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ABSTRACT
This paper deals with the problem of protecting the confi-
dentiality of data manipulated by sequential programs. We
focus on policies guaranteeing confidentiality of information
by controlling how information flows during program execu-
tion.

There are two established means to enforce information flow
policies: static analyses, that are performed at compile time
and guarantee that all program executions are free of unau-
thorized flows; and runtime monitoring, that dynamically
detects and neutralizes invalid flows for the current run.

This paper presents a new approach: transform arbitrary,
and thus possibly insecure, programs into secure ones, with-
out resorting to runtime monitors. The transformation of
programs is performed in two steps: first, programs are an-
alyzed using a constraint-based information flow type sys-
tem. Then, untypable fragments of the program are elimi-
nated through code rewriting, using a combination of pro-
gram optimizations and semantics-modifying rules that im-
prove typing. The approach is formalized and illustrated
in the context of a sequential fragment of the Java Virtual
Machine.

1. INTRODUCTION
Protecting sensitive information—credit card data, personal
medical information, etc—is becoming an increasingly im-
portant issue due to ubiquity of computing systems. Tra-
ditionally, confidentiality of information is guaranteed by
access control mechanisms, but there is a renewed interest
in developing mechanisms that track how information flows
during program execution [15].

In an information flow based approach, the confidentiality
policy is specified using a lattice of security levels by attach-
ing a security level to each variable in the program. Then, a
program is secure, or non-interfering, if every pair of termi-
nating computations, from a pair of initial states differing

only in the values of secret variables, lead to final states with
identical values of public variables. Thus, non-interference
ensures that secret data given as input to the program will
not influence the public output of programs.

There are two established means to enforce information flow
policies: static analyses, that are often type-based, and run-
time monitoring. Static analyses, which are most commonly
used to enforce information flow policies, are performed at
compile time and guarantee that all program executions are
non-interfering. Such static analyses are sound, but rather
conservative. For example, most type-based analyses for in-
formation flow will reject the following program because the
value of secret variable is, possibly, printed out by the out-
put statement:

1 x := public ;
2 i f (x=0) then
3 x:=secret
4 else skip f i ;
5 output (x)

In contrast, runtime monitoring detects and neutralizes in-
valid flows for the current run of the program during ex-
ecution. If it deduces, possibly by exploiting information
about the execution trace, that an execution is not secure,
a runtime monitor may either reject the program or alters
the normal behaviour of the program to obtain a secure ex-
ecution. For example, runtime monitors will only reject or
modify executions of the above example when the initial
value of public is 0, i.e. when command 3 is executed.

Runtime monitoring is more flexible than static verification,
since it permits running all programs; of course, the in-
creased flexibility is mitigated by a degradation of runtime
performance, and by the fact that runtime monitors mod-
ify the semantics of programs. In view of their respective
benefits, the question arises whether both approaches can
be combined to achieve increased flexibility with a minimal
overhead at runtime (without compromising the correctness
of the enforcement mechanism). One natural possibility is to
only resort to run-time monitors for code fragments that are
not accepted by the type system. While such an approach
seems feasible, we focus on a much simpler approach, in
which we transform possibly insecure programs into secure
ones, without resorting to runtime monitors. In a nutshell,
the transformation of programs is performed in two steps:
first, programs are analyzed using a constraint-based infor-
mation flow type system (i.e. a type system that produces
for all programs, including insecure ones, a system of con-
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straints). Then, untypable fragments of the program (i.e.
programs that yield unsatisfiable constraints) are eliminated
through code rewriting.

Despite its simplicity, we believe that the method is of broad
interest: first, it is applicable to a wide range of program-
ming languages and information flow policies (including poli-
cies that consider information release, although such policies
are ignored in this paper). Second, it relieves the developer
from the burden of programming typable applications: al-
though the transformation may change the behavior of pro-
grams, it does so in a predictable way. Third, the transfor-
mation does not incur any run-time penalty, as is the case
with runtime monitoring techniques.

Contents.Section 2 provides a motivating example of the
transformation method. Section 3.1 formalizes the trans-
formation of programs into secure ones, in the context of
a sequential fragment of the JVM. The section introduces
a constraint-based type system that guarantees non-inter-
ference for typable programs. This systems provides the
framework for the introduction of the concept of program
improvement. Then, we provide a set of program transfor-
mations that improve program typing. Section 4 discusses
how to extend the proposed method to cope with sequen-
tial JVM programs. In Section 5 we compare our work with
recent related developments. We conclude in Section 6.

2. MOTIVATING EXAMPLE
We motivate the non-semantics preserving part of the trans-
formation by considering a double-blind peer-review process.
In such a process, submitting authors are not informed of
who reviews their papers and the identity of the authors is
not accessible for the reviewers. However, the editor/chair
knows who the authors and reviewers are.

Figure 1(a) shows a program that prints out information re-
lated with submitted papers to a workshop. The available
information is: the workshop name (wshp variable), the sub-
mission date (papDate), the paper number (papNum), title
(papT tl), authors names (authors), referee names (referee)
and reviewers comments (refComments).

Variable state indicates if the paper is under reviewing pro-
cess (state 0), accepted (1), or rejected (-1). If the paper
is in accepted or rejected state, the referees comments are
printed out. This is controlled through pc variable.

The program is written in a simple high-level language with
quite standard syntax and semantics except for the com-
mand output(e) that is used to represent outputs to public
visible channels while outputs to secret channels are ignored,
consequently, they are not included in program listings.

The scenario of the example can be modeled with an infor-
mation flow policy defined over a partial order of security
levels public (P), authors & referees (AR), authors (A), ref-
erees (R), and editor (E); where P < AR, AR < A, AR <

R, A < E, and R < E. The policy labels wshp, papT tl,
papNum, and papDate as P ; state, pc, and refComments
as AR level; authors as A; and referee as R.

