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Abstract

This paper discusses the new Java Memory Model (JMM), introduced for Java 1.5. The JMM specifies
the allowed executions of multithreaded Java programs. The new JMM fixes some security problems of the
previous memory model. In addition, it gives compiler builders the possibility to apply a wide range of
singlethreaded compiler optimisations (something that was nearly impossible for the old memory model).
For program developers, the JMM provides the following guarantee: if a program does not contain any data
races, its allowed behaviours can be described with an interleaving semantics.
This paper motivates the definition of the JMM. It shows in particular the consequences of the wish to
have the data race freeness guarantee and to forbid any out of thin air values to occur in an execution.
The remainder of the paper then discusses a formalisation of the JMM in Coq. This formalisation has
been used to prove the data race freeness guarantee. Given the complexity of the JMM definition, having
a formalisation is necessary to investigate all aspects of the JMM.
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1 Introduction

With the emergence of multiprocessor architectures, shared memory has shown to
be a simple and comfortable communication model for parallel programming that
is both intuitive for programmers, and close to the underlying machine model.
However, the use of shared memory requires synchronisation mechanisms to keep
the memory of the overall system up-to-date and coherent. Such synchronisation
mechanisms have a big impact on performance; to avoid these, several relaxations of
the consistency (or coherence) of the memory system have been proposed [2,15,13].
However, these relaxations might cause the program to have unexpected behaviours
(from the programmer’s point of view). In general, the more relaxed the memory
system, the harder it is to reason about the programs executing on it.
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A memory model defines all the possible outcomes of a multithreaded program
running on a shared memory architecture that implements it. In essence, it is a
specification of the possible values that read accesses on the memory are allowed to
return 4 , and thus specifies the multithreaded semantics of the platform.

Java is one of the few major programming languages with a precisely defined
memory model [19]. Java’s initial memory model allowed behaviours with security
leaks [21], and in addition, it prevented almost all singlethreaded compiler optimi-
sations. Therefore, since Java 1.5, a new memory model has been introduced, that
fixes these defects. The Java Memory Model (JMM) has been designed with two
goals in mind: (i) as many compiler optimisations as possible should be allowed,
and (ii) the average programmer should not have to understand all the intricacies of
the model. To achieve the second goal, the JMM provides the following Data Race
Freeness (DRF) guarantee: if a program does not contain data races, its allowed
behaviours can be described by an interleaving semantics.

To capture basic ordering and visibility requirements on memory operations,
the JMM is based on the happens before order [16]. This order inspires the so-
called happens before model, identifying the actions that necessarily have to happen
before any other actions. In other words, this order specifies the updates on the
memory that any read must see. Only executions that do not violate this order
are allowed. As the guarantees that this model provides are very weak, it allows
many singlethreaded compiler optimisations. However, the happens before model
allows executions in which values are produced out of thin air 5 , by using circular
justifications of actions, as will be discussed in Section 2. To avoid such circular
justifications, and to guarantee DRF, the current version of the JMM is much more
complex than the happens before model.

Ample literature about the JMM and related models exists [19,18,22,6], but
most descriptions are very dense. In particular, the motivation of the justification
procedure that defines legal executions is not extensively explained, i.e., it is unclear
why it is defined as it is. This paper tries to overcome this problem by presenting
our understanding of the JMM.

In addition, it also presents a formalisation of the JMM in Coq [9]. Our formal-
isation proves that the DRF guarantee holds for the JMM (a hand-written proof
for this is given in [19], which contains some (minor) mistakes). As future work we
plan to make a link with the Bicolano formalisation of the Java Virtual Machine
(JVM) [20]. This motivates the use of Coq. We also plan to investigate other
properties of the JMM formally, in particular the out-of-thin-air (OoTA) guarantee
(however, this requires first to state formally what it means to avoid OoTA values).

The rest of this paper is organised is follows. Section 2 explains and motivates
the definition of the JMM. Next, Section 3 describes our formalisation. Finally
Section 4 describes how we plan to use our JMM formalisation further.

