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ABSTRACT
We propose a framework for establishing the correctness of
untrusted Java bytecode components w.r.t. to complex func-
tional and/or security policies. To this end, we define a
bytecode specification language (BCSL) and a weakest pre-
condition calculus for sequential Java bytecode. BCSL and
the calculus are expressive enough for verifying non-trivial
properties of programs, and cover most of sequential Java
bytecode, including exceptions, subroutines, references, ob-
ject creation and method calls. Our approach does not
require that bytecode components are provided with their
source code. Nevertheless, we provide a means to compile
JML annotations into BCSL annotations by defining a com-
piler from the Java Modeling Language (JML) to BCSL. Our
compiler can be used in combination with most Java compil-
ers to produce extended class files from JML-annotated Java
source programs. All components, including the verification
condition generator and the compiler are implemented and
integrated in the Java Applet Correctness Kit (JACK).

1. INTRODUCTION
Establishing trust in software components that originate

from untrusted or unknown producers is an important issue
in areas such as smart card applications, mobile phones,
bank cards, ID cards and whatever scenario where untrusted
code should be installed and executed.

In particular, the state of the art proposes different solu-
tions. For example, the verification may be performed over
the source code. In this case, the code receiver should make
the compromise to trust the compiler, which is problematic.
Bytecode verification techniques [8] are another solution,
which does not require to trust the compiler. The bytecode
verifier performs static analysis directly over the bytecode
yet, it can only guarantee that the code is well typed and
well structured. The Proof Carrying Code paradigm (PCC)
and the certifying compiler [10] are another alternative. In
this architecture, untrusted code is accompanied by a proof
for its safety w.r.t. to some safety property and the code
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receiver has just to generate the verification conditions and
type check the proof against them. The proof is generated
automatically by the certifying compiler for properties like
well typedness or safe memory access. As the certifying
compiler is designed to be completely automatic, it will not
be able to deal with rich functional or security properties.

We propose a bytecode verification framework with the
following components: a bytecode specification language,
a compiler from source program annotations into bytecode
annotations and a verification condition generator over Java
bytecode.

In a client-producer scenario, these features bring to the
producer means to supply the sufficient specification infor-
mation which will allow the client to establish trust in the
code, especially when the client policy is potentially com-
plex and a fully automatic specification inference will fail.
On the other hand, the client is supplied with a procedure
to check the untrusted annotated code.

Our approach is tailored to Java bytecode. The Java tech-
nology is widely applied to mobile and embedded compo-
nents because of its portability across platforms. For in-
stance, its dialect JavaCard is largely used in smart card
applications and the J2ME Mobile Information Device Pro-
file (MIDP) finds application in GSM mobile components.

The proposed scheme is composed of several components.
We define a bytecode specification language, called BCSL,
and supply a compiler from the high level Java specification
language JML [6] to BCSL. BCSL supports a JML subset
which is expressive enough to specify rich functional proper-
ties. The specification is inserted in the class file format in
newly defined attributes and thus makes not only the code
mobile but also its specification. These class file extensions
do not affect the JVM performance. We define a bytecode
logic in terms of weakest precondition calculus for the se-
quential Java bytecode language. The logic gives rules for
almost all Java bytecode instructions and supports the Java
specific features such as exceptions, references, method calls
and subroutines. We have implementations of a verification
condition generator based on the weakest precondition cal-
culus and of the JML specification compiler. Both are inte-
grated in the Java Applet Correctness Kit tool (JACK) [4].

The full specifications of the JML compiler, the weakest
precondition predicate transformer definition and its proof
of correctness can be found in [11].

The remainder of the paper is organized as follows: Sec-
tion 2 reviews scenarios in which the architecture may be
appropriate to use; Section 3 presents the bytecode speci-
fication language BCSL and the JML compiler; Section 4
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discusses the main features of the wp(short for weakest pre-
condition calculus); Section 5 discusses the relationship be-
tween the verification conditions for JML annotated source
and BCSL annotated bytecode; Section 6 concludes with
future work.