By transforming the program, we can automatically extract
secure versions for different users of the system: authors, ref-
erees, and public —Figures 1(b), (c) and (d) respectively—
The program version for authors does not print out the
referee variable, the sole variable labeled with a security
level not equal nor lower than A. Referee’s version does not
print the authors variable. The version for general public
only prints wshp, papDate, papNum, and papT tl while all
other paper-related data is kept unpublished.

These program versions are secure slices of the program,
that is, subprograms that can be executed without the risk
of producing invalid flows. We use the term secure slice
in reference to program slicing [20], a program transforma-
tion which deletes commands in programs based on a slicing
criterion, that is, a specification of the property that slices
must preserve.

3. FORMALIZATION FOR A CORE JVM
This section formalizes more precisely the transformation of
programs into secure ones, in the context of a sequential
fragment of the Java Virtual Machine (JVM). We adopt as
type system a constraint-based variant of the information
flow type system of [2] that guarantees non-interference for
typable programs.

In this framework, we provide a decidable definition of pro-
gram improvement (we use the word improvement to carry
the intuition that such transformations aim to make more
programs typable) and prove that improvements preserve
typing. Then, we provide several examples of program opti-
mizations and semantics-modifying rules that improve typ-
ing. In addition, we observe that the obvious strategy of ap-
plying program optimizations and then semantics-modifying
rules always terminate and yield typable programs (strictly
speaking, we require that the initial program satisfies some
basic properties; these properties are satisfied by all com-
piled programs that pass bytecode verification [11], and thus
are not a strong restriction in practice).

3.1 Constraint based type system
Since our method aims to mend insecure program, it must
rely on a type system that collects all potential sources of in-
security in programs, instead of merely rejecting those that
may be insecure. For similar reasons, it is preferable that the
type system does not require the program to carry any typ-
ing information, but rather computes itself the information
it needs. In order to fulfill these goals, we define a variant
of the type system of [2] that:

• infers for each program point its security environment,
which characterizes the security level of the guards un-
der which it executes. As in the type system of [2],
we rely on a preliminary analysis that computes for
each branching program point its control dependence
region, i.e., the set of program points whose execution
is controlled by the branching point [6];

• generates for each program P a candidate type S and
a candidate security environment se, and a set of con-
straints C such that P is typable iff C is satisfiable.
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1 output (wshp ) ;
2 output (papDate ) ;
3 output (papNum ) ;
4 output (papT tl ) ;
5 output (authors ) ;
6 output (referee ) ;
7 pc := f a l s e ;
8 i f ( state = 0) then
9 output ( ‘ reviewing ’ )

10 else
11 i f ( state = 1) then
12 output ( ‘ accepted ’ ) ;
13 pc := true
14 else
15 i f ( state = −1 ) then
16 output ( ‘ r e j e c t ed ’ )
17 pc := true
18 else skip f i
19 f i
20 f i ;
21 i f ( pc = true ) then
22 output (refComments ) ;
23 else skip f i

1 output (wshp ) ;
2 output (papDate ) ;
3 output (papNum ) ;
4 output (papT tl ) ;
5 output (authors ) ;
6 skip ;
7 pc := f a l s e ;
8 i f ( state = 0) then
9 output ( ‘ reviewing ’ )

10 else
11 i f ( state = 1) then
12 output ( ‘ accepted ’ ) ;
13 pc := true
14 else
15 i f ( state = −1 ) then
16 output ( ‘ r e j e c t ed ’ )
17 pc := true
18 else skip f i
19 f i
20 f i ;
21 i f ( pc = true ) then
22 output (refComments ) ;
23 else skip f i

1 output (wshp ) ;
2 output (papDate ) ;
3 output (papNum ) ;
4 output (papT tl ) ;
5 skip ;
6 output (referee ) ;
7 pc := f a l s e ;
8 i f ( state = 0) then
9 output ( ‘ reviewing ’ )

10 else
11 i f ( state = 1) then
12 output ( ‘ accepted ’ ) ;
13 pc := true
14 else
15 i f ( state = −1 ) then
16 output ( ‘ r e j e c t ed ’ )
17 pc := true
18 else skip f i
19 f i
20 f i ;
21 i f ( pc = true ) then
22 output (refComments ) ;
23 else skip f i

1 output (wshp ) ;
2 output (papDate ) ;
3 output (papNum ) ;
4 output (papT tl ) ;
5 skip ;
6 skip ;
7 pc := f a l s e ;
8 i f ( state = 0) then
9 skip

10 else
11 i f ( state = 1) then
12 skip ;
13 pc := true
14 else
15 i f ( state = −1 ) then
16 skip
17 pc := true
18 else skip f i
19 f i
20 f i ;
21 i f ( pc = true ) then
22 skip ;
23 else skip f i

(a) Original program (b) Version for authors (c) Version for referees (d) Version for general public

Figure 1: Example program and three of its secure versions

instr ::= binop op binary operation on stack
| push n push value on top of stack
| pop pop value from top of stack
| nop no operation
| load x load value of x on stack
| store x store top of stack in variable x
| ifeq j conditional jump
| goto j unconditional jump
| return return the top value of the stack
| dup push a copy of the top value of the stack

where op ∈ {+,−,×, /}, n ∈ Z, x ∈ X , and j ∈ P.