4 We will in general—in conformance with memory model terminology—simply talk about “the write that
a read sees”, instead of “the write that writes the value in the memory returned by the read”, as in general
we do not care about the value, but only about the write action itself.
5 A value that cannot be deduced from the program.
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2 The Java Memory Model

The JMM, as previously mentioned, has two main goals. The first goal is: to allow
as many compiler optimisations as possible. This is limited by the second goal: to
make the task of multithreaded programming easier for the programmer. It is a
well known fact that multithreaded programming is a hard task, and weak memory
models further complicate this, in the sense that they add non-determinism to pro-
grams (caused by unexpected interleaving of actions). To achieve programmability,
the approach of the JMM is that of data race free memory models [3,10,11]; i.e.,
the DRF guarantee, which reads:

Data Race Freeness: Correctly synchronised programs have sequentially consis-
tent semantics.

The notion of sequential consistency was first defined by Lamport [17]:

“... the result of any execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its program.”

This definition has several consequences. First, the sequence of operations de-
termines that there exists a total order which is consistent with the program order
(the order dictated by the sequence of instructions in each thread), and where each
read of a memory location sees the last value written to that location. This implies
that sequential consistent executions can be described by an interleaving semantics.
Another important consequence is that the execution has to have a result as if it
was executed in a total order, but the actual order of the execution does not need
to be total. Thus, compiler optimisations and parallel execution of instructions are
allowed, provided that they can be serialised. This makes sequential consistency
a very attractive model for concurrency. While sequential consistency has a clear
semantics, it is difficult for a compiler to determine statically whether it can or
not rearrange intructions or allow parallel execution of operations preserving se-
quentially consistent semantics. Therefore, many (but not all) common compiler
optimisations for sequential code are prevented by this semantics. For that reason,
weaker semantics are proposed for programs that are not correctly synchronised
(i.e., that contain data races).

A program is said to be correctly synchronised if its sequential consistent ex-
ecutions are free of data races. A data race occurs when two or more threads
concurrently access a common memory location, where at least one of the accesses
updates the memory. Usually, the presence of data races is considered a bug in
the program. In general the result of such races cannot be predicted, thus the pro-
grammer must take care to avoid them. In addition, the architecture must provide
guarantees to rule out data races. However, notice that sometimes data races are
intended, so-called benign data races; even though programs with this kind of races
are not common.

An important distinction between weak and strong models, is that the former
distinguishes between normal memory operations and synchronisation operations,
while the second does not. The basic idea is that synchronisation operations induce
visibility and ordering restrictions on the other operations in the execution. Fur-
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thermore, synchronisation operations in Java are intended to have a sequentially
consistent semantics [19], i.e., there exists a total order of synchronisation opera-
tions, which is consistent with the program order, and where each synchronisation
operation is aware of all the previous synchronisation operations in that order. The
presence of such a total order guarantees that all processors see synchronisation
operations in the same order (which is not the case for normal memory accesses).
This order is called the synchronisation order (so). Lock and unlock operations
on monitors and read and writes of volatile variables, are Java’s main synchronisa-
tion operations. The order of actions issued by single threads is called the program
order (po). Thus, po only relates actions of the same thread, while so can relate
synchronisation actions of different threads.

The so relates synchronisation actions on different locations (either variables
or monitors). This is, in general, too restrictive to define which are the minimal
visibility conditions for actions. For example, read actions on different volatile
variables are necessarily related by so, since these are synchronisation actions and
so is total, but these need not impose restrictions among the threads involved.
Therefore a weaker order, derived from the so, is defined; namely the synchronises-
with order (sw). This is a per location restriction of the so, i.e., it only relates actions
on the same location. The intuition of sw pairs is that they impose synchronisation
of the memory between the intervening threads, in the sense that actions that
happen before a synchronised write need to be visible by any other thread that can
see that write via a volatile read that variable. The same intuition applies for unlock
and lock actions. Thus, only unlock and volatile write actions appear in the source
of a sw link while only volatile reads and unlock appear in the sink of the link.
More precisely, sw links relate every volatile write with every subsequent (w.r.t. so)
volatile read on the same variable, and every unlock with every subsequent (w.r.t.
so) lock on the same monitor.

