
Automatic Refinement

Lilian Burdy1,2, Jean-Marc Meynadier1

1 Matra Transport International
48-56 rue Barbès 92120 Montrouge

tel : 01 49 65 71 41 fax : 01 49 65 70 55
e-mail : {burdy,meynadier}@matra-transport.fr

2 Laboratoire CEDRIC
Conservatoire National des Arts et Métiers

292 rue St Martin 75141 Paris Cedex 3
e-mail : burdy@cnam.fr

Keywords: Tools, Refinement Techniques

1 Introduction

B is a method for specifying, designing and coding software systems. It ensures,
thanks to refinement steps and mathematical proofs, that the code satisfies its
specification. Up to now, designing and coding are manual and costly activities.
We could reduce cost drastically by automating these activities, in other words
by automating refinement steps. This paper presents our work on this this au-
tomation.

In section 2 we describe the design and coding phase and the gain we can hope
from automating these activities. Then in section 3 we present briefly the first
specification of the tool we made: the automatic refiner tool is considered as a
classical compiler. The results of the application of a prototype on two industrial
projects and the questions and problem it raises are also described. In section
4, we try to answer these questions by a new specification: the refiner becomes
similar to a prover: the refinement schemes are described by rules, and the tool
works automatically or interactively using refinement rules. In section 5, we give
an example of refinement rules and the result of its application on an abstract
machine.

2 Design and Coding Phase with B-Method

2.1 Background

There are different ways to use the B-Method. Figure 1 gives the process we
have chosen and compares it with a classical non formal development.

4 Lilian Burdy, Jean-Marc Meynadier

Conventional Development Formal Development

Implementation

Modelisation Phase

Design Phase

Translation Phase

Proof

Proof

Manual Activities Automatic Activities

Ada-PSC Language
Source Code

Document
Detailed Design

Document

Architectural Design

Document

Software Requirements Software Requirements

Document

Abstract Model

B Language

Concrete Model
B0 Language

Source Code
Ada-PSC Language

Integration

Test

Unit
Test

Functional
Test

Detailed
Design

Architectural
Design

Functional
Test

Natural Language
Document

Formal
Document

Fig. 1. B vs Classical life cycle.

Automatic Refinement 5

Modelisation First of all, the modelisation phase consists in translating the soft-
ware requirement in an abstract model in B (the B specification). This model
should:

– describe the software requirement completely, as clearly as possible (it means
in particular with mathematical data type) and with a very good traceability,

– let the design work as free as possible,
– allow an easy proof work.

This model is finished when all the requirements are described in the model.

Designing and Coding The following phase consists in refining the abstract model
into a concrete model. The model should:

– refine all the components of the abstract model,
– take into account the design constraints in particular in term of memory and

speed,
– ease the proof burden.

This model is finished when all the components of the abstract model are refined
into components that can be automatically translated into Ada code (it means
that these components are in B0, a subset of B defined in the B-Book and very
close to Ada code).

Automatic Translation into an Imperative Language A tool translates automat-
ically all the implementations of the concrete model into an imperative language
(Ada code in our case).

Consequently, an automatic refiner would cover the design and coding phase,
and we could generate automatically the Ada code from the B specification (the
abstract model).

2.2 Expected Savings

Referring to the figure 1, and according to our experience on industrial projects,
the division of the costs between the different products is the following:

– abstract model: 3/8,
– concrete model: 3/8,
– proof of abstract and concrete model: 1/8,
– documentation of abstract and concrete model: 1/8.

Moreover, the main part of proof cost concerns the concrete model, and globally,
the design phase needs a bit more than a half of the formal development. Con-
sequently, an automatic refiner could allow to save more than half of the cost of
a formal development.

6 Lilian Burdy, Jean-Marc Meynadier

2.3 More Details on Refinement

In the B-Book, refinement is presented as conducted in three different ways:

– the transformation of mathematical data structures (sets, relations, func-
tions, ...) into the classical data structures of programming (simple variables,
arrays, ...).

– the removal of the non-executable elements of the pseudo-code (pre-condition
and choice),

– the introduction of the classical control structures of programming (sequenc-
ing, loop).

In order to explain how the refiner tool works, we present the refinement with a
slightly different approach:

– data refinement is the refinement of variables and the refinement of the
without-structure substitutions (assignment, becomes such that, becomes a
member of). We consider that a refinement of a variable depends on the
different write and read non-structured operations where this variable occurs.

– structure refinement is the refinement of the structured substitutions (SE-
LECT, IF, CHOICE, ANY 1). It can be done independently of the data
refinement and it is well differentiated.