Figure 2: Instruction set for JVMI

A control dependence region structure (region, jun) satisfies the SOAP

(Safe Over APproximation) properties if the following properties hold:

SOAP1 for all program points i and all successors j, k of i (i 7→ j
and i 7→ k) such that j 6= k (i is hence a branching point),
k ∈ region(i) or k = jun(i);

SOAP2 for all program points i, j, k, if j ∈ region(i) and j 7→ k,
then either k ∈ region(i) or k = jun(i);

SOAP3 for all program points i, j, if j ∈ region(i) and j 7→ ∅ then
jun(i) is undefined.

Figure 3: Safe Over Approximation Properties

For the purpose of the exposition, it is not possible to con-
sider the type system of [2], which contains more than 60
typing rules, and exploits preliminary analyses to reduce
the control flow graph of program. Instead, we base our
technical development on the imperative core of the JVM,
called JVMI , and informally discuss extensions to objects,
methods and exceptions, in Section 4.

Definition 1 (Program, region).

• A JVMI program P consists of a finite sequence of
instructions, taken from the instruction set of Figure 2,
where X denotes the set of program variables and P
denotes the set of program points.

• The successor relation 7→⊆ P × P of a program P is

P [i] = binop op n2 op n1 = n

〈i, µ, n1 :: n2 :: os〉 ; 〈i + 1, µ, n :: os〉

P [i] = push n

〈i, µ, os〉 ; 〈i + 1, µ, n :: os〉
P [i] = pop

〈i, µ, n :: os〉 ; 〈i + 1, µ, os〉

P [i] = nop

〈i, µ, os〉 ; 〈i + 1, µ, os〉
P [i] = load x x ∈ dom(µ)

〈i, µ, os〉 ; 〈i + 1, µ, µ(x) :: os〉

P [i] = ifeq j j ∈ P
〈i, µ, 0 :: os〉 ; 〈j, µ, os〉

P [i] = ifeq j n 6= 0

〈i, µ, n :: os〉 ; 〈i + 1, µ, os〉

P [i] = store x x ∈ dom(µ)

〈i, µ, n :: os〉 ; 〈i + 1, µ⊕{x 7→ n}, os〉
P [i] = goto j

〈i, µ, os〉 ; 〈j, µ, os〉

P [i] = dup

〈i, µ, n :: os〉 ; 〈i + 1, µ, n :: n :: os〉
P [i] = return

〈i, µ, n :: os〉 ; µ

Figure 4: Operational Semantics for JVMI

defined as:

− i 7→ {j} if P [i] = goto j
− i 7→ {j, i + 1} if P [i] = ifeq j
− i 7→ ∅ if P [i] = return
− i 7→ {i + 1} otherwise

and the set of branching points as B = {i ∈ P|P [i] =
ifeq j}.

• A control dependence region structure for program P
consists of a function region : B → ℘(P) that maps
branching points to its control regions, and a (partial)
function jun : B → P that maps branching points to
its immediate postdominators [6], such that the SOAP
axioms —Figure 3— are satisfied.

The set StateI of JVMI states is defined as the set of triples
〈i, µ, os〉, where i ∈ P is the program counter that points to
the next instruction to be executed; µ ∈ X ⇀ Z is a partial
function from local variables to values and os ∈ Z? is the
operand stack.
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The small-step operational semantics of a program P is given
in Figure 4 as a relation ;⊆ StateI × (StateI + X → V),
where we use op to denote the standard interpretation of
operation op over Z, and µ⊕{x 7→ v} to denote the unique
function µ′ such that µ′(y) = µ(y) if y 6= x and µ′(x) = v.

We write ;? for the transitive closure of ;. The evaluation
of a program P from an initial memory µ to final memory µ′

is defined by P, µ ⇓ µ′ ≡ 〈1, µ, ε〉 ;? µ′, where ε represents
an empty operand stack.

An information flow policy is given by a lattice (S,v) of
security levels and a map Γ : X → S that assigns a security
level to each variable. Non-interference ensures that there is
no flow of information from inputs of level k to outputs of
level k′, unless k v k′.

Definition 2 (public-equal memory). The public e-
quality between memories µ1 and µ2 w.r.t. a security level
k ∈ S and an information flow policy Γ, noted µ1 ≈k

Γ µ2, is
given by:

∀x ∈ X . Γ(x) v k =⇒ µ1(x) = µ2(x) =⇒ µ1 ≈k
Γ µ2

Although different notions of non-interference are applicable
to JVMI , we use a termination insensitive one:

Definition 3 (non-interfering JVMI program). A
JVMI program P , with an information flow policy Γ, is non-
interfering at level k ∈ S if for every memories µ1, µ2, µ′1,
µ′2 we have that P, µ1 ⇓ µ′1, P, µ2 ⇓ µ′2, and µ1 ≈k

Γ µ2 imply
µ′1 ≈k

Γ µ′2.

The information flow type system manipulates stack levels
and security environments, as in [2].

Definition 4.

• The set of stack levels is defined as S = S?. Given
st, st′ ∈ S, we define st′ v st, iff both have the same
number of elements and for each element in st its cor-
responding element in st′ is lower or equal, symboli-
cally:

st′ v st ⇐⇒

|st| = |st′| = n
∀i ∈ [0, n− 1] : st′[i] v st[i]

where st[i] denotes the ith element of the stack (st[0]
is the top of the stack)

• The set of security environments is defined as E =
P → S. Given se, se′ ∈ E, we define se′ v se iff
se′(i) v se(i) for every i ∈ P.

In addition, the type system uses constraints to accumulate
potential sources of information leaks.

Definition 5 (Constraint).

• The set S+ of extended levels is defined by the clause

S+ := Γ(x) | sti[0]

with x ∈ X , and i ∈ P.

