JACK — a tool for validation of security and
behaviour of Java applications™

Gilles Barthe!, Lilian Burdy, Julien Charles!, Benjamin Grégoire', Maricke
Huisman®, Jean-Louis Lanet?, Mariela Pavlova®**, and Antoine Requet?

1 INRIA Sophia Antipolis, France
2 gemalto, France
3 Ludwig-Maximilians-Universitét Miinchen, Germany

Abstract. We describe the main features of JACK (Java Applet Cor-
rectness Kit), a tool for the validation of Java applications, annotated
with JML specifications. JACK has been especially designed to improve
the quality of trusted personal device applications. JACK is fully in-
tegrated with the IDE Eclipse, and provides an easily accessible user
interface. In particular, it allows to inspect the generated proof obliga-
tions in a Java syntax, and to trace them back to the source code that
gave rise to them. Further, JACK provides support for annotation gen-
eration, and for interactive verification. The whole platform works both
for source code and for bytecode, which makes it particularly suitable
for a proof carrying code scenario.

1 Introduction

Motivation Over the last years, the use of trusted personal devices (TPD),
such as mobile phones, PDAs and smart cards, has become more and more
widespread. As these devices are often used with security-sensitive applications,
they are an ideal target for attacks. Traditionally, research has focused on avoid-
ing hardware attacks, where the attacker has physical access to the device to
observe or tamper with it. However, TPD are more and more connected to net-
works and moreover, provide support to execute complex programs. This has
increased the risk of logical attacks, which are potentially easier to launch than
physical attacks (they do not require physical access, and are easier to replicate
from one device to the other), and may have a huge impact. In particular, a
malicious attacker spreading over the network and massively disconnecting or
disrupting devices could have significant consequences.

An effective means to avoid such attacks is to improve the quality of the
software deployed on the device. This paper describes JACK! (the Java Applet

* This work is partially funded by the IST programme of the European Commission,
under the IST-2003-507894 Inspired and IST-2005-015905 Mobius projects.
** Research done while at INRIA Sophia Antipolis.
! See http://www-sop.inria.fr/everest/soft/Jack/jack.html for download in-
structions.

Correctness Kit), a tool that can be used to improve the quality of applica-
tions for TPD. Such devices typically implement the Java Virtual Machine (or
one of its variations)?. Therefore JACK is tailored to applications written in
Java (bytecode). However, the described techniques are also relevant to other
execution platforms for TPD.

Characteristics of JACK JACK allows to verify Java applications that are an-
notated with the Java Modeling Language (JML)?. An advantage of using JML
is that there is wide range of tools and techniques available that use JML as
specification language, i.e., for testing, simulation and verification (see [11] for
an overview). We distinguish two kinds of verification: at runtime, using jmlc, or
statically. Several tools provide static verification of JML-annotated programs,
adopting different compromises between soundness, completeness and automa-
tion (Section 8 provides an overview of related work). JACK implements a weak-
est precondition calculus, that automatically generates proof obligations that can
be discharged both by automatic and interactive theorem provers. The automatic
prover that is used is Simplify [22], the interactive theorem prover that is used
is Coq [39].

The development of the JACK tool started in 2002 at the formal methods
research laboratory of the French smart card producer Gemplus (now part of
gemalto). Successful case studies with ESC/Java [17] and the LOOP tool [8]
on an electronic purse smart card application [10] had sufficiently demonstrated
that verification of JML annotations could help to increase the quality of smart
card applications. However, the existing tools where either not precise enough,
or too cumbersome to use to expose application developers to them. The JACK
tool was designed to overcome these problems, in particular via the integration
of JACK within the IDE Eclipse?, and the development of a special JACK
perspective.

In 2003, the tool has been transfered to the Everest project at INRIA Sophia
Antipolis, and been further developed within this team since then. The other
features of JACK described in this paper have been developed after this transfer.

The main characteristics of JACK that distinguish it from other static veri-
fication tools are the following:

— full integration within Eclipse IDE, including the development of a special
JACK perspective that allows to inspect the different proof obligations, and
from where in the code they originate;

— implementation of annotation generation algorithms: to generate “obvious”
annotations, and to encode high-level security properties;

— support for verification of bytecode programs; and

2 The standard Java set-up for TPD is the Connected Limited Device Configura-
tion, see http://java.sun.com/products/cldc/, together with the MIDP profile,
see http://java.sun.com/products/midp/.

3 See http://www.jmlspecs.org.

4 See http://www.eclipse.org.

— support for interactive verification, by the development of an interface and
tactics for Coq and by use of the native construct, that allows to link JML
specifications with the logic of the underlying theorem prover.

This paper illustrates how these characteristics make JACK particularly suited
for the development of secure applications for TPD.

Application Scenarios JACK provides different kinds of support for the appli-
cation developer, ranging from the automatic verification of common security
properties to the interactive verification of complex functional specifications.

To support the automatic verification of high-level security properties, JACK
provides an algorithm to automatically generate annotations encoding such prop-
erties, and to weave and propagate these in the application. These annotations
give rise to proof obligations, whose discharge (typically automatic) guarantees
adherence to the security policy. Since JACK also provides support for the ver-
ification of bytecode, and allows to compile source code level JML annotations
into bytecode level specifications (written in the Bytecode Modeling Language
(BML) [12]), this enables a proof carrying code scenario [35]. In such a scenario,
the applications come equipped with a specification and a proof that allow the
client to establish trust in the application. Since the applications usually are
shipped in bytecode format, also the specification and the verification process
need to be defined at this level. This scenario is even further facilitated by the
fact that the compiler from JML to BML provided by JACK basically preserves
the generated proof obligations (see also [6]). Thus, a software developer can
verify its applications at source code level, and ship them with compiled byte-
code level specifications and proofs. Notice that, provided the proof obligations
can be discharged automatically, this whole process is automatic.

However, as JACK is a general-purpose tool, it can be also be used to verify
complex functional-behaviour specifications. For this, it provides advanced sup-
port for specification development and interactive verification. Because of the
tight integration with Eclipse, the developer does not have to change tools to
validate the application. A special JACK view is provided, that allows to inspect
the generated proof obligations in different views (in a Java-like syntax, or in the
language of the prover). Moreover, syntax colouring of the original source code
allows to see to which parts of the application and specification the proof obliga-
tion relates. Further, JACK can generate “obvious” annotations that are easy to
forget, in particular preconditions that are sufficient to avoid runtime exceptions.
This helps to overcome one of the major drawbacks of using JML-like annota-
tions for specifications, namely that writing annotations is labour-intensive and
error-prone. Finally, to support interactive verification, several advanced Coq
tactics have been developed, and a Coq editor has been integrated into Eclipse.
In addition, to be able to write expressive specifications, a native construct has
been proposed for JML, that allows to link JML constructs directly with the
logic of the underlying prover. This allows to develop the theory about these
constructs directly in the logic of the theorem prover, which makes specification
and verification simpler.

