Compilation For every annotated program P , a proof compiler
is given by:

– a function f that gives for every proof obligation at the assembly level a
corresponding proof obligation at the source level;

– a function that transforms, for every proof obligation ξ at the assembly level,
proofs of f(ξ) into proofs of ξ.

Proof compilation is a generalization of preservation of proof obligations and
allows to bring the benefits of source code verification to code consumers. Like
preservation of proof obligations, it is tied to a specific compiler; additionally,
it is tied to a representation of proofs (although some degree of generality is
possible here).

Preliminary investigations indicate that proof compilation is feasible for most
common program optimizations. These results will be reported elsewhere.



Furthermore, we would like to explore further scenarios in which proof com-
pilation could be used advantageously. We only mention two particularly in-
teresting scenarios: the compilation of aspect-oriented programming, and the
compilation of domain-specific languages DSLs into general purpose programs.
The latter application domain seems particularly relevant since one could hope
to exploit the features of DSLs to achieve easy proofs at the source code level.

Another item for future work is an evaluation of the usefulness of preservation
of proof obligations and proof compilation on larger case studies. In the short
term, the most promising application of our technique concerns high-level secu-
rity properties that are often found in security policies for mobile applications;
many of such properties are either recommended internally by the security ex-
perts to developers, or by external companies with strong security expertise (e.g.
some certification authority) to solution providers (e.g. our telecom operator in
the scenario of Subsection 1.2). In the longer term, it would be interesting to in-
vestigate the applicability of our method to the problem of performing dynamic
updates of mobile devices infrastructures; indeed, such a scenario will probably
require to establish that components behave according to their specification.
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and the anonymous referees for valuable comments on a preliminary version of
this paper. This work was partially supported by the Estonian-French coopera-
tion program Parrot, the EU projects APPSEM II, eVikings II, and INSPIRED,
the Estonian Science Foundation grant no 5567, and the French ACI Sécurité
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Definition 4 (Semantics of assertions).

1. The semantics [[.]](s) of arithmetic expressions relative to a state s is defined
inductively as follows:

[[x]](s) = s · registers(x)
[[n]](s) = n

[[a1 op a2]](s) = [[a1]](s) op [[a2]](s)
[[st(se)]](s) = take(s · stack, [[se]](|s · stack|))

where, given a list l and a natural number n, take(l, n) is (if it exists) the
n-th element of l, and |l| is the length of l, and [[se]] : N → N is defined by
the clauses:

[[top]](n) = n
[[se− 1]](n) = [[se]](n) − 1

2. The semantics [[φ]]s of an assertion φ w.r.t. a state s is defined inductively
as follows:

[[a1 bop a2]](s) =















false

if [[a1]](s) or [[a2]](s) undefined

[[a1]](s) bop [[a2]](s)
otherwise

[[true]](s) = true

[[false]](s) = false

[[¬P ]](s) = ¬[[P ]](s)
[[P1 ∨ P2]](s) = [[P1]](s) ∨ [[P2]](s)
[[P1 ∧ P2]](s) = [[P1]](s) ∧ [[P2]](s)

[[P1 ⇒ P2]](s) = [[P1]](s) ⇒ [[P2]](s)
[[∀x.P ]](s) = ∀v ∈ Z.[[P ]](s⊕ {x 7→ v})
[[∃x.P ]](s) = ∃v ∈ Z.[[P ]](s⊕ {x 7→ v})

The following lemmas are used in the proof of Proposition ?? below.

Lemma 3.

[[ϕ[n/st(top), top/top− 1]]](〈i, ρ, os〉) ⇔ [[ϕ]](〈j, ρ, n :: os〉)

Proof. The substitution affects only assertions which refer to the stack. Asser-
tions about stack can made only via stack and top variables (stack(top) or
stack(se − 1)), so it suffices to show that n and stack(top) (top and top −
1) are equal under given substitution and states. For the first substitution:
[[st(top)]](〈i, ρ, n :: os〉) = n = [[n]](〈j, ρ, os〉). For the second substitution:

[[top− 1]](〈i, ρ, n :: os〉) = |n :: os| − 1 = |os| = [[top]](〈j, ρ, os〉).