2. APPLICATIONS
The overall objective is to allow a client to trust a code

produced by an untrusted code producer. Our approach is
especially suitable in cases where the client policy involves
non trivial functional or safety requirements and thus, a full
automatization of the verification process is impossible. To
this end, we propose a PCC technique that exploits the JML
compiler and the weakest predicate function presented in the
article.

The framework is presented in Fig. 1; note that certificates
and their checking are not yet implemented and thus are in
oblique font.

In the first stage of the process the client provides the
functional and (or) security requirements to the producer.
The requirements can be in different form:

• Typical functional requirements can be a specified in-
terface describing the application to be developed. In
that case, the client specifies in JML the features that
have to be implemented by the code producer.

• Client security requirements can be a restricted access
to some method from the API expressed as a finite
state automata. For example, suppose that the client
API provides transaction management facilities - the
API method open for opening and method close for
closing transactions. In this case, a requirement can
be for no nested transactions. This means that the
methods open and close can be annotated to ensure
that the method close should not be called if there is
no transaction running and the method open should
not be called if there is already a running transaction.

In this scenario, we can apply results of previous work
[12].

Usually, the development process involves annotating the
source code with JML specification, generating verification
conditions, using proof obligation generator over the source
code and discharging proofs which represent the program
safety certificate and finally, the producer sends the certifi-
cate to the client along with the annotated class files. Yield-
ing certificates over the source code is based on the obser-
vation that proof obligations on the source code and non-
optimized bytecode respectively are syntactically the same
modulo names and basic types. Every Java file of the un-
trusted code is normally compiled with a Java compiler to
obtain a class file. Every class file is extended with user
defined attributes that contain the BCSL specification, re-
sulting from the compilation of the JML specification of the
corresponding Java source file.

To implement this architecture we use JACK [4] as a ver-
ification condition generator both on the consumer and the
producer side. JACK is a plugin for the eclipse1 integrated
development environment for Java. Originally, the tool was
designed as verification condition generator for Java source
programs against their JML specification. JACK can inter-
face with several theorem provers (AtelierB, Simplify, Coq,
PVS). We have extended the tool with a compiler from JML
to BCSL and a bytecode verification condition generator. In
the next sections, we introduce the BCSL language, the JML
compiler and the bytecode wpcalculus which underlines the
bytecode verification condition generator.

3. BYTECODE SPECIFICATION LANGUAGE
In this section, we introduce a bytecode specification lan-

guage which we call BCSL (short for ByteCode Specification
Language). BCSL is based on the design principles of JML
(Java Modeling Language) [6], which is a behavioral inter-
face specification language following the design by contract
approach [2].

Before going further, we give a flavor of what JML speci-
fications look like. Fig. 2 shows an example of a Java class
and its JML annotation that models a list stored in an array
field. As the figure shows, JML annotations are written in
comments and thus they are not visible by the Java compiler.
The specification of method isElem declares that when the
method is called the field list must not be null in the
method precondition (introduced by requires) and that the
method return value will be true if and only if the internal ar-
ray list contains the object referenced by the argument obj
in the method postcondition(ensures). The method loop
is also specified by its invariant (loop_invariant) which
states that whenever the loop entry is reached the elements
inspected already by the loop are all different from obj.

In the following, we give the grammar of BCSL and sketch
the compiler from JML to BCSL.

3.1 Grammar
BCSL corresponds to a representative subset of JML and

is expressive enough for most purposes including the descrip-
tion of non trivial functional and security properties.