Overview of the Paper The next section gives a quick overview of the rele-
vant JML features. Section 3 briefly outlines the general architecture of JACK,
while Section 4 focuses on its user interface. Section 5 describes the different an-
notation generation algorithms that JACK implements. Section 6 presents the
bytecode subcomponents of JACK, while Section 7 explains the features that
JACK provides to support interactive verification. Finally, Section 8 concludes
and discusses how this work will be continued.

Parts of the results described in this paper have been published elsewhere:
[14] describes the general architecture of JACK, [37] the annotation generation
algorithm for security policies, [13] the framework for the verification of bytecode,
and [16] the native construct. However, this is the first time a complete overview
of JACK and its main features are given in a single paper.

2 A Quick Overview of JML

This section gives a short overview of JML, by means of an example. Throughout
the rest of this paper, we assume the reader is familiar with JML, its syntax and
semantics. For a detailed overview of JML we refer to the reference manual [31];
a detailed overview of the tools that support JML can be found in [11]. Notice
that JML is designed to be a general specification language that does not impose
any particular design method or application domain [29].

To illustrate the different features of JML, Figure 1 shows a fragment of a
specification of class QuickSort. It contains a public method sort, that sorts the
array stored in the private field tab. Sorting is implemented via a method swap,
swapping two elements in the array, and a private method sort, that actually
implements the quicksort algorithm.

In order not to interfere with the Java compiler, JML specifications are writ-
ten as special comments (tagged with @). Method specifications contain pre-
conditions (keyword requires), postconditions (ensures) and frame conditions
(assignable). The latter specifies which variables may be modified by a method.
In a method body, one can annotate all statements with an assert predicate
and loops also with invariants (Loop_invariant), and variants (decreases).
One can also specify class invariants, i.e., properties that should hold in all vis-
ible states of the execution, and constraints, describing a relation that holds
between any two pairs of consecutive visible states (where visible states are the
states in which a method is called or returned from).

The predicates in the different conditions are side-effect free Java boolean
expressions, extended with specification-specific keywords, such as \result, de-
noting the return value of a non-void method, \old, indicating that an expression
should be evaluated in the pre-state of the method, and the logical quantifiers
\forall and \exists. Re-using the Java syntax makes the JML specifications
easily accessible to Java developers.

JML allows further to declare special specification-only variables: logical vari-
ables (with keyword model) and so-called ghost variables, that can be assigned
to in special set annotations.

public class QuickSort {
private int [] tab;

public QuickSort(int[] tab) {this.tab = tab;}

/*@ requires (tab != null) ;
@ assignable tab[0 .. (tab.length -1)];
@ ensures (\forall int i, j; O <= i && i <= (tab.length - 1) ==>
@ 0 <= j && j <= (tab.length - 1) ==>
i < j ==> tabl[i] <= tab[jl) &&
(\forall int i; O <= i && i <= (tab.length - 1) ==>
(\exists int j; 0 <= j && j <= (tab.length - 1) &%
Q \old(tab[j]) == tabl[il])); @*/
public void sort() {if(tab.length > 0) sort(0, tab.length -1);}

@ © ©

/*@ requires (tab != null) && (0 <= i) && (i < tab.length) &&

¢] (0 <= j) && (j < tab.length);

@ assignable tab[i], tabl[jl;

@ ensures tab[i] == \old(tab[jl) && (tab[j] == \old(tabl[il)); @*/
public void swap(int i, int j) { ... }

private void sort(int lo, int hi) { ... }
Fig. 1. Fragment of class QuickSort with JML annotations

Figure 1 specifies that method sort sorts the array tab from low to high,
and all elements that occurred in the array initially also occur in its afterwards®,
and that method swap swaps the contents of the array at positions i and j.

3 General Architecture of JACK

This section describes the general architecture of JACK, and how it aims at
a high level of precision. The next section then discusses how JACK has been
made accessible to application developers by integration within the IDE Eclipse,
and the development of the special JACK perspective. For the development of
the JACK architecture, the main design principles were the following:

— integration within a widely-used IDE, so that developers do not have to learn
a new environment, and do not have to switch between tools;

— automatic generation of proof obligations by implementation of a weakest
precondition (wp) calculus;

— proof obligations are first-order logic formulae; and

— prover independence, i.e., proof obligations for a single application can be
verified with different provers.

5 Note that this specification does not require that the final value of tab is a sorted
permutation of its initial value. However, this could be expressed in JML as well.

The wp-calculus that is implemented is a so-called “direct” calculus, mean-
ing that it works directly on an AST representation of the application, and
it does not use a transformation into guarded commands, as is done by e.g.,
ESC/Java. The wp-calculus is based on the classical wp-calculus developed by
Dijkstra [23], but adapted to Java by extending it with side-effects, exceptions
and other abrupt termination constructs (cf. e.g., [28]). Method invocations are
abstracted by their specifications, since we want verification to be modular. This
direct wp-calculus has the advantage that it is easy to generate proof obligations
for each path through a method, and then to connect the proof obligation with
the path through the method that gave rise to this particular proof obligation
(to achieve this, also some program flow information is associated to each proof
obligation). This connection makes the understanding of the generated proof
obligations easier. Another advantage of this approach is that the algorithms for
annotation generation as described below in Section 5 could make direct use of
the weakest precondition infrastructure. A drawback of this approach is that the
size of the generated proof obligation may be exponential in the size of the code
fragment being checked [27].

To avoid this blow up in the size of the proof obligation, and to ensure that
proof obligations can be generated automatically, JACK uses several new spec-
ification constructs, introduced in [14]: loops can be annotated with frame con-
ditions (loop-modifies) and exceptional postconditions (loop_exsures), and
any code block can be specified with a block specification (similar to a method
specification). The loop frame condition is used in the the wp-calculus to make
a universal quantification over the loop invariant when generating the appro-
priate proof obligations. Block specifications and loop_exsures clauses improve
readability and reduce the number of proof obligations, because they reduce the
number of paths through a method that have to be considered.

JACK generates its proof obligations in an abstract formula language, repre-
senting first-order logic formulae. It is straightforward to translate the abstract
formulae into a proof obligation for a particular prover. Adding a new prover
as a plug-in to the tool is simple: one develops a background theory formalising
Java’s type system and memory model, and one defines how the abstract for-
mulae are translated into concrete proof obligations for this particular prover.
Initially, JACK was designed to use the AtelierB prover [1], now Simplify and
Coq are the best supported back-end provers for JACK.