Lemma 4.

[[ϕ[x/st(top), top/top− 1]]](〈i, ρ, os〉) ⇔ [[ϕ]](〈j, ρ, ρ(x) :: os〉)



Pm[i] ∈ {assert Φ, nop}

〈〈i, os, m〉 :: fs, ρ〉 〈〈i + 1, os, m〉 :: fs, ρ〉

Pm[i] = goto j

〈〈i, os, m〉 :: fs, ρ〉 〈〈i + j, os, m〉 :: fs, ρ〉

Pm[i] = push n n ∈ Z

〈〈i, os, m〉 :: fs, ρ〉 〈〈i + 1, n :: os, m〉 :: fs, ρ〉

Pm[i] = if cmp j ¬(v1 cmp v2)

〈〈i, v2 :: v1 :: os, m〉 :: fs, ρ〉 〈〈i + 1, os, m〉 :: fs, ρ〉

Pm[i] = if cmp j v1 cmp v2

〈〈i, v2 :: v1 :: os, m〉 :: fs, ρ〉 〈〈i + j, os, m〉 :: fs, ρ〉

Pm[i] = load x

〈〈i, os, m〉 :: fs, ρ〉 〈〈i + 1, ρ(x) :: os, m〉 :: fs, ρ〉

Pm[i] = store x

〈〈i, v :: os, m〉 :: fs, ρ〉 〈〈i + 1, os, m〉 :: fs, ρ⊕{x 7→ v}〉

Pm[i] = prim op n1 op n2 = n

〈〈i, n2 :: n1 :: os, m〉 :: fs, ρ〉 〈〈i + 1, n :: os, m〉 :: fs, ρ〉

Pm[i] = invoke m′

〈〈i, os, m〉 :: fs, ρ〉 〈〈1, ε, m′〉 :: 〈i, os, m〉 :: fs, ρ〉

Pm[i] = return

〈〈i, os, m〉 :: 〈i′, os′, m′〉 :: fs, ρ〉 〈〈i′ + 1, os′, m′〉 :: fs, ρ〉

Pm[i] = throw

〈f :: fs, ρ〉 < exc > 〈f :: fs, ρ〉

Handlerm(i) = t

< exc > 〈〈i, os, m〉 :: fs, ρ〉 〈〈t, ε, m〉 :: fs, ρ〉

Handlerm(i) ↑

< exc > 〈〈i, os, m〉 :: fs, ρ〉 < exc > 〈fs, ρ〉

Fig. 8. Operational semantics of assembly language



top[a/e] = if e = top then a else top
(st(se))[a/e] = if e = st(top) ∧ se = top then a else st(se[a/e])
(se − 1)[a/e] = if e = top − 1 ∧ se = top then a else se[a/e] − 1

Fig. 9. Substitution operators

Proof. Similar to the above, since

[[x]](〈i, ρ, os〉) = x = [[st(top)]](〈j, ρ, ρ(x) :: os〉).

Lemma 5.

[[ϕ[st(top)/x, top − 1/top]]](〈i, ρ, n :: os〉) ⇔ [[ϕ]](〈j, ρ⊕{x 7→ n}, os〉)

Proof. In ϕ, assertion made about the stack can be made only via top variables.
Suffices to show the equality of top and top − 1 in the respective states (see
Lemma ??). If ϕ is an assertion referring to x, then it suffices to show that

[[st(top)]](〈i, ρ, n :: os〉) = n = [[x]](〈j, ρ⊕{x 7→ n}, os〉)

Lemma 6.