• The interpretation [[k0]]S of an extended level k0 w.r.t.
S ∈ P → S is defined by the clause:

[[k0]]S =


Γ(x) if k0 = Γ(x)
head(S(i)) if k0 = sti[0]

• A constraint is a pair k v k′ of extended levels. The set
of constraint systems is defined as C = set(S+ × S+).
Given C, C′ ∈ C, we define C v C′ if C ⊆ C′.

• We say that S ∈ P → S satisfy a constraint set C,
written S |= C iff [[k]]S v [[k′]]S for every k v k′ ∈ C.

The typing rules, which are given in Figure 5, are of the
form

P [i] = instruction

i ` st, se, C ⇒ st′, se′, C′

where st, st′ ∈ S, se, se′ ∈ E and C, C′ ∈ C, and where,
given k ∈ S, se ∈ E and X ⊆ P, the security environment
liftk(se, X) is defined by the clause

liftk(se, X)(i) =


se(i) t k if i ∈ X

se(i) otherwise

Note that our rules slightly depart from those of [2] in two
respects: we require the operand stack to be empty after
a branching point (an assumption satisfied by all compiled
programs and that allows us to avoid lifting the operand
stack and to elude the reference to se(i) in the constraints),
and we do not add any constraint for returns (we assume
that return instructions do not give any value back). Both
changes are for the clarity of presentation.

The constraint-based type system will generate a candidate
type and a candidate security environment for all programs
such that the stack is of fixed height at each program point
(a property that is required by bytecode verification).

Definition 6 (Typing rules, typable programs).
Let S ∈ P → S and se ∈ E and C ∈ C.

• (S, se, C) is a solution of P , written (S, se, C) ∈ SOL(P ),
if for every i, j ∈ P such that i 7→ j, there exists st′

and se′ and C′ such that i ` S(i), se, C ⇒ st′, se′, C′
and st′ v S(j) and se′ v se, and C′ v C.

• (S, se, C) is a type for P , written S, se, C ` P , if both
(S, se, C) ∈ SOL(P ) and S |= C.

The soundness of the type system follows from the equiva-
lence between our constraint-based type system, and a stan-
dard type system.

Proposition 1. If P is typable, i.e. S, se, C ` P , then P
is non-interfering.
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P [i] = binop op

i ` k1 :: k2 :: st, se, C ⇒ (k1 t k2 t se(i)) :: st, se, C
P [i] = push n

i ` st, se, C ⇒ se(i) :: st, se, C
P [i] = ifeq j

i ` k :: ε, se, C ⇒ ε, liftk(se, region(i)), C

P [i] = pop

i ` k :: st, se, C ⇒ st, se, C
P [i] = nop

i ` st, se, C ⇒ st, se, C
P [i] = goto j

i ` st, se, C ⇒ st, se, C
P [i] = return

i ` k :: st, se, C ⇒ C
P [i] = load x

i ` st, se, C ⇒ (se(i) t Γ(x)) :: st, se, C

P [i] = store x

i ` k :: st, se, C ⇒ st, se, C ∪ {sti[0] v Γ(x)}
P [i] = dup

i ` k :: st, se, C ⇒ st, (se(i) t k) :: k :: se, C

Figure 5: Constraint-based transfer rules

3.2 Program Improvement
This section formalizes improvements as program transfor-
mations that preserve typing. Intuitively, improvements are
functions that replace program fragments by other program
fragments that generate weaker sets of constraints.

Definition 7. Let P be a program. A program fragment
consists of a set F ⊆ P of program points, a distinguished
program point i ∈ F , and a set O ⊆ F such that:

• F is acyclic, i.e. 7→|F×F does not contain any cycle;

• i is an entry point, i.e. for every j 6∈ F and k ∈ F , if
j 7→ k then i = k;

• O are exit points, i.e. for every i ∈ O and j ∈ F , we
have i 67→ j.

Let (F , i,O) be a program fragment. By composing the
transfer rules of the type system, and since F is acyclic, we
can define an O-indexed family of functions T P

o : S×E×C ⇀
S× E× C.

Definition 8. A program improvement is a map I from
programs to programs such that for every program P ,

• P and I(P ) have the same set of program points and
the same control flow graph;

• there exists a program fragment 〈F , i,O〉 such that P
and I(P ) are equal on P \ F , i.e. P [j] = I(P )[j] for

every j 6∈ F , and for every o ∈ O, T P
o v T P ′

o , where
v is the componentwise extension of the partial orders
on S, E and C.

We write P ′ 4I P if P ′ = I(P ) for some improvement I.

The assumption that P and I(P ) have the same control flow
graph is made for the sake of simplicity.

Proposition 2. If P is typable, i.e. S, se, C ` P , and P ′

improves P , i.e. P ′ 4I P , then P ′ is typable, and S, se, C′ `
P ′ for some C′.

3.3 Program Optimizations as Improvements
Not all program optimizations preserve typing: for exam-
ple, it has been observed in [1] that common subexpression
elimination transforms the typable program1 h := v1 + v2;
l:= v1 + v2 into the untypable program h := v1 + v2; l:=
h. Likewise, partial dead code elimination transforms the
typable program l := e; if (h) then h := l + e′ else skip
fi into the untypable program if (h) then l := e; h := l+e′

else skip fi. Nevertheless, several common program opti-
mizations improve programs, i.e. that preserve typability of
programs.