4 JACK’s User Interface

One of the features that distinguish JACK from other program verification tools
is the integration in the IDE Eclipse. This ensures a seamless integration of for-
mal methods in the application development process: the application developer
does not have to learn the peculiarities of a new tool, and does not have to switch
tools to apply formal verification techniques.

The integration in Eclipse consists of two parts: an extension of the standard
Java perspective with special JACK-related actions (checking a specification,

calling an automatic prover etc.), and a special JACK perspective to inspect the
generated proof obligations.

4.1 Extension of the Java Perspective in Eclipse

The standard Java perspective of Eclipse is extended with several JACK-specific
features. Menus are added to set the defaults for the different specification con-
structs. Further, there are buttons and menu-options to “compile” a JML spec-
ification, (i.e., type check and generate proof obligations), call an automatic
prover on all the generated proof obligations (either Simplify or a special Coq
tactic), or change to the special JACK perspective.

Checking the JML specification is not done in a background mode, while
editing the file (as is done for the type checking of Java); instead the user has
to launch this action explicitly. At the time this interface was developed, adding
such automatic checks required too many changes to the internals of Eclipse,
which were not default available. However, in the mean time such a feature
has been developed within the JMLEclipse project®. This project also provides
syntax highlighting of JML specifications in Eclipse’s Java perspective. All this
could be integrated with the JACK interface.

Finally, another important constraint is the interface’s responsiveness. An
IDE is supposed to be used interactively, and the developer should never have
to wait long for a result. Proof obligation generation is no problem for this,
but calling an automatic prover on the generated proof obligations can take a
significant amount of time. Therefore, the prover is called in a non-blocking way,
launching a special window that allows to see the progress of the task.

4.2 A Proof Obligation Inspection Perspective

An important feature of JACK is that one can inspect the different generated
proof obligations. Moreover, one does not have to understand the specific spec-
ification language of the prover that is being used; instead the proof obligations
can be viewed in a Java/JML-like syntax (but of course, one can also choose to
see the proof obligations as they are generated for a specific theorem prover).

Figure 2 shows the inspection of a proof obligation for the method sort
in the QuickSort example of Figure 1. The left upper windows allows one to
browse the proof obligations for the current class. Proven obligations are ticked,
the others are marked with a cross. The right window shows the original source
code, where the path through the code that corresponds to the current proof
obligation is coloured, together with the relevant part of the method specifica-
tion. Different colours are used to indicate different cases, i.e., to distinguish
normal from exceptional execution, and to mark that extra information, such as
a method specification, or the result of a conditional expression, is available. For
example, in Figure 2 one sees the specification of the private sort method in a
pop-up box, used in the public sort method.

5 See http://jmleclipse.projects.cis.ksu.edu/.

Jack - Eclipse SDK. [(=l[a](x]
File Edit Navigate Search Project Run JML Window Help
BTN et e = [0
I8 case Explorer - ... x L Case Viewer - Lemma: 41 - Proved: 18 (43%) - Checked: 0 (0%) &3 =g
Ha [+]
requires this.tab!=null;
modifies \nothing;
exsures (Exception) false;
= @ QuickSort @y
- . P public void sort() {
@ Static Initialisation Mtab.length = 0) =
I @ QuickSert(int[T) sort(0, tab.length -1);
I @ my_swap_again() }
7 @ sort()
~ @ Case 1
ra 7
requires this.tab!=null&&
@ Goal 2 D<=hia&
> @ Case 2 hi<this.tab.length;
modifies \nothing;
b @ sort(int, int) exsures (Exception) false;
> @ swap(int, int) @/ L
P & withinBounds(int) private void sort(int lo, int hi) {
QuickSort.sort(int lo, int hi)|
requires this. tab | =null&&
0<=hi&&
hi<this.tab.length;
{l
requires true;
modifies \nothing;
ensures true;
exsures (Exception) false;
n 83 (tab[left] <= pivot)) left++;
while((left < right) & (tab[right] >= pivot)) right--;
If(left < right) {
swap(left, right);
}
swap(left, hi); [+]
[«] Za [>]
Jack Metrics View Jack Proof View ﬁ:'] Check requires clause of the called method sert{int, int) & Progress ¥ =B
@ this.tab 1= null 0 <= this.tab.length - 1
® ((this.tab == null)
@ this.tab length > 0
® i(this.tab == null)
@ REFERENCES this
® (this) : (instances)
@ (typeof(this)) <: QuickSort
Java Coq‘S\mpllfyl WS‘
[= o]

Fig. 2. JACK’s proof obligation inspection perspective

The bottom window shows the proof obligation: the left half contains the
hypotheses, marked with letters indicating their origin, e.g., a hypothesis marked
R originates from the method’s requires clause, while a hypothesis marked L is
derived from local declarations within the method. The right half of the window
shows the actual goal that has to be proven. The window name highlights once
again that this proof obligation originates from the postcondition. Finally, notice
that the proof obligation is displayed in Java syntax, but buttons are available
to change to Coq, Simplify or PVS syntax.

The user can use the proof obligation inspection view to inspect the different
(unproven) proof obligations, and to launch different (interactive or specialised)
provers to prove the remaining proof obligations.

/*@ requires this.tab!=null;
signals (Exception) false;
Q@x/
public void sort() {if(tab.length > 0) sort(0, tab.length -1);}

/*@ requires this.tab!=null && 0<=j && j<this.tab.length &&
0<=1i && i<this.tab.length;
signals (Exception) false;
Qx/
public void swap(int i, int j) {int tmp; tmp = tabl[il;
tab[i] = tab[j]; tab[j]l = tmp;}

Fig. 3. Obvious annotations generated for a fragment of class QuickSort

5 Generating JML Annotations

While JML is easily accessible to Java developers, actually writing the specifica-
tions of an application is labour-intensive and error-prone, as it is easy to forget
some annotations. There exist tools which assist in writing these annotations,
e.g., Daikon [25] and Houdini [26] use heuristic methods to produce annota-
tions for simple safety and functional invariants. However, these tools cannot
be guided by the user—they do not require any user input—and in particular
cannot be used to generate annotations from realistic security policies.

Within JACK, we have implemented several algorithms to generate anno-
tations. We can distinguish two goals for annotation generation. The first is
to reduce the burden of annotation writing by generating as much “obvious”
annotations as possible. Given an existing, unannotated, application, one first
generates these obvious annotations automatically, before developing the more
interesting parts of the specification. The second goal is to encode high-level
properties by encoding these with simple JML annotations, that are inserted at
all appropriate points in the application, so that they can be checked statically.
JACK implements algorithms for both goals, as described in this section.