[[ϕ[st(top) op st(top− 1)/st(top), top− 1/top]]](〈i, ρ, n1 :: n2 :: os〉)
⇔ [[ϕ]](〈j, ρ, n1 op n2 :: os〉)

Proof. Reasoning is similar as in the previous case, suffices to follow Lemma
?? and see that [[st(top) op st(top − 1)]](〈i, ρ, n1 :: n2 :: os〉) = n1 op n2 =
[[st(top)]](〈j, ρ, n1 op n2 :: os〉)

Lemma 7. [[ϕ[top− 1 − 1/top]]](〈i, ρ, n1 :: n2 :: os〉) ⇔ [[ϕ]](〈j, ρ, os〉)

Proof. The substitution affects only (and all) assertions referring to the stack.
It suffices to show, that top− 1 − 1 and top are equal in their respective states:

[[top− 1 − 1]](〈i, ρ, n1 :: n2 :: os〉) = |n1 :: n2 :: os| − 2 = |os|
|os| = [[top]](〈i, ρ, os〉)

We conclude that the weakest precondition calculus is sound.

Lemma 8. Let P be a well-annotated program and Q be its postcondition. As-
sume that every formula in PO(P,Q) is provable.

Then, for every states s = 〈i, ρ, os〉 and s′ = 〈j, ρ′, os′〉 s.t. s ? s′, we have
that s � vcga(i) implies s′ � vcga(j).

Proof. By induction on the length of the execution, using Lemma ?? as the base
case.



Corollary 1 (Soundness of vcga). Assume that all methods, except Pm satisfy
their postconditions. Let Pm be a well-annotated program. Assume that every
formula in POm is provable. Let s = 〈〈1, ε,m〉 :: fs, ρ〉 and s′ = 〈〈j, os′,m〉fs ::
fs s.t. s  ? s′, and Pm[j] = return or Pm[j] = throw, then we have that s �
vcga(1) implies s′ � NPost(m) or s′ � EPost(m) respectively.

Proof. By induction in the length of the semantic steps and Proposition ??.

A Soundness

We now turn to the proof of Proposition ??.

A.1 Soundness

In the following, we let s � ϕ denote that the assertion ϕ holds in state s.

Proposition 2.
Let Pm be a well-annotated procedure. Assume that every formula in POm is
provable for every procedure in the program. Then, for every states s, s′,

– if s = 〈〈i, os,m〉 :: fs, ρ〉 and s′ = 〈〈j, os′,m〉 :: fs, ρ′〉, and s  s′, and
s � vcga(i), then s′ � vcga(j), furthermore if
• if Pm[j] = return, then s′ � NPost(m),
• if Pm[j] = throw, and Handlerm(j) ↑, then s′ � EPost(m),

– if s = 〈〈i, os,m〉 :: fs, ρ〉 and Pm[i] = invoke m′, and s � vcga(i), then
s′ � Pre(m), where s′ = 〈〈1, ε,m′〉 :: 〈i, os,m〉 :: fs, ρ〉;

– if s′ = 〈〈j, os′,m′〉 :: 〈i, os,m〉 :: fs, ρ′〉, and s′  s, where s = 〈〈i +
1, os,m〉 :: fs, ρ′〉, and s′ � NPost(m′), then s � vcga(i+ 1);

– if s′ = 〈〈j, os′,m′〉 :: fs′, ρ′〉 and s′  < exc > s′
1
 . . . < exc > s′n  

s, where s = 〈〈t, ε,m〉 :: fs, ρ′〉, and if s′ � vcga(j)(where vcga(j) is an
assertion that does not contain top or st) if m′ = m or s′ � EPost(m′)
otherwise then s � vcga(t).

Proof. Proof is by case analysis on each instruction.

Case: Pm[i] = push n. From hypothesis we know

s � vcga(i+ 1)[n/st(top), top/top− 1]

From semantics of push n we have s′ = 〈i + 1, n :: os,m〉 :: fs, ρ〉. By the
substitution rules and the semantics of assertions (Lemma ??) s′ � vcga(i+ 1).
Conclusion follows if we have j = i+ 1, ρ′ = ρ and os′ = n :: os.