The sw and the po orders allow us to define what constitutes a data race in the
JMM, captured by the happens before (hb) order. The hb order is formally defined
as the transitive closure of the union of the po and sw orders, i.e., it extends the
dependency of the po between different threads through sw edges. We say that
two normal actions are conflicting if they operate on the same memory location
and at least one of them is an update. An important note is that so and po must
be consistent in JMM executions (i.e., synchronisation operations performed by a
single thread must appear in so in the same order as they appear in po). This
guarantees that hb is a partial order. A more operational intuition of these orders
is that hb represents minimal visibility conditions, where sw links impose memory
synchronisations between threads, and the actions of a single thread are aware of
all previous actions (in po) by that thread. A data race in the JMM occurs when
there are two (or more) conflicting actions not related by the hb order.

Thus, we can restate the DRF guarantee as:

If every sequentially consistent execution of a program is free of data races, these
are all the executions allowed for that program.

We will now see how the hb order serves to formally define the basics of the
JMM. To start we describe a simpler model, the so-called happens before memory
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model (HBMM) [19]. This uses the hb order to define which writes a certain read
is allowed to see. In the HBMM a normal read r can see a write w on the same
variable provided that 6 : (i) ¬ (r hb→ w), and (ii) for all writes w’ on the same
(normal) variable as r, ¬ (w hb→ w’

hb→ r); in other words, a normal read can see
any write on the same variable that is not related to it by hb (thus, forming a data
race), or the write on the same variable that immediately precedes it in hb.

As mentioned before, volatile variables are meant to have a sequential consistent
semantics. Therefore, for volatile variables the HBMM demands each volatile read
to see the most recent volatile write on the same variable in the so.

Interestingly, the HBMM does not guarantee the DRF property desired for the
JMM, as shown in Figure 1 (from [1,19]). In particular, Figure 1(a) shows how
a value can be produced out of thin air (an OoTA value). The authors of the
JMM decided that such behaviours should be avoided for all programs, thus, also
programs with data races should avoid OoTA, one example of this kind of programs
is given in Figure 1(b). We do not discuss other examples that motivate the JMM
requirements 7 , but it should be clear that avoiding OoTA values is one of the
most important contributions of the JMM, and it is also the source of much of the
complexity of its formal definition.

We will focus on the example in Figure 1(a) to see how the behaviour depicted
could happen in the HBMM. First, notice that this program is correctly synchro-
nised, because in every sequentially consistent execution none of the guarded writes
is executed, therefore only the default writes are allowed to be seen by both reads.
Now we will see that through speculative reasoning a compiler could determine that
under the HBMM a behaviour producing an OoTA value is legal. Imagine that a
compiler speculates that one of the writes could happen, if afterwards can justify it
to happen it could optimise the program to make it happen always. Hence, assum-
ing that any of the writes could happen we can justify such behaviour as follows: (i)
assume first (w.l.o.g.) that the write of 42 to x in Thread 2 could happen, (ii) we
conclude that the read of x in Thread 1 could see a value of 42. (iii) This validates
the guard, and justifies the write of 42 to y in Thread 1. (iv) With a similar rea-
soning as before the read of y in Thread 2 could see that write (reading a 42) which
validates the guard in Thread 2, and justifies the first write of x to happen, closing
the circular justification cycle (we can see that (i) justifies (i) at the end). A similar
kind of reasoning is applied to Figure 1(b) (but in that example it is more clear
that the value 42 appears out of nothing for a programmer). This is the kind of
behaviour that the authors of the JMM have named OoTA reads (usually associated
to the self-justification of actions) and the actual JMM is designed as a restriction
of the HBMM that disallows this kind of circular justifications. To achieve this, the
JMM defines a special committing procedure that we explain below.

2.1 Formal Definitions

This subsection serves as a summary where we present the core definitions of the
JMM [19], and in addition we give our intuitive understanding of these definitions.

6 r
hb→ w stands for: action r is ordered before action w in the hb order.

7 The motivating examples can be found in [19]
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x == y == 0

Thread 1 Thread 2

r1 := x; r2 := y;

if (r1 != 0) if (r2 != 0)

y := 42; x := 42;

Disallowed: r1 = r2 = 42

(a) Race Free

x == y == 0

Thread 1 Thread 2

r1 := x; r2 := y;

y := r2; x := r2;

Disallowed: r1 = r2 = 42

(b) Not Race Free

Fig. 1. Out of Thin Air Examples

The building blocks of the formal definition of the JMM are actions, executions,
and a committing procedure to validate actions, which in turn validates complete
executions.
Actions Formally, a JMM action is defined as a tuple <t, k, v, u> which con-
tains; t, the thread identifier of the thread issuing the action; k the kind of the
action, which can be one of Read, Write, Volatile Read, Volatile Write, Lock,
Unlock 8 ; v the variable involved; and u a unique identifier.