These notions will be used in the next section.

3 Automatic Refiner: a Compiler

Our aim is to build an automatic refiner which can refine a source with abstract
B (a part of the abstract model) in B0. By a source with abstract B, we mean a
machine with not directly implementable data such as sets, relations or partial
functions and non-implementable operations such as adding an element to a set
or intersecting two sets.
In this section, we present a general idea of the specification of this tool and also
the limitations of a refiner seen as a classical compiler.

3.1 Principles

The abstract model may contain non-deterministic substitutions. We have chosen
to bypass this problem. We consider that the entries of our compiler are machines
with operations which are completely deterministic.
We do not present a complete specification of this tool; we only present the
principles that have guided us:

1 We consider ANY as a structured substitution since we refine ANY x WHERE P
THEN S END by x : (P);S which corresponds to two non-structured sequenced
substitutions.

Automatic Refinement 7

Proof

Translation Phase

ProofAbstract Model

B Language

Concrete Model
B0 Language

Source Code
Ada Language

Proof

Compilation Phase

Fig. 2. Refinement as Compilation

– From a machine, it should construct an implementation and if necessary an
imported machine with the specification of called operations.

– It is called on each created machine until it creates an implementation with-
out called operations.

– The structure refinement is done in a distinguished first step.
– Then, the data refinement begins. If the tool does not know how to refine a

data or an operation on this data, the data and the operation which concern
it are deported in a machine which will be refined by a developer.

– The usual refinement proof obligations are still produced and proved, so that
we do not have to validate the tool.

3.2 Prototype

A tool was developed and tested on already existing software and for new soft-
ware of an industrial project.

Tool applied on already existing software : the size of this software was about
25.000 B lines giving 19.000 Ada lines. Thanks to the tool, with a limited number
of refinement schemes, we have produced automatically from the abstract model
75% of the concrete model. The cost of production of this concrete model was
drastically reduced compared to the effective cost that had been measured when
the concrete model had been manually developed. Moreover the performance of
this concrete model was rather good: we had lost only 15% in execution time
compared to the manual code, and the size of the executable code did not inflate.

8 Lilian Burdy, Jean-Marc Meynadier

Tool applied on new software : we have had the same kind of results concerning
cost effectiveness: the tool produces entirely the concrete model and allows us
to make in one week, what was planned to be done manually in more than 2
months.

3.3 The Limits of a Refiner which would be a Compiler

Nevertheless, the automation of the refinement of the abstract model raises a
few questions that were not dealt with by this tool:

– in a classical language, we can adopt one good way to “implement” the
primitives constructs of the language, but in B, seen as an abstract language,
there are many ways to implement a specification and for a given specification
there are many possible refinements. None of them can be considered as the
best: it depends on the software constraints. For example, one refinement
may save memory but costs time, whereas another may save time but costs
memory; a third maybe in the middle! How to automatically find them and
chose among them ?

– the input language is very large: indeed the specifications may use various
data structure, and all these data structure may combine with various control
structure. Then, shall we reduce the input language of the tool ?

Hence, we know that we cannot have a refiner which, in any case, refines
with the same refinement scheme the same type of data or the same structure.
It would give ineffective code most of the time and it would need to be changed
to recognise new schemes. So our first refiner was a good compiler for our ap-
plication since it was purpose built to refine it, but if it is used to refine others
sources, it could be really inefficient. For this reason why we have opted for an
automatic refiner with a refinement rule-base.

4 Automatic Refiner with Refinement Rule Base

The idea was to have an automatic refiner which refines a machine by applying
different refinement rules. If these rules are changed, then the produced refine-
ment is different. The refinement is completely parameterised by a rule base of
refinement schemes, the refinement of a machine being dependent of this rule
base. The rules are completely reusable to refine other machines and the ad-
vantage is that the rule base can be modified without modifying the automatic
refiner.

4.1 Automatic Refinement

We have kept the idea of the previous chapter about the distinction between
structure and data refinement. But this new tool, is divided into two parts:

Automatic Refinement 9

 Rule Base
Substitution Refinement

Data Refinement
Rule Base

=
Refinement

Proof

Abstract Model
B Language

B0 Language
Concrete Model

Rules Application

Fig. 3. Refinement as Rule Application

– first part (structure refinement): it refines fully automatically the structured
operations and produces implementations (with structured operations) and
machines without structured operations,

– second part (data refinement): it refines automatically or semi-automatically
the machines without structured operations (produced by the first part) and
produces all the remaining implementations.