Figure 6 presents a set of semantics preserving program op-
timizations rules that can be viewed as program improve-
ments. The rules are generally of the form

P [i] = ins constraints

P [i] = ins′
P [i, i + n] = ~ins constraints

P [i, i + n] = ~ins′

In the rules, we use F to denote a stack-preserving sequence
of instructions, i.e. a sequence of instructions such that the
stack is the same at the beginning and the end of F execu-
tion, which we denote as F ∈ StackPres in the rules. We
also assume that there are no jumps from an instruction in
F outside F , so that all executions must flow through the
immediate successor of F , and that there are no jumps from
an instruction outside F inside F , so that all executions en-
ter F through its immediate predecessor. In other words, we
assume that ins :: F :: ins′ is a program fragment, where
ins and ins′ are the instructions preceding and following F .
In some rules we use OS(i) to denote a safe approximation
of the operand stack state previous execution of intruction
i. We write OS(i) = v1 :: v2 :: · · · to say that at program
point i the top two values on the operand stack are v1 and
v2. Rule 12 uses VAL(x, i) to denote the safe approximation
of the value of x at program point i. These approximations
can be statically computed through, e.g., symbolic analysis
[5].

In some cases however, the rules are of the form

P [i, n + m] = ~ins constraints

P [i, n + m′] = ~ins′

with m 6= m′. Therefore such rules do not preserve the num-
ber of instructions, and the transformations must recompute
the targets of jumps. Besides, such rules do not fit directly

1In the examples, we use h and l to name secret and public
variables respectively.
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1 – Push/Load - Pop Elimination

P [i, i + n + 2] = instri :: F :: pop instri ∈ {load x, push n} F ∈ StackPres

P [i, i + n] = F

2 – Binop - Pop Elimination
P [i, i + n] = binop op :: F :: pop F ∈ StackPres

P [i, i + n] = pop :: F :: pop

3 – Algebraic simplification I
P [i] = binop × OS(i) = v1 :: v2 :: · · · v1 = 0 ∨ v2 = 0

P [i, i + 2] = pop :: pop :: push 0

4 – Algebraic simplification II
P [i] = binop op op ∈ {×, /} OS(i) = v1 :: v2 :: · · · v1 = 1

P [i] = pop

5 – Algebraic simplification III
P [i] = binop op op ∈ {+,−} OS(i) = v1 :: v2 :: · · · v1 = 0

P [i] = pop

6 – Dead Store Elimination
P [i] = store x x is dead at P [i]

P [i] = pop

7 – Duplicating Load Elimination
P [i, i + n] = load x :: F :: load x store x 6∈ F F ∈ StackPres

P [i, i + n] = load x :: F :: dup

8 – Store/Load Elimination

P [i, i + n] = store x :: F :: load x store x 6∈ F F ∈ StackPres

P [i, i + n] = dup :: store x :: F

9 – Redundant Store/Load Elimination

P [i, i + 2 + n] = store x :: load x :: F :: store x store x, load x 6∈ F F ∈ StackPres

P [i, i + n] = F :: store x

10 – Reduction in Strength
P [i] = binop × OS(i) = v1 :: v2 :: · · · v1 = 2

P [i, i + 2] = pop :: dup :: binop +

11 – Constant Folding
P [i, i + 2] = push c1 :: push c2 :: binop op

P [i] = push c1 op c2

12 – Load Elimination
P [i] = load x VAL(x, i) = n

P [i] = push n

Figure 6: Optimizing transformation rules

in Definition 7. Although it is possible to extend the defini-
tion of program improvement to account for such rules, by
relaxing the requirement that the original and transformed
program have the same set of program points, we have re-
frained from doing so since it would clutter the technical
development without adding further insight.

The first two optimizations deal with program fragments
that put a value on the operand stack to then pop it with-
out using it. We can avoid this useless stack alteration by
deleting push-pop, load-pop, and binop-pop pairs. The first
rule targets push-pop, and load-pop pairs. The rule con-
straint reads as: there is a program fragment starting with
a load/push instruction that is followed by a, possible empty,
program fragment F that is followed by a pop, and F leaves
the operand stack as it was after the execution of the initial
load/push instruction.

If this constraint is satisfied, the initial push or load, and the
final pop are removed. The second transformation rule is
similar to the first one except that binop is not changed to
nop but to pop in order to preserve the original operand stack
length. Transformation rule 3 uses n× 0 = 0× n = 0 prop-
erty to optimize a binop × that operates over a null operand.
Rules 4 and 5 use the identity property for +,−,×, and /.
Transformation rule 6 targets dead stores, this is, store in-
structions that affect a variable that is not used after the
affectation nor before a new affectation. A dead store is use-
less thus it can be eliminated. Rule 7 targets the cases when
before a load x instruction, the value of x is already on top
of the stack; if this is the case, the load x instruction can be
replaced with a dup instruction to reduce the traffic between
memory and stack. Transformation rule 8 targets store x in-
structions followed by a load x instruction to the same stack
position (before any new definition of x). The load x in-
struction can be deleted and keep the store x preceded by a

1 load h
2 push 1
3 binop ×
4 load h
5 binop −
6 load l1
7 binop ×
8 store l1

1 load h
2 push 1
3 binop ×
4 load h
5 binop −
6 load l1
7 pop

8 pop

9 push 0

10 store l1

1 load h
2 push 1
3 binop ×
4 load h
5 binop −
6 nop

7 nop

8 pop
9 push 0

10 store l1

1 load h
2 push 1
3 binop ×
4 load h
5 pop

6 nop
7 nop
8 pop
9 push 0

10 store l1

1 nop
2 nop
3 nop
4 nop
5 nop
6 nop
7 nop
8 nop
9 push 0

10 store l1

(a) (b) (c) (d) (e)

Figure 7: Example of program optimization sequence

dup instruction, therefore traffic between variables in mem-
ory and the operand stack is reduced (Palsberg et al., in
[18], provides a collection of these kind of transformation
rules). Transformation rule 9 targets redundant store/load
pairs; usually produced by the compilation of command se-
quences like x:= e;x:=x.... Reduction in strength, rule 10,
is a typical peephole optimization. Transformation 11 is a
very simple kind of constant folding. If the value n of vari-
able x at program point i is know at compile-time, rule 12
can be used to replace load x at i by push n.