Executions With the notion of actions, an execution is defined as a tuple <P, A,
po, so, W, V, sw, hb> containing: a program P; a set of actions A; the program
order po; the synchronisation order so; the write seen function, W, that for each read
action r (either normal or volatile) in A returns the write action w (also in A) seen
by that read; the value written function, V, that for each write w (either normal or
volatile) in A returns the value written v by that write; the synchronises-with order,
sw; and the happens before order, hb. Notice that sw and hb are derived from the
po and so orders.

Well-formedness of Executions The well-formedness conditions express basic
requirements for valid JMM executions, e.g., (i) reads see only writes on the same
variable, and volatile reads and writes are issued on volatile variables; (ii) po and
so are consistent orders (which guarantees that the hb order is a partial order); (iii)
the restrictions of the HBMM for normal variables as well as for volatile variables
apply; (iv) so respects mutual exclusion, i.e., there is a one at a time semantics
for locks; (v) the so order is of type less or equal to Omega 9 ; and (vi) executions
obey intrathread consistency. This last requirement means that the actions that
each thread generates should be those that the singlethreaded semantics of Java
(described in the JLS, not taking the JMM into account) would generate, provided
that each read r of a shared variable returns a value of V(W(r)). This is the only
link between the singlethreaded semantics and the JMM.

8 Other secondary actions like thread start are not here.
9 This means that there are no infinitely decreasing sequences of elements.
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Every Java execution should be well-formed and furthermore, in the commitment
procedure only well-formed executions are used to justify actions.

Causality Requirements The justification of an execution procedes by commit-
ting sets of actions, until every action of the execution is committed. To commit
an action we must find an execution that justifies it, obeying certain conditions
discussed below. Once an action is committed, it remains committed for the rest of
the justification procedure. Thus the justification of an execution is a sequence of
pairs of executions and commitment sets, satisfying certain rules. An execution is
allowed by the JMM only if such a sequence can be found.

Below we will present the causality rules as stated in [19] with an explanation of
our interpretation for each. We will use the restriction notation, both for relations
and for functions (domain restriction). Thus for a set S, a relation R, and a function
F we define:

• R|S = {(x, y)|x, y ∈ S ∧ (x, y) ∈ R} and
• F |S(x) = F (x) if x ∈ S and undefined otherwise.

Following [19], we will use Ci to denote the ith commitment set in the sequence,

and Ei = < P, Ai,
poi→ ,

soi→ ,Wi, Vi,
swi→ ,

hbi→ > to denote the ith execution. The first pair
of the justification sequence contains an empty commitment set, and any execution
where every read sees a write that happens before it. The commitment set of
the last justification must contains all the actions of the justified execution. It is
interesting to note that the last justifying executions needs not to be the same as
the execution being justified (this can be seen in rule 5, that only applies to the
previous commitment as we shall see). These requirements are captured by the
following JMM rules.

• C0 = ∅
• Ci ⊂ Ci+1

• A =
⋃

(C0, C1, C2, ...)

The main idea to prevent the behaviours depicted in Figure 1 is to disallow
circular justification of actions. The committing procedure guarantees this by dis-
allowing reads not already committed to see writes that do not happen before them.
Moreover, for a read r to be able to see a write w that is not hb related to it, w must
be committed before r, thus, it must be able to happen regardless of whether r sees
it.

After presenting the rules we show how they disallow the executions in Figure 1.
The first three rules are simple: they require all the committed actions to be

present in the justifying execution and the hb and so orders of the justifying and
justified execution to coincide on the committed actions.

1 Ci ⊆ Ai

2 hbi→ |Ci = hb→ |Ci

3 soi→ |Ci = so→ |Ci

The next rule only refers to write actions (the domain of the V function) that are
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committed; it simply says that whenever a write is committed, the value written
cannot change in future justifying executions.