The first part of the tool is very simple. We will focus on the second part
of the tool. For this second part the activity of refinement can be divided into
two sub-activities : variable refinement (and the variable refinement rules) and
substitution refinement (and substitution refinement rules).

Variable Refinement Refining an abstract variable is defining the concrete
variables that refine it, and for each variable a translatable type and gluing the
concrete variables with the refined variable. The choice of such a refinement is
done from the abstract type of the variable, the properties of the variable and
the operations that are done on it. For example a set is usually refined by a
boolean array but if we only access its maximum, it can be refined by a scalar.

Substitution Refinement To refine a non structured operation, we refine each
substitution of the operation. The refinement applied to the variables that appear
in the substitutions should be known. Then, according to those refinements, one
can write the refinement of the substitution. The refinement of substitution can
be a non-translatable substitution, in this case this new substitution is itself
refined until a translatable refinement is reached.

10 Lilian Burdy, Jean-Marc Meynadier

4.2 Principle

In order to simplify the tool, we have chosen to refine the variables without
taking into account the substitutions on those variables. The inconvenience is
that the refinement of a variable only depends on its property and must be
valid for every conceivable operations and so it must be the most general ; but
we consider that a particular refinement can be applied to a variable with, for
example, a special pragma that indicates which rules of refinement are to be
used on a particular variable.
Then, when the choice of a data refinement is done for each variable, one refines
the operations according to these refinements. Those different steps are described
in the figure below.

MACHINE
mch

SEES
mch 1
mch 2




Extract hypothesis from the
INVARIANT, PROPERTIES and
ASSERTIONS of seen machines.

ABSTRACT VARIABLES
x

INVARIANT
x ⊆ t




Associate to each variable a data refinement
rule and complete the hypothesis with the
information of variable typing.

INITIALISATION
x := {}




Refine the initialisation via the search of a rule
in the refinement rule base which matches with
the context until a B0 substitution is obtained.

OPERATIONS
op 1 = ...;
op 2 = ...;
...

END




Refine each operation via the search of a rule
in the refinement rule base which matches with
the context until a B0 substitution is obtained.

4.3 A Refiner is like a Prover

To understand how the refiner works, it can be compared with a prover. In fact,
we have got some hypothesis and a goal which is the variable or the substitution
to refine. One tries to apply rules which are presented as a refinement general
schemes. These schemes can be applied on some substitutions under some hy-
pothesis. When the rule to apply is chosen, one obtains a new substitution that
is terminal if translatable or on which another rule should be applied otherwise.
This process is repeated until the substitution is discharged e.g. completely re-
fined.

Automatic Refinement 11

RULE R1 IS
ABSTRACT VARIABLES

a
TYPE

ENS(a,b,c)
CONSTRAINT

(SETS(c) ∧
b ⊆ c ∧
a ⊆ b) ∨

(SETS(c) ∧
a ⊆ c ∧
match(b,c))

CONCRETE VARIABLES
a r

INVARIANT
a r ∈ c → BOOL &
a = a r−1[{TRUE}]

END

Fig. 4. The set data refinement rule

4.4 Example of Refinement Rules

Data Refinement Rule The rule of figure 4 is a data refinement rule that
is applied on a variable a if one sub-constraint of the disjunctive constraint is
solved. The clauses are instantiated and then, the information concerning the
refinement are written in the implementation : the concrete variable, its type and
the gluing invariant. The instantiated predicate ENS(a, b, c) becomes a new
hypothesis, which will be useful to refine the substitution where this variable
occurs.

Substitution Refinement Rule The rule of figure 5 is a substitution refine-
ment rule that is applied on a substitution a := a∪{b} if a has been refined with
the previous rule e.g. if a predicate matching with ENS(a, c, d) is in hypothesis.
If these conditions are fulfilled, the refinement is applied. This refinement is a
VAR IN with a sequence in the body. The left part of the sequence is not B0-valid
(since b can match with an abstract expression) and so a new refinement step will
be done on this substitution. The right part is B0-valid and so, the refinement
will stop. Then a translatable refinement is obtained and the implementation
can be written.

4.5 The Tool

We have prototyped a tool with this specification. This tool has three inputs :
– a B component (machine or refinement) the user wants to refine,
– a generic refinement-rule data base,
– a set of specific refinement-rules.