Further optimizations like unreachable code elimination and
code motion can be used to improve programs.

Example 1. Figure 7 shows a sequence of programs re-
sulting from the application of some of the above defined
transformation rules. Using symbolic analysis is possible to
know that one of the operands used by binop × (instruction
7) is null, thus optimizing transformation rule 3 is applied
to obtain the program at Figure 7(b). This program has a
load− pop sequence (instructions 6 and 7) that can be elim-
inated by applying rule 1. The resulting program, at Figure
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1 load h
2 ifeq 6
3 push 0
4 store l
5 goto 8
6 load h
7 store l
8 . . .

1 load h
2 ifeq 6
3 push 0
4 store l
5 goto 8
6 push 0
7 store l
8 . . .

1 push 0
2 store l
3 load h
4 ifeq 7
5 nop
6 goto 8
7 nop
8 . . .

(a) (b) (c)

Figure 8: Optimization-based program improvement

7(c), has a binop − pop sequence (instructions 5–8) that is
transformed by rule 2 to obtain the program at Figure 7(d).
Then, using rules for load/push − pop and binop − pop se-
quences (rules 1 and 2) it is possible to get the final program
at Figure 7(e).

Notice that the original program is not typable because in-
struction 8 stores a secret value into the public variable l1.
However, all optimized versions of the program are typable
since the instruction store l1 stores a constant value into l1.

Example 2. Figure 8(a) shows a JVMI version of the
program used in [7] to show the incompleteness of flow-sen-
sitive type systems. Our approach can alleviate this limita-
tion by transforming the program to make it typable. For
example, applying optimization rule 12 we get the program
at Figure 8(b), still untypable; if then we apply code motion
we get the typable program at Figure 8(c).

3.4 Non-Interfering Program Slices
If the program is still interfering after applying semantics
preserving improvements, we extract a secure slice from it
by deleting interfering instructions. In JVMI programs, in-
valid flows only occur when executing a store x instruction,
where x is a public variable, and: the value on top of the
operand stack is secret (direct flow), the security environ-
ment is secret (indirect flow).

Thus, one can obtain a non-interfering program by elimi-
nating those dependencies. A naive approach is to replace
the store instructions of the above form by pop instructions.
While such a replacement is possible and in some cases un-
avoidable, we are interested in obtaining final programs with
a semantics as close as possible to that of the original pro-
gram. Thus, we use the constraint-based type system to
detect which store instructions should be replaced by a pop
instruction.

Given a solution (S, se, C) of P , one can find whether a
store x instruction at program point i yields an invalid flow
by checking S 6|= sti[0] v Γ(x). This suggests to adopt the
following transformation rule:

P [i] = store x S 6|= sti[0] v Γ(x)

P [i] = pop

Example 3. The slice at Figure 9(b) is extracted from
the interfering program at Figure 9(a) by applying the above

1 load h1
2 ifeq 5
3 nop
4 goto 7
5 push 0
6 store l1
7 load h2
8 store l2
9 . . .

1 load h1
2 ifeq 5
3 nop
4 goto 7
5 push 0
6 pop

7 load h2
8 pop

9 . . .

1 load h1
2 ifeq 5
3 nop
4 goto 7
5 push 0
6 pop

7 load h2
8 pop

9 push �
10 store l2
11 . . .

(a) Program (b) Slice I (c) Slice II

Figure 9: Interfering program and its typable slices

transformation to instructions 6 and 8. The slice is typable,
thus is a non-interfering program.

While the repeated application of the above rule yields a
secure and typable program, it is also possible to refine the
transformation and use a weaker rules for store x instructions
that do not yield an indirect flow, i.e. s.t. se(i) v Γ(x),
where i is the program point of the instruction considered.
For such instructions, one can replace the top of the stack
by a default value �:

P [i] = store x se(i) v Γ(x) S 6|= sti[0] v Γ(x)

P [i, i + 2] = pop :: push � :: store x

Example 4. The typable slice at Figure 9(c) is extracted
from the interfering program at Figure 9(a) by applying the
above transformation rules to instructions 6 and 8.

3.5 Example of Transformation
Figure 10 illustrates how an insecure program, taken from [10],
may be transformed into a secure one. We perform code
rewriting at the bytecode level, but we still provide the
source code of the initial program and of the (decompila-
tion of) the rewritten program.2

The program on the left of the figure is compiled to the
bytecode sequence at Figure 10(b). The program is not se-
cure, and thus it is rightly rejected by the information flow
verifier of [2], or by its constraint-based variant, described
at the beginning of this section. The insecurity is caused
by the store instruction at program point 14, which stores
a secret value into output variable (direct flow), and by the
store instructions at program points 21 and 23, which are in
the control region of the branching instruction at program
point 16 that depends on the secret variable h. One obvi-
ous way to transform the program into a typable one is to
replace the store instructions at program points 14, 21 and
23 by pop instructions. However, it is desirable to minimize
the changes in the behavior of the program, and thus it is
preferable to perform, in as much as possible, semantics-
preserving transformations.