4 Vi |Ci = V |Ci

For the purpose of presentation we show rule 6 first, followed by rule 5. The
main purpose of the causality requirements is to avoid the self justification of actions
as in the example of Figure 1(b). A simple way to achieve this would be to require
that all reads see only writes that happen before them, motivated by the fact that
hb contains no cycles as it is a partial order. Requiring this would preclude circular
justification of writes, but unfortunately it would also prevent any kind of data
race, which is not the intention. To allow data races in the execution the JMM
restricts them to the committed actions. For this purpose the next rule requires
all uncommitted reads to see writes that happen before them. Furthermore, reads
currently being committed must see writes that happen before them.

6 ∀r ∈ Reads(A− Ci−1) : Wi(r)
hbi→ r

The following rule refers to reads committed in the previous justification (if
there were any). It says that when a read is not yet committed, it can see a write
different from the one it sees in the justified execution. Moreover, when a read
is being committed it can read a different write, but in the following justification
step it must read the write of the justified execution. Recall from the previous rule
that reads being committed must see writes that happen before them. If rule 5
was given on the current commitment set Ci, instead of the previous one Ci−1, all
reads in the final execution should see writes that happen before them, completely
disallowing the presence of data races. To avoid this the rule is expressed over reads
committed in the previous execution (which could be involved in data races, since
they are already committed). In general, to commit data races in the JMM, the
sequence starts by committing the writes involved in the data race. Clearly, for
any read involved in a data race two writes must be committed as required by rule
7 in conjunction with rule 6; one that is not ordered by hb in the final execution
(that forms the data race), and one that happens before (required by rule 6). We
commit the read seeing the write that happens before it; and then, in the following
commitment step we make it see the write that corresponds to the justified execution
(i.e., the write involved in the data race) as required by the following rule.

5 Wi |Ci−1 = W |Ci−1

The following rule states that whenever a read is committed, both the write that
it reads in the execution being justified (E) and in the justifying execution (Ei) must
be already committed. As mentioned when explaining rule 5, when committing a
read action r, it can see a different value in the justifying execution than what it
sees in the execution justified. But, to guarantee that the write that r actually sees
does not depend on the return value of r, we must show that that write can be
committed without assuming that r saw it. Therefore, part (b) of this rule requires
the write that r finally sees to be already committed. Furthermore, part (a) requires
the write that r sees while being committed (and which happens before it, by rule
6) to be also committed. This guarantees that the read happens independently from
the write it eventually sees.
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7 (a) ∀r ∈ Reads(Ci − Ci−1) : Wi(r) ∈ Ci−1

(b) ∀r ∈ Reads(Ci − Ci−1) : W (r) ∈ Ci−1

Rules 2, 5, 6, and 7 are the most important rules to dissallow circular justifi-
cations of actions. Rule 7 forces that whenever a read is committed, the writes it
sees in the justifications and the justified execution must already be committed, and
rule 6 mandates that non-committed reads can only see writes that happen before
them. Thus, this prevents circular read-write sequences in justifying executions.
Rule 2 restricts hb links that have been committed to remain committed (and to be
coherent with the justified execution), avoiding possible circularities (since hb is a
partial order). Finally rule 5 allows read-write data races to be justified, provided
these are not circularly justified.

The next rule only constraints synchronisation actions. The basic idea for this
rule is that once synchronisation links have been used to commit actions those links
must (transitively) remain. The ssw links are defined to be the sw links present in
the transitive reduction of the hb order that are not in po. The intuition behind
these links is that they extend the hb relation across threads. Following rule 6, a
read r is allowed to see a write w that happens before it without being committed.
But if after committing some actions that depend on such a read, the sw link that
extended the hb relation among them was not required to be present in following
executions, the hb link could also disappear. Therefore the actions committed based
on this assumption would not be correct anymore. A more operational intuition is
that if an action is justified, assuming that a synchronisation of the memory was
issued between two threads, then that synchronisation should be performed 10 .