12 Lilian Burdy, Jean-Marc Meynadier

RULE R2 IS
REFINE

a := a ∪ {b}
CONSTRAINT

ENS(a,c,d)
IMPLEMENTATION

VAR
l 1

IN
l 1 := b;
a r(l 1) := TRUE

END
END

Fig. 5. The add an element to set rule

The generic data base is made, today, of 300 rules that comes with the tool. The
set of specific refinement-rules contains, if needed, a few rules not present in the
generic data base that are needed to refine the B component. These rules are
written by the end-user.
The output of the tool is a set of B components that refines completely the
B abstract machine, according to the refinement-rules coming from the generic
(and user specific) refinement-rule data base.

5 Example of an Automatic Refinement

Let refine the machine example

MACHINE
example

SEES
set mch

ABSTRACT VARIABLES
a set

INVARIANT
a set ⊆ A

INITIALISATION
a set := {}

OPERATIONS
add(b) =
PRE
b ∈ A

THEN
a set := a set ∪ {b}

END
END

MACHINE
set mch

SETS
A

END

Automatic Refinement 13

The first step consists in refining the abstract variable, it gives the first goal to
prove:

SETS(A) ∧
a set ⊆ A
⇒
Refine(a set)

The rule R1 is applied since the constraint (SETS(c) ∧ a ⊆ c) can be solved
with the hypothesis; so the goal is discharged.
The declarative part of the implementation can be written.

IMPLEMENTATION
example i

REFINES
example

SEES
set mch

CONCRETE VARIABLES
a set r

INVARIANT
a set r ∈ A → BOOL &
a set = a set r−1[{TRUE}]

Then we have a goal for the refinement of the operation. We have new hypothesis:
the hypothesis resulting of the refining of the variable and some hypothesis
extracted from the header of the operation and the precondition.

SETS(A) ∧
a set ⊆ A ∧
ENS(a set, A, A) ∧
In parameter(b) ∧
b ∈ A
⇒
Refine(a set := a set ∪ {b})

The rule R2 is applied since the goal matches with the REFINE clause and the
unique constraint is verified by the hypothesis. So a new goal is obtained after
the application of the rule.

14 Lilian Burdy, Jean-Marc Meynadier

SETS(A) ∧
a set ⊆ A ∧
ENS(a set, A, A) ∧
In parameter(b) ∧
b ∈ A
⇒

Refine




V AR
l 1

IN
l 1 := b;
a r(l 1) := TRUE

END




Then this goal is divided in two subgoals, each one corresponding to a part of
the sequence :

SETS(A) ∧
a set ⊆ A ∧
ENS(a set, A, A) ∧
In parameter(b) ∧
b ∈ A ∧
Local variable(l 1)
⇒
Refine(l 1 := b)

and

SETS(A) ∧
a set ⊆ A ∧
ENS(a set, A, A) ∧
In parameter(b) ∧
b ∈ A ∧
Local variable(l 1)
⇒
Refine(a set r(l 1) := TRUE)

A rule is applied to each subgoal, since they are both translatable, these rules are
terminal; and so the refinement stops and the second part of the implementation
can be written.

OPERATIONS
add(b) =
VAR
l 1

IN
l 1 := b
a set r(l 1) := TRUE

END
END

The tool has completely automatically written this implementation. One can
remark that it is not the best implementation that can be written for our machine
since the local variable is useless here. But our rule R2 is general and is correct
in every case even if b matches with a complex expression.

6 Results and Conclusion

We have made an automatic refiner that is ready to be used for industrial devel-
opments in our company. Our formal design experience, based on a large formal

Automatic Refinement 15

development (more than 115.000 B lines), is now largely formalised in the refine-
ment rule base (more than 300 refinement rules). This base is completely reusable
for the new developments, and new rules coming from new developments may
enrich it.

This tool has been used already on industrial developments in our company.
The productivity gain is very important. On the last project, thanks to the tool,
20.000 B lines have been produced (corresponding to 14.000 Ada lines) in 5 man
days. More than 97% of the refinement lemmas generated have been proved
automatically. Moreover, as we know that the machine and implementation pro-
duced by the tool are correct (provided that the refinement rules are correct),
the interactive proof is more effective.
By now, the developers can focus on the modelisation phase since the design
phase is largely automated. We can hope that B will be soon a modelisation lan-
guage and the design phase will be, as the translation, a push-button activity.

	Introduction
	Design and Coding Phase with B-Method
	Background
	Expected Savings
	More Details on Refinement

	Automatic Refiner: a Compiler
	Principles
	Prototype
	The Limits of a Refiner which would be a Compiler

	Automatic Refiner with Refinement Rule Base
	Automatic Refinement
	Principle
	A Refiner is like a Prover
	Example of Refinement Rules
	The Tool

	Example of an Automatic Refinement
	Results and Conclusion