2Command output(e) is compiled as an instruction se-
quence that stores e value into output, a special public vari-
able that models outputs to user visible channels.
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1 l0 := l1 + 3 ;
2 i f ( l0 = 10 ) then
3 output ( l1 ) ;
4 output (h ) ;
5 i f (h ) then
6 l3 := 0 ;
7 output ( l0 ) ;
8 else
9 h := 1 ;

10 f i
11 else
12 skip
13 f i ;
14 output ( l0 )

1 load l1
2 push 3
3 binop +
4 store l0
5 load l0
6 push 10
7 binop −
8 ifeq 11
9 nop

10 goto 24
11 load l1
12 store output
13 load h
14 store output
15 load h
16 ifeq 20
17 push 1
18 store h
19 goto 24
20 push 0
21 store l3
22 load l0
23 store output
24 load l0
25 store output

1 load l1
2 push 3
3 binop +
4 store l0
5 load l0
6 push 10
7 binop −
8 ifeq 11
9 nop

10 goto 24
11 load l1
12 store output
13 load h
14 store output
15 load h
16 ifeq 20
17 push 1
18 store h
19 goto 24
20 nop

21 nop

22 load l0
23 store output
24 load l0
25 store output

1 load l1
2 push 3
3 binop +
4 store l0
5 load l0
6 push 10
7 binop −
8 ifeq 11
9 nop

10 goto 24
11 load l1
12 store output
13 push �
14 store output
15 load h
16 ifeq 20
17 push 1
18 store h
19 goto 24
20 nop
21 nop
22 nop

23 nop

24 load l0
25 store output

1 l0 := l1 + 3 ;
2 i f ( l0 = 10 ) then
3 output ( l1 ) ;
4 output (� ) ;
5 i f (h ) then
6 skip ;
7 skip ;
8 else
9 h := 1 ;

10 f i
11 else
12 skip
13 f i ;
14 output ( l0 )

(a) (b) (c) (d) (e)
Original program Compiled program Optimized program Bytecode-level typable slice High-level typable slice

Figure 10: A source program and its compiled, optimized, and secure versions

For example, store instruction at program point 21 may be
replaced by nop instruction by successively applying dead
assignment elimination (notice that l3 is assigned and then
not used), that transforms the store instruction by a pop,
and a substitution of the basic block push :: pop by two nop
instructions (for the simplicity of exposition, we only con-
sider transformations that do not modify the structure of the
program). The resulting program is given in Figure 10(c);
note that the implicit flow at program point 21 has been
eliminated by the transformation. The remaining invalid
flows (at program points 14 and 23) cannot be eliminated
by semantics-preserving transformations, and they are thus
transformed using the two rules defined above. Figure 10(d)
provides the resulting program; note that the program is
already secure. The sequence load h :: store output was re-
placed by load � :: store output, and load l0 :: store output by
load l0 :: pop and then optimized to nop :: nop. Figure 10(e)
shows the transformed program decompiled in the high-level
language (we have inserted skip instructions to preserve the
structure of the original program to ease comparison).

4. EXTENSION TO A SEQUENTIAL JVM
An important and distinguishing feature of the transforma-
tion process presentend in this paper is its scalability to a se-
quential fragment of the JVM that includes dynamic object
creation, instance fields access and modification, program
exceptions, and method calls.

First, one can derive a constraint based variant of the type
system of [2], as has been shown in this paper for a core JVM.
Then, the transformation proposed in this paper extends
directly to the extended language. Note however that:

• since the constraint-based type system requires meth-
ods must be annotated with security signatures, the
transformation will only be applicable to programs that

carry such annotations;

• in order to avoid implicit flows caused by high in-
structions that may raise exceptions, the notion of re-
gion is extended and parameterized by an exception
type, and the type system rejects programs of the form
h.f := v; l := v′ where h.f is a reference to the field
f of the (high) object h. There are two ways to make
the program typable: one can either eliminate the low
assignment, since it is in a high region, or eliminate
the high assignment, in which case the low assignment
is not any longer in a high region. We choose not to
restrict the control flow graph of the program by re-
moving high branching statements, but rather stick to
the initial method of removing low assignments.

Thus, it is possible to use a constraint-based variant of the
type system of [2] in a tool that improves typability of se-
quential JVM programs. We have not carried such an im-
plementation, although we dispose of a Coq and Caml im-
plementations of an information flow checker for the original
type system of [2]. Nevertheless, we have been experiment-
ing the transformation with JBLIF, an implementation of an
information flow checker for Java and JVM programs based
on the Indus tool [14].

Example 5. Consider the Java program of Figure 11 Se-
curity annotations —from a security lattice Low < High—
are given as program comments. Parameter sec is annotated
as High and all other variables are considered Low.

Lines 13, 14, and 15 declare 3 Low objects: o1, o2, and o3.
Line 16 assigns the value of pub to the field o1.x. Line 17
assigns the value of sec to the field o2.x. Then if sec is null
and the parameter a is “007”, a new object is created and
assigned to o3, and the field o1.x is incremented in 1.
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1 public c lass A {
2 int x ;
3 void s e t ( ){ x=0;}
4 void s e t ( int i ){x=i ;}
5 int get ( ) { return x ;}
6 }
7 public c lass InfFlow {
8 public stat ic void procObj (
9 St r ing [ ] a ,

10 int s ec ; /∗ High ∗/ )
11 {
12 int pub = 1;
13 A o1 = new A( ) ;
14 A o2 = new A( ) ;
15 A o3 ;
16 o1 . s e t (pub ) ;
17 o2 . s e t ( s ec )
18 i f ( s ec==0 && a [ 0 ] . equa l s ( ”007 ”)){
19 o3 = new A( ) ;
20 o1 . s e t ( o1 . get ( )+1) ;
21 } } }

Figure 11: Java program with invalid flows

7 public c lass InfFlow {
8 public stat ic void procObj (
9 St r ing [ ] a ,

10 int s ec ; /∗ High ∗/ )
11 {
12 int pub = 1;
13 A o1 = new A( ) ;
14 A o2 = new A( ) ;
15 A o3 ;
16 o1 . s e t (pub ) ;
17 o2 . s e t ( ) /∗ modified ∗/
18 i f ( s ec==0 && a [ 0 ] . equa l s ( ”007 ”)){
19 /∗ o3 = new A( ) ; ∗/
20 /∗ o1 . se t (o1 . ge t ()+1); ∗/
21 } } }

Figure 12: Secure version of the program at Fig. 11

Information flow analysis with the extended type system will
show that lines 17, 19, and 20 do not respect the information
flow policy: line 17 assigns a secret value to a public field,
and the execution of lines 19 and 20 is controlled by a secret
variable thus their execution can leak secret information (for
example, if the final value of o1.x is not pub+1, then the
value of sec is not null).