8 ∀x, y ∈ Ai, z ∈ (Ci − Ci−1) : x
sswi→ y

hbi→ z ⇒ (∀j ≥ i : x
swj→ y)

The last rule requires external actions, which are actions observable outside of
an execution, to be committed before any action that happens after them. Typi-
cal examples of external actions are printing values, or communications with other
processes. External actions are used to define the observable behaviour of execu-
tions. In turn this is used to define the allowed optimisations: optimisations are
only allowed if the observable behaviour of the program is the same.

9 ∀x, y ∈ Ai : External(x) ∧ y ∈ Ci ∧ x
hbi→ y ⇒ x ∈ Ci

Let us see now how the rules prevent the executions discussed in Figure 1.
For the first example (Figure 1(a)) in order to get both reads to see the writes of
42 in the other thread, we need to have both writes performed (i.e., committed).
Moreover, by rule 7, they have to be committed before any of the reads is allowed to
see them in a committing step. So we know that apart from the default writes to x
and y, the first actions that have to be committed are the writes of 42. In addition,
following rule 6, the reads in both threads are only allowed to see default writes
(the only writes that happen before them in the execution). Now, we argue that it
is impossible to find a justifying execution where both reads see the default writes
and any of the writes of 42 happen, as this would be a violation of the intrathread

10Note that with this description we are trying to explain the motivation of the rule as we understand it.
This does not mean that we think that the rule achieves it purpose as stated. In fact, we think that the
statement of the rule is not correct, though the intuition behind it should be as described.
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consistency requirement of well-formed executions. Therefore there is no execution
that makes it possible to commit a write of 42, and thus the result is prevented.
For the second example (in Figure 1(b)) the reasoning is quite similar. The writes
must be committed first, and there is no intra-thread consistent execution where
the reads see writes that happen before them, that allows a write of 42 to appear.
Therefore, the result is forbidden.

2.2 Some Problems of the Java Memory Model

During our study and formalisation of the JMM we and others realised that there are
several problems with its definition. This section summarises the most important
issues.

First of all, the formal definition of the model is hard to understand and to
use. This is partly due to the lack of motivation for the rules that validate the
executions, and partly to the non-constructiveness of the committing procedure
itself. The latter makes it hard to reason about the possible interactions between
the rules. The lack of motivation for the rules is reflected by the fact that there
is no formal definition of the out-of-thin-air guarantee, and no proofs are given to
show that the rules actually enforce it.

On a more concrete side, some inconsistencies have been found; we will briefly
mention some of these. First, Cenciarelli et al. [6] found a counter example to the
claim in Theorem 1 in [19], which says that every two adjacent instructions that are
independent can be reordered. In addition, Aspinall and Sevcik [4] have pointed out
that the Omega type restriction to the so order prevents executions with infinitely
many volatile instance variables, since the initialisation of all of these must come
before the first synchronisation action of any thread. Thus infinitely many actions
have to be ordered before the first synchronisation action of any thread, breaking
the Omega type restriction. As we shall see, this has an impact on our formalisation.

With respect to the OoTA property, we still find it hard to argue whether some
reads constitute an OoTA violation or not. Furthermore, Aspinall and Sevcik [4]
have shown that many of the executions required to be accepted by the JMM [8]
are not allowed. We think that the definition of OoTA needs to be clarified and
revised.

3 Formalisation

The issues exposed above indicate that there is a real need for a formalisation of
the JMM. In addition, another motivation for this formalisation emerges as a re-
quirement for the Mobius project. The Mobius project aims at developing a proof
carrying code (PCC) infrastructure for the specification and verification of mobile
Java programs. For this purpose, program logics for Java source and bytecode are
developed within the project. This bytecode logic is proven correct w.r.t. Bicolano,
a Coq formalisation of the Java bytecode operational semantics [20]. We have ex-
tended the Bicolano semantics to an interleaving semantics, called BicolanoMT,
augmented with multithreaded instructions. This semantics will be used to prove
the correctness of the Mobius program logic for correctly synchronised multithreaded
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Java programs. To motivate that is sufficient to prove soundness w.r.t. an interleav-
ing semantics we plan to prove that the BicolanoMT semantics is in a one-to-one
correspondence with the executions allowed by the JMM for correctly synchronised
programs. This motivates a formally mechanised specification of the JMM and in
particular a proof of the DRF guarantee.