Case: Pm[i] = prim op. From hypothesis we have

〈〈i, n1 :: n2 :: os,m〉 :: fs, ρ〉 �
vcga(i+ 1)[st(top) op st(top− 1)/st(top), top− 1/top]

From semantics of prim op, s′ = 〈〈i+1, n1 op n2 :: os,m〉 :: fs,m〉. By Lemma
??, 〈i + 1, ρ, n1 op n2 :: os〉 � vcga(i + 1). We are done by picking j = i + 1,
ρ′ = ρ and os′ = n1 op n2 :: os.



Case: Pm[i] = load x. From hypothesis,

s � vcga(i+ 1)[x/st(top), top/top− 1].

Since s′ = 〈i + 1, ρ(x) :: os,m〉 :: fs, ρ, from Lemma ??, we get 〈〈i + 1, ρ(x) ::
os,m〉, ρ〉 � vcga(i + 1). Conclusion follows from j = i + 1, ρ′ = ρ and os′ =
ρ(x) :: os.

Case: Pm[i] = if cmp k. Assume that s = 〈〈i, n1 :: n2 :: os,m〉 :: fs, ρ〉. From
hypothesis,

s � ¬(st(top) cmp st(top− 1)) ⇒ vcga(i+ 1)[top− 1 − 1/top]
∧st(top) cmp st(top− 1) ⇒ vcga(k)[top− 1− 1/top]

There are two possibilities, depending on the two top most elements on the
stack: either n1 cmp n2 holds or n1 cmp n2 does not hold. Let’s consider the first
case. By semantics of assertions [[st(top) cmp st(top − 1)]](s) holds. Then from
hypothesis, by conjunction elimination, and then by implication elimination,
s � vcga(k)[top− 1− 1/top]. From semantics of if cmp k and Lemma ??, we get
〈k, ρ, os〉 � vcga(k) . We are done if we pick j = k, ρ′ = ρ and os′ = os. Similar
for the second case.

Case: Pm[i] = store x. From hypothesis,

〈i, n :: os,m〉 :: fs, ρ〉 � vcga(i+ 1)[st(top)/x, top− 1/top].

From semantics of store x, s′ = 〈i + 1, ρ⊕{x 7→ v}, os〉. We have, from Lemma
??, that 〈i + 1, ρ⊕{x 7→ v}, os〉 � vcga(i + 1). Conclusion follows if j = i + 1,
ρ′ = ρ⊕{x 7→ v} and os′ = os.

Case: Pm[i] = goto j Trivial since goto does not change the register nor the
stack.

Case: Pm[i] = assert Φ. From hypothesis, we have s � Φ. From the proof
obligations, we have Φ ⇒ vcga(i + 1).Hence, since s′ only differs from s in the
program point (assert does not change registers nor stack), we get s′ � vcga(i+1).
Thus, conclusion follows from picking j = i+ 1, ρ′ = ρ and os′ = os.

Case Pm[i] = invokem′ By hypothesis s � Pre(m′). By operational semantics
s  〈〈1, ε,m′〉 :: 〈i, os,m〉 :: fs, ρ〉, Since by semantics ρ is not changed, and
Pre(m′) is an assertion that does not include neither top or st, we have that
s′ � Pre(m′).

Case Pm′ [j] = return By hypothesis s′ � NPost(m′). Since by semantics ρ
is not changed, and NPost(m′) is an assertion that does not include neither
top or st, we have that s � NPost(m′) and by proof obligations NPost(m′) ⇒
vcga(i+ 1), hence s � vcga(i+ 1).

Case s′  < exc > s′
1
 . . . < exc > s′n  s. We prove it by induction in

the length of the derivation of states preceded by < exc >. If n = 1, necessarily
Pm′ [j] = throw and m′ = m. Then vcga(j) = vcga(t). Since s′ and s have the
same registers, s � vcga(t). If 2 < n, then Handlerm′(j) ↑. Then vcga(j) =
EPost(m′), by the proof obligation EPost(m′) ⇒ EPost(s′

2
·method). Since s′

2

and s′, and s′
1

have the same registers, and EPost does not contain top or st,



then s′
2
� EPost(s′

2
· method) and by induction s′n � EPost(s

′
n · method). By

proof obligations EPost(s′n · method) ⇒ vcga(t). Since s′n and s have the same
registers, s � vcga(t).