Specification clauses in BCSL that are taken from JML
and inherit their semantics directly from JML include:

1http://www.eclipse.org



public class ListArray {

Object[] list;

//@requires list != null;

//@ensures \result == (\exists int i;0<=i &&

i < list.length && list[i]==obj);

public boolean isElem(Object obj){

int i = 0;

//@loop_modifies i;

//@loop_invariant i <= list.length && i >=0

//@ && (\forall int k;0 <= k && k < i ==>

//@ list[k] != obj);

for (i = 0; i < list.length; i++ ) {

if ( list[i] == obj) return true;

}

return false;}}

Figure 2: class ListArray with JML annotations

• class specification, i.e. class invariants and history con-
straints

• method preconditions, normal and exceptional post-
conditions, method frame conditions (the locations that
may be modified by the method). We also support be-
havioral subtyping by specification inheritance as de-
scribed in [5].

• inter method specification, for instance loop invariants

• predicates from first order logic

• expressions from the programming language, like field
access expressions, local variables, etc.

• specification operators. For instance \old(E) which
is used in method postconditions and designates the
value of the expression E in the prestate of a method,
\result which stands for the value the method returns
if it is not void

BCSL has few particular extra features that JML lacks :

• loop frame condition, which declares the locations that
can be modified during a loop iteration. We were in-
spired for this by the JML extensions in JACK [4]

• stack expressions - c which stands for the stack counter
and st(Arithmetic Expr) standing for a stack ele-
ment at position Arithmetic Expr. Stack expressions
are not mentioned in the specification but appear in
the intermediate stages of the wp calculus as shown
later in Section 4.

3.2 Compiling JML into BCSL
We now turn to explaining how JML specifications are

compiled into user defined attributes for Java class files. Re-
call that a class file defines a single class or interface and
contains information about the class name, interfaces im-
plemented by the class, super class, methods and fields de-
clared in the class and references. The Java Virtual Machine
Specification (JVM) [9] mandates that the class file contains
data structure usually referred as the constant pool table

which is used to construct the runtime constant pool upon
class or interface creation. The runtime constant pool serves
for loading, linking and resolution of references used in the
class. The JVM allows to add to the class file user spe-
cific information([9], ch.4.7.1). This is done by defining user
specific attributes (their structure is predefined by JVM).

Thus the “JML compiler” 2 compiles the JML source spec-
ification into user defined attributes. The compilation pro-
cess has three stages:

1. Compilation of the Java source file. This can be done
by any Java compiler that supplies for every method in
the generated class file the Line Number Table and
Local Variable Table attributes. The presence in
the Java class file format of these attribute is optional
[9], yet almost all standard non optimizing compilers
can generate these data. The Line Number Table

describes the link between the source line and the byte-
code of a method. The Local Variable Table de-
scribes the local variables that appear in a method.
Those attributes are important for the next phase of
the JML compilation.

2. Compilation of the JML specification from the source
file and the resulting class file. In this phase, Java
and JML source identifiers are linked with their identi-
fiers on bytecode level, namely with the corresponding
indexes either from the cp (short for constant pool)
or the array of local variables described in the Lo-

cal Variable Table attribute. If a field identifier, for
which no cp index exists, appears in the JML speci-
fication, a new index is added in the cp and the field
identifier in question is compiled to the new cp index.
It is also in this phase that the specification parts like
the loop invariants and the assertions which should
hold at a certain point in the source program must be
associated to the respective program point on bytecode
level. The specification is compiled in binary form us-
ing tags in the standard way. The compilation of an
expression is a tag followed by the compilation of its
subexpressions.

Another intersting point in this stage of the JML com-
pilation is how the type differences on source and byte-
code level are treated. The type differences are due
to the fact that the JVM does not provide direct sup-
port for integral types like byte, short, char, neither for
boolean. Those types are rather encoded as integers
in the bytecode and thus, if a Java source variable has
a boolean type it will be compiled to a variable with
an integer type. The JML compiler performs trans-
formation on specifications that involve Java boolean
values and variables. We illustrate this by an exam-
ple in Fig. 3, which shows the resulting compilation
of the postcondition of method isElem in Fig. 2. The
example also shows that local variables and fields are
respectively linked to the index of the register table for
the method and to the corresponding index of the cp
table (#19 is the compilation of the field name list

and lv[1] stands for the method parameter obj).