5.1 Generation of Preconditions

JACK implements an algorithm to generate “obvious” minimal preconditions to
avoid null-pointer and array-out-of-bounds exceptions. This algorithm re-uses
the implementation of the wp-calculus: it computes the weakest precondition
for the specification signals (NullPointerException) false; (resp.signals
(ArrayIndexOut0fBoundsException) false;) and inserts this as annotations
in the code.

As an example, Figure 3 shows the annotations that are generated for some
methods of the class QuickSort of Figure 1. It is important to realise that the
specifications that are generated might not be very spectacular, but that they
are generated automatically.

The annotation generation could be further improved by applying a simple
analysis on the generated annotations. Often it is the case that the preconditions
that are generated for the fields of the class are the same for (almost) all meth-
ods. In that case, this condition is likely to be a class invariant, and instead of
generating a precondition for each method, it would be more appropriate to gen-
erate a single class invariant. For example, for the class QuickSort, this would
produce an annotation invariant this.tab!=null;.

5.2 Encoding of Security Policies

Another difficulty when writing annotations is that a conceptually simple high-
level property can give rise to many different annotations, scattered through
the code, to encode this property. This is typically the case for many security
policies. Current software practice for the development of applications for trusted
personal devices is that security policies give rise to a set of security rules that
should be obeyed by the implementation. Obedience to these rules is established
by manual code inspection; however it is desirable to have tool support for this,
because a typical security property may involve several methods from different
classes. Many of the security rules can be formalised as simple automata, which
are amenable to formal verification. Therefore, we propose a method that given
a security rule, automatically annotates an application, in such a way that if
the application respects the annotations then it also respects the security policy.
Thus, it is not necessary for the user to understand the generated annotations,
he just has to understand the security rules.

The generation of annotations proceeds in two phases: first we generate core-
annotations that specify the behaviour of the methods directly involved, and next
we propagate these annotations to all methods directly or indirectly invoking the
methods that form the core of the security policy. The second phase is necessary
because we are interested in static verification. The annotations that we generate
all use only JML static ghost variables; therefore the properties are independent
of the particular class instances available.

As a typical example of the kind of security rules our approach can handle,
we consider the atomicity mechanism in Java Card (Java for smart cards) ([37]
gives more examples of such security rules). A smart card does not include a
power supply, thus a brutal retrieval from the terminal could interrupt a compu-
tation and bring the system in an incoherent state. To avoid this, the Java Card
specification prescribes the use of a transaction mechanism to control synchro-
nised updates of sensitive data. A statement block surrounded by the methods
beginTransaction() and commitTransaction() can be considered atomic. If
something happens while executing the transaction (or if abortTransaction()
is executed), the card will roll back its internal state to the state before the
transaction was begun. To ensure the proper functioning and prevent abuse of
this mechanism, applications should respect for example the following security
rules.

No nested transactions Only one level of transactions is allowed.

10

No exception in transaction All exceptions that may be thrown inside
a transaction, should also be caught inside the transaction.

Bounded retries No pin verification may happen within a transaction.

The second rule ensures that a transaction will always be closed; if the exception
would not be caught, commitTransaction would not be executed. The last rule
avoids the possibility to abort the transaction every time a wrong pin code has
been entered. As this would roll back the internal state to the state before the
transaction was started, this would also reset the retry counter, thus allowing an
unbounded number of retries. Even though the specification of the Java Card
API prescribes that the retry counter for pin verification cannot be rolled back,
in general one has to check this kind of properties.

Such properties can be easily encoded with automata, describing in which
states a certain method is allowed to be called. Based on this automata, we
then generate core-annotations. For example, the atomicity properties above give
rise to core-annotations for the methods related to the transaction mechanism
declared in class JCSystem of the Java Card API. A static ghost variable

/%@ static ghost int TRANS == 0; @x/

is declared, that is used to keep track of whether there is a transaction in progress.
To specify the No nested transactions property, the core-annotations for
method beginTransaction are the following.

/*@ requires TRANS == 0;
@ assignable TRANS;
@ ensures TRANS == 1; @x/
public static native void beginTransaction()
throws TransactionException;

Similar annotations are generated for commitTransaction and abortTrans-
action ([37] also describes the generated core-annotations for the other proper-
ties). After propagation, these annotations are sufficient to check for the absence
of nested transactions. To understand why propagation is necessary, suppose we
are checking the No nested transactions property for an application, contain-
ing the following fragment (where m does not call any other methods, and does
not contain any set-annotations).

void m() { ... // some internal computations
JCSystem.beginTransaction();
. // computations within transaction
JCSystem.commitTransaction(); }

When applying static verification on this code fragment, the core-annotations
for beginTransaction will give rise to a proof obligation that the precondition of
method m implies that there is no transaction in progress, i.e., TRANS == 0 (since
TRANS is not modified by the code that precedes the call to beginTransaction).

11

The only way this proof obligation can be established is if the precondition of
beginTransaction is propagated as a precondition for method m. In contrast,
the precondition for commitTransaction (TRANS == 1) does not have to be
propagated to the specification of m; instead it has to be established by the
postcondition of beginTransaction, because the variable TRANS is modified by
this method.

In a similar way, the postcondition for the method commitTransaction is
propagated to the postcondition of method m. This information can then be used
for the verification of yet another method, that contains a call to method m.

The propagation method not only propagates preconditions and normal and
exceptional postconditions, it also propagates assignable clauses. We have shown
that the algorithm that we use corresponds to an abstract version of the wp-
calculus (where we only consider static variables). We have exploited this cor-
respondence in the implementation, by re-using the wp-calculus infrastructure
to implement the propagation algorithm. For a more formal treatment of the
propagation algorithm, and the correspondence statement, we refer to [37].

To illustrate the effectiveness of our approach, we tested our method on
several industrial smart card applications, including the so-called Demoney case
study, developed as a research prototype by Trusted Logic”, and the PACAP case
study [9], developed by Gemplus. Both examples have been explicitly developed
as test cases for different formal techniques, illustrating the different issues in-
volved when writing smart card applications. We used the core-annotations as
presented above, and propagated these throughout the applications. For both
applications we found that they contained no nested transactions, and that they
did not contain attempts to verify pin codes within transactions. However, in
the PACAP application we found transactions containing uncaught exceptions.
All proof obligations generated w.r.t. these properties are trivial and can be dis-
charged immediately. However, to emphasise the usefulness of having a tool for
generating annotations: we encountered cases where a single transaction gave
rise to twenty-three annotations in five different classes. When writing these
annotations manually, it is all too easy to forget some.