Lemma 9. Let e be an arithmetic expression in AExpr which appears in program
P , and suppose that we have that Ce(e) = Cc(P )[i...j]. Let Q be an assertion in
Assn that includes an arithmetic expression st(top). Assume vcga(j + 1) = Q.
Then vcg(i) = Q[e/st(top), top/top− 1].

Proof. By structural induction on expressions.

Case e ≡ n. Then Ce(n)[i] = push n,

vcga(i) =
Q[n/st(top), top/top− 1]

Case e ≡ x.
vcga(load x) =
Q[x/st(top), top/top− 1]

Case e ≡ e1 op e2. Let p1 = Ce(e1) = Cc(P )[i . . . i1] and let p2 = Ce(e2) =
Cc(P )[i1 + 1 . . . j − 1], so Ce(e) = p1 :: p2 :: prim op.
We have that vcga(j) is equal to,

Q[st(top) op st(top− 1)/st(top), top− 1/top]

By induction hypothesis, vcga(i1 + 1) is equal to

Q[res/st(top), top− 1/top][e2/st(top), top/top− 1]

where res = st(top) op st(top − 1) and by induction hypothesis vcga(i) is
equal to Q′ defined as:

Q′[e2/st(top), top/top− 1][e1/st(top), top/top− 1]

Thus, by definition of substitution,

vcga(i) = Q[e/st(top), top− 1/top]

Lemma 10. Let try c′′ catch c′ be a command in a method m, s.t. this command
is the inner-most try catch enclosing c. Then the exceptional postcondition of c
is vcg(c′, Q,R) where Q and R are postconditions for c′, and if c is not enclosed
in a try-catch command , then the exceptional postcondition of c is EPost(m).

Proposition 3. vcg(Cc(c), Q,R) = vcg(c,Q,R)

Proof. By structural induction on commands.

Case c ≡ skip. We have vcg(skip, Q,R) = Q; and Cc(skip)[i] = nop. Then, vcga(i) =
Q.



Case c ≡ x := e. We have vcg(x := e,Q,R) = Q[e/x]; and

Cc(x := e)[i . . . j, j + 1] = Ce(e) :: store x

Then, vcga(j+1) = Q[st(top)/x]. By Lemma 1, vcga(i) = Q[st(top)/x][e/st(top)].
Case c ≡ c1; c2. We have

vcg(c1; c2, Q,R) = vcg(c1, vcg(c2, Q), R)

and
Cc(c1, c2)[i . . . j] = Cc(c1)[i . . . i1 − 1] :: Cc(c2)[i1 . . . j]

By inductive hypothesis vcga(i1) = vcg(c2, Q,R) and, vcg(i) = vcg(c1, vcg(c2, Q,R)).
Case c ≡ while {I} e1 = e2 do c1. We have vcg(c,Q,R) = I = vcg(Cc(c), Q,R).
Case c ≡ if e1 cmp e2 then c1 else c2. We have

vcg(c,Q,R)(e1 cmp e2 ⇒ vcg(c1, Q,R))
∧(¬(e1 cmp e2) ⇒ vcg(c2, Q,R))

By inductive hypothesis vcg(ci, Q,R) = vcg(Cc(ci), Q,R) for i = 1, 2.
By definition of vcg and by Lemma 1,

vcg(Cc(c), Q) = (e1 cmp e2 ⇒ vcg(Cc(c1), Q,R))
∧(¬(e1 cmp e2) ⇒ vcg(Cc(c2), Q,R))

Case c ≡ try c1 catch c2

let lc1 = Cc(c1); lc2 = Cc(c2);
x = #lc2; in
lc1 :: goto (pc+ x+ 1) :: lc2

vcg(try c1 catch c2, Q,R) = vcg(c1, Q, vcg(c2, Q,R))
By IH vcg(c2, Q,R) is equal to R′ ≡ vcga(pc + #lc1 + 1) and again by IH
vcg(c1, Q,R

′) = vcg(lc1, Q,R
′).