2not to be confused, Gary Leavens also calls his tool jmlc
JML compiler, which transforms JML into runtime checks
and thus generates input for the jmlrac tool



\result == 1 ⇐⇒ ∃var(0).
0 ≤ var(0)∧
var(0) < len(#19(lv[0]))∧
#19(lv[0])[var(0)] = lv[1]

Figure 3: The compilation of the postcondition of

method isElem

3. add the result of the compiled method specifications,
class invariants, loop invariants in newly defined at-
tributes in the class file. For example, the specifi-
cations of all the loops in a method are compiled to
a unique method attribute whose syntax is given in
Fig. 4. This attribute is an array of data structures
each describing a single loop from the method source
code. More precisely, every element contains infor-
mation about the instruction where the loop starts as
specified in the Line Number Table, the locations
that can be modified in a loop iteration, the invariant
associated to this loop and the decreasing expression
in case of total correctness,

JMLLoop specification attribute {
...
{ index;

modifies count;
formula modifies[modifies count];
formula invariant;
expression decreases;

} loop[loop count];
}

Figure 4: Structure of the loop specification at-

tribute

The most problematic part of the specification compila-
tion is the identification of which loop in the source corre-
sponds to which bytecode loop in the control flow graph. To
do this, we assume that the control flow graph is reducible
(see [1]), i.e. there are no jumps into the middle of the loops
from outside; graph reducibility allows to establish the same
order between loops in the bytecode and source code level
and to find the right places in the bytecode where the loop
invariants must hold.

4. WEAKEST PRECONDITION CALCULUS
FOR JAVA BYTECODE

In this section, we define a bytecode logic in terms of a
weakest precondition calculus. We assume that the bytecode
program has passed the bytecode verification procedure, i.e.
it is well typed and thus the calculus deals only with program
functional properties.

The proposed weakest precondition wp supports all Java
bytecode sequential instructions except for floating point
arithmetic instructions and 64 bit data (long and double

types), including exceptions, object creation, references and
subroutines. The calculus is defined over the method control

flow graph and supports BCSL annotation, i.e. bytecode
method’s specification like preconditions, normal and ex-
ceptional postconditions, class invariants, assertions at par-
ticular program point among which loop invariants. The
verification condition generator applied to a method byte-
code generates a proof obligation for every execution path
by applying first the weakest predicate transformer to every
return instruction, athrow instruction and end of a loop
instruction and then following in a backwards direction the
control flow upto reaching the entry point instruction. In
an extended version of the present paper [11], we show that
the wp function is correct.

We give here the wp rule of the Type load i instruction:

wp(Type load i, ψ, ψ
exc) = ψ[c← c + 1][st(c+1) ← lv[i]]

As the example shows the wp function takes three argu-
ments: the instruction for which we calculate the precondi-
tion, the instruction’s postcondition ψ and the exceptional
postcondition function ψexc which for any exception Exc re-
turns the corresponding exceptional postcondition ψexc(Exc).
One can also notice that the rule involves the stack expres-
sions c and st(c) which we discussed in Subsection 3.1.
This is because the JVM is stack based and the instructions
take their arguments from the method execution stack and
put the result on the stack. The wp rule for Type load i

increments the stack counter c and loads on the stack top
the contents of the local variable lv[i].

In the following, we consider how instance fields, loops ex-
ception handling and subroutines are treated. We omit here
aspects like method invocation and object creation because
of space limitations but a detailed explanation can be found
in [11].

4.0.0.1 Manipulating object fields.
Instance fields are treated as functions, where the domain

of a field f declared in the class Cl is the set of objects of
class Cl and its subclasses. We are using function updates
when assigning a value to a field reference as, for instance
in [3].

4.0.0.2 Loops.
Indentifying loops on bytecode and source programs is

different because of their different nature — the first one
lacks while the second has structure. While on source level
loops correspond to loop statements, on bytecode level we
have to analyse the control flow graph in order to find them.
The analysis consists in looking for the backedges in the
control flow graph using standard techniques, see [1].