Applying the transformation rules described in the previous
section, interfering commands can be modified to prevent in-
valid flows. Fig. 12 shows a (detail of the) secure version of
the example program; line 17 was modified to assign a default
public value to o1.x, and lines 19 and 20 were deleted.

5. RELATED WORK
We have presented the first static approach to transform
untypable, and thus potentially insecure programs, into ty-
pable, and thus secure ones. The method is heavily inspired
from recent work on information flow monitoring, which we
describe below. Our comparison takes into account three
aspects: code size and runtime overhead, soundness, and
scalability.

There are two implemented approaches for dynamically track-
ing information flow: one can track information flows dy-
namically either by relying on purpose-specific Java virtual

machines, see e.g. [3, 13], or by appealing to custom classes
[21] or C function libraries [8]. All these approaches are
based on a preliminary static instrumentation of the target
program. That is, target program is rewritten to augment
it with custom code that provides the necessary informa-
tion and functionality to track information flows at runtime.
Contrarily to our method, these approaches produce an in-
crease of the target program code size and execution time.
This increase is not negligible: according to the information
provided in some of the cited works, it can be in between of
60 and 280% in the case of code size, and between 82 and
1800% of execution time overhead.

Soundness is other important difference of our method w.r.t.
these approaches. While our technique guarantees the ab-
sence of invalid flows for all program executions, these mon-
itors halt program execution if the leakage of information is
imminent; and this halt can produce an information leak.
For example, in the following program:

1 i f ( secret=0) then
2 output (1 )
3 else skip f i ;
4 output (0 )

the execution of command 2 is insecure because it leaks the
value of variable secret (if command 2 is executed then the
value of secret is 0). If after detect the imminent informa-
tion leak, the monitor aborts program execution it will also
leak the value of secret because the attacker knows that the
monitor only halts if secret is 0.

Besides the implemented approaches, there are other theo-
retical developments to mention.

Shroff et al. [17] propose a runtime information flow control
system based on the dynamic tracking of indirect depen-
dencies between program statements. They target a higher-
order functional language with mutable state, conditional
branching and let-binding. Unfortunately the system is un-
sound and secret information flowing to public channels may
not be detected the first time the flow occurs. As a sound
alternative they define an information flow analysis based
on statically-computed dependence information. However,
this approach mitigates the benefits of runtime monitoring,
since it looses precision.

In [10], Le Guernic et al. describe a runtime monitoring
system for a simple sequential while language. This monitor
uses an automaton to track information flows and alters the
program behavior (instead of interrupting execution) to keep
the program execution safe. More recently, Le Guernic [9]
extends the automaton to cope with concurrent programs.

While our method is inspired from runtime monitoring, its
realization builds upon information flow type systems, which
has its roots in the work of Denning and Denning work [4],
and more recently in the work of Volpano and Smith [19].
To date, the use of non standard type systems to enforce
confidentiality remains dominant in the field, see [15] for a
survey of the field. For example, Jif [12] provides a promi-
nent example of information flow typed extension of Java
that builds upon the decentralized label model and supports
flexible and expressive information flow policies.
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Although our method, as presented here, only addresses the
enforcement of non-interference, many realistic systems need
to declassify some kind of confidential information as part of
their normal behavior; the actual challenge is to differentiate
between proper and improper declassification of confidential
information. Sabelfeld and Sands [16] provide a survey of
current research on information flow policies and enforce-
ment mechanisms in presence of declassification.

6. CONCLUSION
We have defined a general method to transform a wide class
of insecure programs into typable, and hence secure pro-
grams, using a combination of semantics-preserving and type-
improving transformations and of semantics-modifying trans-
formations that remove insecure assignments.

Currently, our method is based on the flow insensitive type
system of [2]. In order to extend the applicability of our
method, we would like to rely on a more flexible type sys-
tem where local variables and fields are allowed to change
security levels during execution. Since there are currently no
such flow sensitive type system for the JVM, our first task is
to design such a type system, and prove its soundness; one
attractive solution would be to adapt some of the ideas of
Hunt and Sands [7] to the JVM. Furthermore, the adoption
of a flow sensitive type system raises a number of interesting
questions w.r.t. our method. Firstly, there might be more
than one way to remove assignments to make programs se-
cure, as witnessed by the following program:

l:= h; if (l) then l′:= 0 else skip fi

Rather than operating non-deterministic transformations on
the program (or making them deterministic by removing all
assignments!), it seems preferable to deduce from the con-
straint set generated by the type system which fragments of
the program will never leak information, which will always
leak information, and which may leak information, and stat-
ically transform program fragments of the second kind and
dynamically monitors program fragments of the third kind.

A much easier goal is to extend the method to type systems
that support some form of controlled information release.
We believe that the information flow type system of [2] can
be extended to allow declassification along the “what” and
“where” dimensions for the sequential JVM. Such an exten-
sion will be useful to, for example, handle a more complex
version of the peer review process presented in Section 2.

Finally, we believe that the method proposed in this paper
can also be applied usefully in the context of type systems
for resource control.
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