6 Specification and Verification of Bytecode

JACK allows one to verify applications not only at source code level, but also
at bytecode level. This is in particular important to support proof carrying
code [35], where bytecode applications are shipped together with their specifi-
cation and a correctness proof. However, the possibility to verify bytecode also
has an interest on its own: sometimes security-critical applications are developed
directly at bytecode level, in order not to rely on the correctness of the compiler.
To be able to formally establish the correctness of such an application, one needs
support to verify bytecode directly.

This section describes the different parts in the bytecode subcomponent of
JACK. First, we present a specification language tailored to bytecode, and we

" See http://www.trusted-logic.com.

12

predicate ::= ...

unary-expr-not-plus-minus ::= . ..
| primary-expr [primary-suffix]. . .

primary-suffix ::= . ident | ([expression-list]) | [expression]
primary-expr ::= #natural % reference in the constant pool
| v [naturall % local variable

| bml-primary
| constant | super | true | false | this | null | (expression) | jml-primary

bml-primary ::= cntr % counter of the operand stack
| st (additive-expr) % stack expressions
| length (expression) % array length

Fig. 4. Fragment of grammar for BML predicates and specification expressions

specify how these specifications can be encoded in the class file format. Our
specification language, called BML for Bytecode Modeling Language [12], is the
bytecode cousin of JML. Second, we define and implement a compiler from JML
to BML specifications. Such a compiler is in particular useful in a proof carrying
code scenario, where the application developer can verify the application at (the
more intuitive) source code level, and then compile both the application and the
specification to bytecode level. Finally, we also define a verification condition
generator for bytecode applications annotated with BML, implementing a wp-
calculus for bytecode. This allows to generate the proof obligations for a bytecode
application to satisfy its BML specification.

6.1 A Specification Language for Bytecode: BML
BML has basically the same syntax as JML with two exceptions:

1. specifications are not written directly in the program code, they are added
as special attributes to the bytecode; and
2. the grammar for expressions only allows bytecode expressions.

Figure 4 displays the most interesting part of the grammar for BML predi-
cates, defining the syntax for primary expressions and primary suffixes®. Primary
expressions, followed by zero or more primary suffixes, are the most basic form
of expressions, formed by identifiers, bracketed expressions etc.

Since only bytecode expressions can be used, all field names, class names
etc., are replaced by references to the constant pool (a number, preceded by the
symbol #), while registers are used to refer to local variables and parameters.
The grammar also contains several bytecode specific keywords, such as cntr,
denoting the stack counter, st (e) where e is an arithmetic expression, denoting
the e!” element on the stack, and length(a), denoting the length of array a. In
addition, the specification-specific JML keywords are also available.

To show a typical BML specification, Figure 5 presents the BML version of
the JML specification of method swap in Figure 1. Notice that the field tab has

8 See http://www-sop.inria.fr/everest/BML for the full grammar.

13

requires this.#14 != null && O <= 1v[1] && 1lv[1] < length(this.#14) &&
0 <= 1v[2] && 1v[2] < length(this.#14) && true

assignable this.#14.[1v[2]],this.#14[1v[1]]

ensures this.#14[1v[1]] == \old(this).\old(#14) [\old(1v[2])] &&
this.#14[1v[2]] == \old(this).\old(#14) [\old(1v[1])]

aload_0O

getfield #14

iload_1

iaload

istore_3

aload_O

getfield #14

iload_1

12 aload_0O

13 getfield #14

16 iload_2

17 iaload

18 iastore

19 aload_O

20 getfield #14

23 iload_2

24 iload_3

25 iastore

26 return

= 00 N O O = O

Fig. 5. Bytecode + BML specification for method swap in class QuickSort

been assigned the number 14 in the constant pool, and that it is always explicitly
qualified with this in the specification. In the bytecode the variable this is
stored in 1v[0] (thus it can be accessed by aload_0). The method’s parameters
i and j are denoted by the expressions 1v[1] and 1v[2], respectively. Notice
further that the BML specification directly corresponds to the original JML
specification.

6.2 Encoding BML Specifications in the Class File Format

To store BML specifications together with the bytecode it specifies, we encode
them in the class file format. The Java Virtual Machine Specification [32] pre-
scribes the mandatory elements of the class file: the constant pool, the field in-
formation and the method information. User-specific information can be added
to the class file as special user-specific attributes ([32, §4.7.1]). We store BML
specifications in such user-specific attributes, in a compiler-independent format.
The use of special attributes ensures that the presence of BML annotations does
not have an impact on the application’s performance, i.e., it will not slow down
loading or normal execution of the application.
For each class, we add the following information to the class file:

14

Ghost_Field_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 fields_count;
{u2 access_flags;
u2 name_index;
u2 descriptor_index;
} fields[fields_count]; }

Fig. 6. Format of attribute for ghost field declarations

— asecond constant pool which contains constant references for the BML spec-
ification expressions;

— an attribute with the ghost fields used in the specification;

— an attribute with the model fields used in the specification;

— an attribute with the class invariants (both static and object); and

— an attribute with the constraints (both static and object).

Apart from the second constant pool, all extra class attributes basically consist
of the name of the attribute, the number of elements it contains, and a list with
the actual elements. As an example, Figure 6 presents the format of the ghost
field attribute. This should be understood as follows: the name of the attribute is
given as an index into the (second) constant pool. This constant pool entry will
be representing a string "Ghost_Field". Next we have the length of the attribute
and the number of fields stored in the attribute. The fields table stores all ghost
fields. For each field we store its access flag (e.g., public or private), and its
name and descriptor index, both referring to the constant pool. The first must
be a string, representing the (unqualified) name of the variable, the latter is a
field descriptor, containing e.g., type information. The tags u2 and u4 specifies
the size of the attribute, 2 and 4 bytes, respectively. The format of the other
attributes is specified in a similar way (see [36] for more details).

6.3 Compiling JML Specifications into BML Specifications

We have implemented a compiler from JML specifications into BML specifica-
tions — stored in the class file. The JML specification is compiled separately
from the Java source code. In fact, the compiler takes as input an annotated
Java source file and the class file produced by a non-optimising compiler with
the debug flag set.

From the debug information, we use in particular the Line_. Number_Table
and the Local_Variable_Table attributes. The Line Number_Table links
line numbers in the source code with the bytecode instructions, while the Lo-
cal_Variable_Table describes the local variables that appear in a method.

JML specifications are compiled into BML specifications in several steps:

1. compilation of ghost and model field declarations;

15

2. linking and resolving of source data structures to bytecode structures;

3. locating instructions for annotation statements; this information is added as
a special index entry in the attribute (a heuristic algorithm is used to find
the entry point of a loop, for more details see [36]);

4. compilation of JML predicates, taking into account that not all source code
level primitive types are directly supported at bytecode level; and

5. generation of user-specific class attributes.