Case c ≡ throw vcg(throw, Q,R) = R and if P [pc] = throw is its compilation,
then either vcga(pc) = EPost(m) (i.e. R) if there is no handler for pc or
vcga(pc) = vcga(t) if Handler(pc) = t.
The former case is straightforward. For the second, notice that by Lemma 2,
in the source program throw is enclosed in a try-catch and the first instruction
of the compilation of the handler (call it c′) is t. By the rule of try-catch,
the second assertion in vcg is exactly the vc of c′, and by IH it is equal to
vcga(t).

Case c ≡ call m Its compilation is invokem′. The equivalence is straightforward
by definition of vcg.
This covers all the cases.

Proposition 4 (Proof Obligation Preserving Compilation).

POm(Cc(c), Q,R) = POm(c,Q,R)



Proof. By structural induction on commands, using Lemma 1.

Case c ≡ skip. We have POm(c,Q,R) = ∅ and Cc(skip)[i] = nop, and POm(nop, Q,R) =
∅.

Case c ≡ x := e. We have POm(x := e,Q) = ∅ and Cc(x := e)[i . . . j, j + 1] =
Ce(e) :: store x, and by Lemma 1 and POm for store. By Lemma 1, POm = ∅.

Case c ≡ c1; c2. Straightforward from inductive hypothesis.
Case c ≡ while {I} e1 cmp e2 do c1. We have

POm(c,Q) = POm(c1, Q) ∪ {I ⇒ (e1 cmp e2 ⇒ vcg(c1, I)∧
¬(e1 cmp e2) ⇒ Q)}

Cc(c) = let l1 = Ce(e1); l2 = Ce(e2); l3 = Cc(c1);x = #l3;
y = #l1 + #l2 in goto (pc+ x+ 1) :: l3 ::

assert I :: l2 :: l1 :: if cmp (pc− x− y)

By inductive hypothesis POm(c1, I) = POm(l3, I) and by Lemma 1, the set
of proof obligations of arithmetic expressions is empty. The proof obligation
generated by the assert I instruction in the code above is:

I ⇒ vcg(l2 :: l1 :: if cmp (pc− x− y), Q)

where vcg(l2 :: l1 :: if cmp (pc−x−y), Q) = (e1 cmp e2 ⇒ vcga(pc−x−y)∧
¬(e1 cmp e2) ⇒ Q) where vcga(pc− x− y) = vcg(c1, I), by Proposition 1.

Case c ≡ if e1 cmp e2 then c1 else c2 Straightforward by inductive hypothesis
and Lemma 1.

Case c ≡ try c1 catch c2

POm(try c1 catch c2, Q,R) = POm(c1, Q,R) ∪ POm(c2, Q,R)

The equivalence holds by inductive hypothesis.
Case c ≡ throw e POm(throw, Q) = ∅ and POm(Cc(throw e,Q,R) = ∅.
Case c ≡ call m′ POm(call m′, Q,R) = {EPost(m′) ⇒ R} ∪ {NPost(m) ⇒

Q}. The compilation of c is invoke m′. There are two cases, the invoke m′

instruction is handled in m, and one proof obligation is: EPost(m′) ⇒
vcga(Handlerm(i)) or the instruction is not handled in m and the proof obli-
gation is EPost(m′) ⇒ EPost(m). Depending on the cases, both right hand
sides of the implication are equivalent to R, since according to the definition
of vcg, R represents exactly the vc of the handler in the try-catch if there
is a try-catch; otherwise it is EPost(m). The other proof obligation for the
invoke instruction is for the normal case: NPost(m′) ⇒ vcga(i + 1), where
i+ 1 is the successor instruction of invoke. But vcga(i+ 1) is exactly the vc
of the successors of c and by Lemma 1, vcga(i+ 1) = Q.