We assume that a method’s bytecode is provided with suf-
ficient specification and in particular loop invariants. Under
this assumption, we build an abstract control flow graph
where the backedges are replaced by the corresponding in-
variant. We apply the wp function over the abstract version
of the control flow graph which generates verification condi-
tions for the preservation and initialization of every invariant
in the abstraction graph.

4.0.0.3 Exceptions and Subroutines.
Exception handlers are treated by identifying the instruc-

tion at which the handler compilation starts. The JVM
specification mandates that a Java compiler must supply
for every method an Exception Table attribute that con-



tains data structures describing the compilation of every im-
plicit (in the presence of subroutines) or explicit exception
handler: the instruction at which the compiled exception
handler starts, the protected region (its start and end in-
struction indexes), and the exception type the exception
handler protects from. Thus, for every instruction ins in
method m which may terminate exceptionally on exception
Exc the exceptional function ψexc returns the wp predicate
of the exceptional handler protecting ins from Exc if such
a handler exists. Otherwise, ψexc returns the specified ex-
ceptional postcondition for exception Exc as specified in the
specification of method m .

Subroutines are treated by abstract inlining3. First, the
instructions of every subroutine are identified. To this end,
we assume that the code has passed the bytecode verifica-
tion and that every subroutine terminates with a ret in-
struction(usually, the compilation of subroutines ends with
a ret instruction but it is not always the case). Thus, by
abstract inlining, we mean that whenever the wp function
is applied to an instruction jsr ind, a postcondition ψ and
an exceptional postcondition function ψexc, its precondition
wpjsr ind is calculated as follows: the wp is applied to the
bytecode instructions that represent the subroutine which
starts at instruction ind, the postcondition ψ and the ex-
ceptional postcondition function ψexc.

5. RELATION BETWEEN VERIFICATION
CONDITIONS ON SOURCE AND BYTE-
CODE LEVEL

We studied the relationship between the source code proof
obligations generated by the standard feature of JACK and
the bytecode proof obligations generated by our implemen-
tation over the corresponding bytecode produced by a non
optimizing compiler over the examples given in [7]. The
proof obligations were the same modulo names and boolean
and some integer values like short and byte as well as hy-
pothesis names. The proof obligations on bytecode and
source level that we proved interactively in Coq produced
proof scripts which were also equal modulo the names of
hypothesis. This means that if an appropriate encoding
of proof obligations on source and bytecode level is found,
where the names of the source and bytecode hypothesis are
the same, the produced proof script for a source proof obli-
gation can be applied to the corresponding one on bytecode.

The equivalence between source and bytecode proof obli-
gations can be applied to PCC scenarios, as discussed in
Section 1 in cases where the client policy is complex and a
complete automatic certification will not work and the pro-
ducer has to generate the program certificate interactively.

6. CONCLUSION AND FUTURE WORK
This article describes the bytecode specification language

BCSL, a compiler from the JML language to BCSL and
bytecode wp calculus. A proof obligation generator based
on the wp calculus and a JML compiler to BCSL have been
implemented and are part of the Jack 1.8 release4. At this

3NB: we do not transform the bytecode. It is rather the wp
function that treats subroutines as if the subroutines were
inlined
4http://www-sop.inria.fr/everest/soft/Jack/jack.html

step, we have built a framework for Java program verifica-
tion which is the first step towards a PCC architecture.

We conclude with future work directions. First, we would
like to perform more real case studies. Second, we aim to es-
tablish formally that nonoptimizing source compilation pre-
serves proof obligations modulo names and basic types. This
equivalence can be used to complete the PCC framework
where the proof certificates will be made interactively on
source level. Finally, we are interested in the extension of the
framework applying previous research results in automated
annotation generation for Java source programs (see [12]).
The client thus will establish that the code respects his secu-
rity policy by first propagating automatically annotations in
the loaded code and then verifying the resulting annotated
code.
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