6.4 Verification of Bytecode

To generate proof obligations, we have implemented a wp-calculus for bytecode
in JACK. Just as the source code level wp-calculus, it works directly on the byte-
code; the program is not transformed into a guarded command format. Again,
this has the advantage that we can easily trace proof obligations back to the
relevant bytecode and BML fragment.

The JACK implementation supports all Java bytecode sequential instruc-
tions, except for floating point arithmetic instructions and 64 bit data (long
and double). Thus in particular, it handles exceptions, object creation, refer-
ences and subroutines. The calculus is defined over the method’s control flow
graph.

The verification condition generator proceeds as follows. For each method
proof obligations are generated for each execution path by applying the weakest
predicate transformer to every instruction where the method might end (i.e.,
return or athrow instructions), and at each loop exit point. The wp-calculus
then follows control flow backwards, until it reaches the entry point instruction.

The weakest precondition transformer takes three arguments: the instruction
for which we calculate the precondition, the instruction’s normal postcondition
1) and the instruction’s exceptional postcondition ¢®*¢. For the full wp-calculus
for BML-annotated bytecode, and its soundness proof we refer to [36]. Here we
show as an example the wp-rule for the instruction load;.

wp(load;, ¥, ¥ *¢) = ¢[cntr « cntr + 1][st (cntr +1) « 1v[i]]

Since the load; instruction will always terminate normally, only the normal
postcondition is involved, after updating it to reflect the changes that are made
to the stack, i.e., the value that was stored in the local variable register 1v[i] is
now at the top of the stack (at position st(cntr + 1)), and the stack counter
is increased.

Finally we would like to remark that there is a close correspondence between
the proof obligations generated by JACK at source code level, and the proof
obligations that are generated once the application and the specification are
compiled at bytecode level (provided that the application is compiled with a
non-optimising compiler): modulo names and the handling of shorts, bytes and
boolean values, the proof obligations are equivalent. This means that proofs
for proof obligations at source code level can be re-used for proof obligations
at bytecode level (see also [6] for a compilation of source code level proofs to

16

bytecode level proofs). This is in particular important for the proof carrying code
scenario [35], where the code producer develops a proof at source code level, and
then ships bytecode level application and specification. Modulo the necessary
re-namings, the proofs can be shipped directly, and the code client can verify
these using a verification condition generator at bytecode level.

7 Support for Interactive Verification

When verifying complex functional behaviour specifications, automatic provers
often fail to solve the proof obligations. In that case, the user can instead try
to solve the proof obligation interactively (or, in case the proof obligations is
unprovable, analyse it thoroughly to find the source of the error). JACK provides
support for interactive verification using the Coq proof assistant [19].

This section first discusses the special features of JACK’s Coq plug-in to
support interactive verification, and the special Coq editor integrated in Eclipse,
then it presents JACK’s specific annotation keyword for interactive verification:
the native keyword.

7.1 The Coq Plug-In

Proof readability and proof re-usability is crucial in interactive verification, in
contrast to automatic verification where proof obligations are simply sent to
the automatic prover and it is of no importance whether the proof obligation
is human-readable or not. Therefore we developed a set of facilities for pretty
printing proof obligations, to reuse the proofs — in particular to allow replaying
the proofs when the specifications have changed — and for proof construction.

JACK uses short variable names in proof obligations as much as possible, but
in case of ambiguity long variable names are used. Basically, JACK generates
all variable names for all proof obligations of one file in one go. However, for
interactive verification the variables only have to be considered within the scope
of a single proof obligation, thus short variable names can be used more often.
Therefore, the Coq plug-in re-disambiguates per proof obligation. This results
in better proof readability as the variable names are shorter. The main pretty
printing is done directly through Coq’s own pretty printing features.

Special attention has also been given when storing the proof obligations to
a file. First, the file has a human-readable name, so the user can easily retrieve
the proof obligation as well as its proof script. If the lemma is regenerated or
reopened, he can step through the proof (and adapt it if necessary), and it does
not have to be rewritten from scratch. The different kinds of hypotheses are
separated from each other and are given different names. This is in particular
important when a proof obligation has been modified (and is considered un-
proved) by a change to the specification: if the proof did not involve any of the
modified hypotheses, it remains valid. This facilitates greatly the reuse of proofs.

One of the key points in interactive verification is the level of difficulty to
manipulate the proof assistant in order to construct a proof. To help the user

17

build proof scripts that are both intuitive to read and to make, we have used
the tactic mechanism of Coq [21]. As JACK originally generates proof obliga-
tions for automatic verification, numerous hypotheses are added to help the
automatic theorem prover. For interactive verification these hypotheses are of-
ten useless (and annoying). Therefore we have developed tactics to clean up the
proof obligations. There are also tactics” to solve common proof patterns gener-
ated by JACK: (i) to solve arithmetic goals, (4) to solve proofs by contradiction,
(i) to solve array-specific proof obligations, and (iv) to solve proof obligations
related to assignments. Finally, the Coq plug-in also allows automatic resolution
of proof obligations using generic proof scripts, and application-specific tactics
can be defined to be used both for interactive verification and with automatic
resolution.

7.2 JACK with Coq in Eclipse

An important feature of JACK is that all development can be done inside Eclipse.
Therefore, the Coq plug-in contains an editor for Coq, called CoqEditor. CoqEd-
itor provides a way to interact directly with Coq through Eclipse’s Java envi-
ronment, so the user can process and edit Coq files (containing proof scripts or
user-defined tactics). CoqEditor resembles the Isabelle plug-in in Proof General
Eclipse [40], but uses a more light-weight approach. It has keyboard shortcuts
similar to Coqlde (the current Coq graphical interface, written in OCaml!?). Of
course, it provides syntax highlighting and one can interactively process a Coq
file. In addition, CogEditor has an outline view, that summarises the structure
of the currently edited Coq file in a tree-like representation (this is especially
useful to see the modules hierarchy), and an incremental indexing feature, that
allows the user to jump directly from a keyword to its definition.

7.3 Native specifications

When specifying complex applications, often one needs advanced data struc-
tures. It is a major challenge how to specify these in a way that is suitable for
verification (see Challenge 1 in [30]). A possible way to do this in JML is by
using so-called model classes, but this makes verification awkward, because all
operations on these data structures have to be specified by pre-post-condition
specifications. A more convenient approach is to use constructs that are specific
to the logic of the prover in which the proofs will be developed. This is exactly
the functionality provided by the native construct [16], i.e., it relates declara-
tions in the JML specification directly to the logic of the underlying prover. We
have implemented the native construct for Coq, but the same principle can be
used to support any other prover.