As expected, some of the problems mentioned above appeared while formalising
the model and influenced our formalisation. We will present a general overview of
the model and we will explain the most important differences between our formali-
sation and the official JMM definitions [19]. For our formalisation we used the Coq
proof assistant, which will allow us to integrate our model with Bicolano.

3.1 Brief Description of the Formalisation

To be able to prove the DRF guarantee mechanically we formalised the JMM as
close as possible to its definition [19]. With this we expected to avoid problems
derived from misunderstandings or biased interpretations. We did not have to
formalise the whole JMM specification to prove the DRF guarantee. Therefore, we
limited our formalisation to the needed definitions, except for the causality rules,
that are completely formalised. However, some of them are currently not used in
any proof. The kind of actions we formalised only contain volatile and normal reads
and writes, lock and unlock actions; currently we do not include thread start, thread
termination and other actions that are not important to prove the DRF guarantee.
However, we believe that these could be easily added without changing the current
proofs, as we plan to do.

Further, we have defined programs, values, variables, thread identifiers and
unique identifiers as abstract data types, and we have axiomatised their interac-
tions (e.g., two different actions have different unique identifiers). The data types
for actions and executions are axiomatised using the Coq module system, in a way
that is very similar to their description in the JMM paper, except for little technical
details (e.g., the sw order is not part of the execution data type, since it can be
derived from the po and so orders, which are parameters of the execution).

An interesting challenge is the specification of the commitment procedure. For
this we used an abstract function that, given a program, an execution and a proof
that the execution belongs to the allowed executions for that program, returns a
list containing the sequence of pairs of commitment set and commitment execution,
that justify the execution.

The use of Coq lists to represent the commitment procedure limits it to be finite,
but in the JMM definition justifications could be infinite. This choice was made
only to simplify the first version of the proofs as we can use induction to prove facts
about finite lists. To cover the full semantics of the JMM we plan to replace current
lists for streams which allow for infinite sequences, and where the proofs given by
induction must be replaced for proofs by coinduction. We expect that this will not
have any significant impact on the current proofs. In the rest of the formalisation,
we did not assume finiteness.

The (causality) rules are axiomatised using a justifying list, as discussed above.
To give a feeling what the formalisation looks like, here is the formalisation rule 2
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of the causality requirements in [19].

Definition req2 :=
∀ E exec P j x y, In (justification E exec P) j →

eIn (comm j) x → eIn (comm j) y →
hb E x y ↔ hb (exec j) x y.

In this definition the function justification is the abstract function that
returns the list containing the pairs of commitment set and committing execu-
tion. The bound variable j stands for a committing pair, and the predicate In
(justification E exec P) j states that j is in the committing sequence of the
execution E. The functions comm and exec extract from a committing pair the cor-
responding set and execution, respectively. Thus, the rule says that if both actions
x and y are committed in j, they are related by hb identically in the justifying
execution of j and in the justified execution.

In the following we present the statement of the main theorems and the assump-
tions we needed for their proofs. For each assumption, we justify how we plan to
prove them in future versions of the formalisation.

The DRF proof sketched in [19] is separated in a lemma and the main theorem.
We have followed their reasoning as close as possible. For both proofs we assume
we have a correctly synchronised program P and an execution E of the program P.
That is stated in our Coq formalisation as follows:

Hypothesis p well synch: correctly synchronized P.
Hypothesis E exec P: Program Executions P E.

The definition of the correctly synchronized predicate states formally that
all sequentially consistent executions of the program P are free of data races. The
Program Executions predicate states that E belongs to the set of allowed executions
for P, which is axiomatically defined in the model.

The lemma (Lemma 2 in [19]) takes as hypothesis that read actions only see
writes that happen before them. This hypothesis is later proved in the theorem,
which concludes the DRF proof using the lemma. This hypothesis is stated in our
formalisation by the following definition.

Definition reads see hb (E:Exec):
∀ r act r r read, hb E (W E r act r r read) r.

To understand the definition above it is important to note that the W function
takes four parameters. The first parameter E is the execution, the second parameter
r is the read action whose write we are trying to obtain; the other two parameters
are related to our choice for modelling partial functions in Coq. Our approach was
that of “preconditions for partial functions” as in [5], where a proof must be given
showing that the argument belongs to the domain of the function to apply it. In
this particular case, the parameters act r and r read are proofs that the action r
is an action of the execution E and that r is a read action, respectively.