9 See http://www-sop.inria.fr/everest/soft/Jack/doc/plug-in/coq/Prelude/

for a full description of the different tactics.
10" Available via the Coq distribution (http://coq.inria.fr).

18

In JML we define:

/*@ public native class IntList {
public native IntList append (IntList 1);
public native static IntList create();

public native static IntList tolist (int [] tab);
} ex/

And in Coq:

Definition IntList := list t_int.
Definition IntList_create: IntList := nil.
Definition IntList_append: list t_int -> list t_int -> list t_int := app.

Fig. 7. The definition of the native type IntList
//@ ghost IntList list;

/%@ requires (tab!=null) && list.equals(IntList.toList(tab))
assignable tab[0 .. (tab.length -1)], list;
ensures list.equals(IntList.toList(tab)) &&
list.isSorted() && list.isInjection(\old(list));
Qx/
public void sort() {if(tab.length > 0) sort(0, tab.length -1);}

Fig. 8. Specification of method sort with native construct

The native construct can be used for types and methods. A native method
is a specification-only method that has no body and no (JML) specification. It
must terminate normally and cannot have any side-effects. A native type is a
type to use with specification methods (native methods as well as JML’s model
methods). Both are related to constructs defined in the proof obligation’s target
language: native types are bound to types and native methods to function
definitions. When generating the proof obligations, the native constructs are
treated as uninterpreted function symbols. The user then specifies in a Coq file
how the function symbols are bound to constructs in Coq.

For example, Figure 7 defines a native type IntList and binds it to the type
of list of integers in Coq. This allows to use Coq’s list library in the proofs.
Using the native type declaration, the specification of the sort method (from
Figure 1 on page 5) can be rewritten as in Figure 8. Notice that this results in
more readable and natural annotations, because instead of relying on arrays, we
can write it directly in the proof obligation’s target language syntax. The use of
the native construct also allows the user to define more easily auxiliary lemmas
that can be used to prove the proof obligations and to add automation to proof
scripts.

19

8 Conclusions

This paper describes the main characteristics of JACK, the Java Applet Cor-
rectness Kit, a tool set for the validation of security and functional behaviour
properties for Java applications. We have focused in particular on the features
that distinguish JACK from other similar tools:

— the integration into a standard IDE;

— a user interface that helps to understand the proof obligations;

— the implementation of an algorithm to generate “obvious” annotations;

— the implementation of an algorithm to encode high-level security properties
with JML annotations;

— support for the verification of both source code and bytecode; and

— support for interactive verification, both practical (development of user in-
terface and tactics) and theoretical (native construct to link annotations
with the logic of the underlying theorem prover).

The JACK tool has been used for several small to medium-scale case stud-
ies. First of all, we have shown how BML annotations can be used to guarantee
resource policies related to memory consumption of bytecode applications [5].
In addition, we have also shown how the verification of exception-freeness at
bytecode level can be used to reduce the footprint of Java-to-native compilation
schemes. Executable code typically contains run-time checks to decide whether
an exception should be thrown. But if it can be proven statically that the excep-
tion never will be thrown, there is no need for the executable code to contain
the run-time checks [20].

Development and maintenance of a verification tool for a realistic program-
ming language is a major effort. During the last decade several such tools have
been developed (see the related work section below). This has resulted in a dras-
tic improvement of the technologies available to verify applications. However, we
believe that now the moment has come to combine the different technologies,
and to bundle this into one powerful verification tool. Development of such a tool
is one of the goals of the IST Mobius project. It is foreseen that all technology
developed around JACK that distinguish it from other verification tools will be
integrated in this single verification tool.

Related work Several other tools exist aiming at the static verification of JML-
annotated Java code, but JACK distinguishes itself from these tools by the
features described in this paper. We briefly describe the most relevant other
tools. ESC/Java [17] is probably the most used tool. It also aims at a high level
of automation, but makes an explicit trade-off between soundness, completeness
and automation. The Jive tool [34] uses a Hoare-logic for program verification,
requiring much more user interaction. The Key tool [7] uses a dynamic logic
approach, where program verification resembles program simulation. The LOOP
tool [8] translates both the program and the annotations into specifications in the
logic of the PVS theorem prover. Both a Hoare logic and a weakest precondition

20

calculus have been proven sound in PVS, and can be used to verify whether the
program respects its specification.

Krakatoa [33] translates JML-annotated programs into an intermediate for-
mat, for which the Why tool generates proof obligations. Krakatoa allows the
user to specify algebraic specifications as part of the annotations, and use these
in the verification. This resembles the native construct, however, the native
construct directly allows one to use the full expressiveness of the logic of the un-
derlying prover, and to directly reuse any (library) results already proven about
the data types. Moreover, the use of the native construct allows one to keep on
using a Java-like syntax in the annotations.

The Spec#/Boogie project [3] aims at the specification and verification of
annotated C# programs. As JACK, the tool also provides support for verifi-
cation at source code and bytecode level. However, they do not compile source
code specifications into bytecode specifications, that can be shipped with the ap-
plication. Further, the project mainly aims at automatic verification, and does
not provide support for annotation generation.

There are several projects that aim at annotating bytecode: JVer is a tool
to verify annotated bytecode [15], but they do not have a special bytecode spec-
ification language. The Extended Virtual Platform project aims at developing
a framework that allows to compile JML annotations, to allow run-time check-
ing [2], but they do not allow to write specifications directly at bytecode level.

Most approaches to ensuring high-level security properties are based on run-
time monitoring, see e.g., [4, 38, 24, 18]. However, run-time monitoring is not an
option for trusted personal devices: for the user it would be unacceptable to be
blocked in the middle of an application, because of a security violation.

References

1. J.-R. Abrial. The B Book, Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. S. Alagi¢ and M. Royer. Next generation of virtual platforms. Article in odbms. org,
October 2005. http://odbms.org/about_contributors_alagic.html.

3. M. Barnett, K.R.M. Leino, and W. Schulte. The Spec# programming system: An
overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean,
editors, Proceedings, Construction and Analysis of Safe, Secure and Interoperable
Smart devices (CASSIS’04) Workshop, volume 3362 of Lecture Notes in Computer
Science, pages 151-171. Springer-Verlag, 2005.

4. D. Bartetzko, C. Fischer, M. Méller, and H. Wehrheim. Jass — Java with Assertions.
In K. Havelund and G. Rosu, editors, ENTCS, volume 55(2). Elsevier Publishing,
2001.

5. G. Barthe, M. Pavlova, and G. Schneider. Precise analysis of memory consumption
using program logics. In Software Engineering and Formal Methods, pages 86—95.
IEEE Press, 2005.

6. G. Barthe, T. Rezk, and A. Saabas. Proof obligations preserving compilation.
In R. Gorrieri, F. Martinelli, P. Ryan, and S. Schneider, editors, Proceedings of
FAST’05, volume 3866 of LNCS, pages 112-126. Springer, 2005.

21

7.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

B. Beckert, R. Hahnle, and P.H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach. Number 4334 in LNCS. Springer, 2007.

J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. In T. Mar-
garia and W. Yi, editors, Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2001), number 2031 in LNCS, pages 299-312. Springer, 2001.
P. Bieber, J. Cazin, P. Girard, J.-L. Lanet, V. Wiels, and G. Zanon. Checking secure
interactions of smart card applets. Journal of Computer Security, 10(4):369-398,
2002.

C. Breunesse, N. Catano, M. Huisman, and B. Jacobs. Formal methods for smart
cards: an experience report. Science of Computer Programming, 55(1-3):53-80,
2005.

L. Burdy, Y. Cheon, D. Cok, M. Ernst, J.R. Kiniry, G.T. Leavens, K.R.M. Leino,
and E. Poll. An overview of JML tools and applications. In T. Arts and W. Fokkink,
editors, Workshop on Formal Methods for Industrial Critical Systems, volume 80 of
Electronic Notes in Theoretical Computer Science, pages 73-89. Elsevier Science,
Inc., 2003. Preprint University of Nijmegen (TR NIII-R0309).

L. Burdy, M. Huisman, and M. Pavlova. Preliminary design of BML: A behavioral
interface specification language for Java bytecode. In Fundamental Approaches to
Software Engineering (FASE 2007), volume 4422 of Lecture Notes in Computer
Science, pages 215-229. Springer-Verlag, 2007.

L. Burdy and M. Pavlova. Java bytecode specification and verification. In Sympo-
sium on Applied Computing, pages 1835-1839. Association of Computing Machin-
ery Press, 2006.

L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: A developer-oriented
approach. In D. Mandrioli K. Araki, S. Gnesi, editor, Formal Methods Furope, vol-
ume 2805 of Lecture Notes in Computer Science, pages 422-439. Springer-Verlag,
2003.

A. Chander, D. Espinosa, N. Islam, P. Lee, and G. Necula. JVer: A Java Verifier.
In Conference on Computer Aided Verification (CAV’05), 2005.

J. Charles. Adding native specifications to JML. In Workshop on Formal Tech-
niques for Java Programs, 2006.

D. Cok and J.R. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In G. Barthe,
L. Burdy, M. Huisman, J.-L.. Lanet, and T. Muntean, editors, Proceedings, Con-
struction and Analysis of Safe, Secure and Interoperable Smart devices (CAS-
SIS’04) Workshop, volume 3362 of Lecture Notes in Computer Science, pages 108—
128. Springer-Verlag, 2005.

T. Colcombet and P. Fradet. Enforcing trace properties by program transforma-
tion. In Principles of Programming Languages, POPL’00, pages 54—66. ACM Press,
2000.

Coq development team. The Coq proof assistant reference manual V8.0. Technical
Report 255, INRIA, France, mars 2004. http://coq.inria.fr/doc/main.html.
A. Courbot, M. Pavlova, G. Grimaud, and J.J. Vandewalle. A low-footprint
Java-to-native compilation scheme using formal methods. In J. Domingo-Ferrer,
J. Posegga, and D. Schreckling, editors, proceedings of CARDIS, volume 3928 of
Lecture Notes in Computer Science, pages 329-344. Springer, 2006.

D. Delahaye. A tactic language for the system Coq. In LPAR, pages 85—95, 2000.
D. Detlefs, G. Nelson, and J.B. Saxe. Simplify: a theorem prover for program
checking. Journal of the Association of Computing Machinery, 52(3):365-473,
2005.

E.W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18(8):453-457, 1975.

22

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy En-
forcement. PhD thesis, Department of Computer Science, Cornell University, 2003.
Available as Technical Report 2003-1916.

M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin. Dynamically discovering
likely program invariants to support program evolution. IEEE Transactions on
Software Engineering, 27(2):1-25, 2001.

C. Flanagan and K.R.M. Leino. Houdini, an annotation assistant for ESC/Java. In
J.N. Oliveira and P. Zave, editors, Formal Methods Europe 2001 (FME’01): Formal
Methods for Increasing Software Productivity, number 2021 in LNCS, pages 500—
517. Springer, 2001.

C. Flanagan and J.B. Saxe. Avoiding exponential explosion: Generating compact
verification conditions. In Principles of Programming Languages, pages 193—-205,
New York, NY, USA, 2001. Association of Computing Machinery Press.

B. Jacobs. Weakest precondition reasoning for Java programs with JML annota-
tions. Journal of Logic and Algebraic Programming, 58:61-88, 2004.

G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. ACM SIGSOFT Software Engineering
Notes, 31:1-38, 2006.

G.T. Leavens, K.R.M. Leino, and P. Miiller. Specification and verification chal-
lenges for sequential object-oriented programs. Formal Aspects of Computing, 2007.
To appear.

G.T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, and J. Kiniry. JML
Reference Manual, July 2005. In Progress. Department of Computer Science, lowa
State University. Available from http://www.jmlspecs.org.

T. Lindholm and F. Yellin. The Java™ Virtual Machine Specification. Second
Edition. Sun Microsystems, Inc., 1999. http://java.sun.com/docs/books/vmspec/.
C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certification
of Java/JavaCard programs annotated with JML annotations. Journal of Logic
and Algebraic Programming, 58:89-106, 2004.

J. Meyer and A. Poetzsch-Heffter. An architecture of interactive program provers.
In S. Graf and M. Schwartzbach, editors, Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2000), number 1785 in LNCS, pages 63-77.
Springer, 2000.

G.C. Necula. Proof-carrying code. In Principles of Programming Languages, pages
106-119, New York, NY, USA, 1997. Association of Computing Machinery Press.
M. Pavlova. Specification and verification of Java bytecode. PhD thesis, Université
de Nice Sophia-Antipolis, 2007.

M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and J.-L. Lanet. Enforcing high-
level security properties for applets. In P. Paradinas and J.-J. Quisquater, editors,
CARDIS 2004. Kluwer Academic Publishing, 2004.

F.B. Schneider. Enforceable security policies. Technical Report TR99-1759, Cornell
University, October 1999.

The Coq Development Team. The Coq Proof Assistant Reference Manual — Version
V8.1, July 2006. http://coq.inria.fr.

D. Winterstein, D. Aspinall, and C. Liith. Proof General/Eclipse: A generic in-
terface for interactive proof. In International Workshop on User Interfaces for
Theorem Provers 2005 (UITP’05), 2005.

23