Now we focus on additional assumptions we had to make, as these where left
implicit in the original proofs of [19]. We expect to be able to prove each of these
assumptions we added, and we will explain how to do it in each case. Both proofs
of the lemma and the main theorem go by absurdity. Assuming that there is some
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non sequentially consistent execution of the correctly synchronised program P, a
sequentially consistent execution that contains a data race can be constructed, con-
tradicting the correct synchronisation hypothesis of P. To show a sequentially con-
sistent execution with a data race a topological sort of the hb order is used, which
is described in our formalisation as:

Definition to := top sort (hb E) (hb partial order E).

The top sort predicate is the axiomatisation of the particular sort needed. With
to in hand, the proof of the lemma proceeds by identifying the first occurrence of
an intromission of a write w between a read r and the write that it sees (W E r
act r r read) in that to order. To guarantee that such a read exists we need to
assume that to is well founded, and then the proof goes by well founded induction.
This is not proved in the JMM paper. This is in fact true if we prove that the po
is well founded and we assume that so has type Omega or less (as we said before,
default actions should be revised to do guarantee this for so). The proof of this is
not currently formalised, but it should be proved using these hypothesis. We plan
to formalise it in following versions of our model. A simpler approach could be that
of Aspinall and Sevcik [4], where they assume that the executions are finite, where
well foundedness of to is trivial (every finite order is well founded).

Hypothesis wf to: well founded to.

Finally, one problem that we encountered formalising the JMM is that the papers
proof assumes that for any sequentially consistent “prefix” of an execution, there
must exist a sequentially consistent continuation for it. This fact is not entirely
true, since new default writes of variables could be needed (or discarded) as we
take a different branch of the program. As default writes synchronise with the first
action of any thread, actions should be added at the beginning (before any thread
start action) in the to. To overcome this problem some revision on the definition
of default write actions should be proposed. There are several alternatives to fix
this problem; e.g., developing a different mechanism for initialising variables, or
a different formulation of the sequential continuation property (e.g., subsegment
starting from the first thread start action). We postponed this decision for later
revisions of the formalisation and assume it correct as currently stated in the JMM.

With this assumption we have to show that there is always a sequential consistent
continuation. To exhibit such continuation an interleaving of the instructions of
the threads from the program point where they last executed should complete a
sequential consistent continuation of the execution. The difficulty appears when
giving such continuations at the level of the JMM formalisation, where nothing is
said about instructions and programs, but only about actions. For this reason we
added that fact as a hypothesis and expect to prove it when we establish a proper
link between programs and executions for the JMM.

Hypothesis seq continuation:
Program Executions P E → first w r intromission to r w →
∃ E’, Program Executions P E’ ∧

eq exec complete upto lower r E E’ ∧
(∀ acr r’, W E’ r act r’ r read = w) ∧
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sequential consistent E’.

The intuition of the definition above is that; given an execution E and the first
occurrence of a read write race, such that the write w is the last write in to to the
same variable as the read r ordered before r in to, and such that r does not see that
write; then, there should be another execution of P, E’ where the read r sees the
last write in the to, w, and that E’ is equal to E when restricted to the actions that
come before r in to. The details of the definition are not simple, but the intuition
is; it only says that there is a sequential consistent continuation of the prefix.

We expect to be able to prove this very intuitive result, but a link between
the program instructions and the actual actions should be developed first. Several
authors [6,4,22] agree that there is no good link between the semantics of Java as
defined in the JLS [12] (disregarding the JMM itself) and the JMM (as in JSR-
133 [14]). Currently this link is given at a very high level by the requirement of
intra-thread consistency of the well-formedness requirements. Different approaches
have been taken, which include an approach towards operational semantics proposed
by Cenciarelli et al. [6], and a function that verifies the validity the semantics of each
thread, proposed by Aspinall and Sevcik [4]. We plan to make this link for correctly
synchronised programs only, using the BicolanoMT interleaving semantics.

With all hypotheses mentioned in context, the Coq formalisation of the theorems
from the JMM paper are simple.

Theorem Lemma2: ∀ E, reads see hb E → sequential consistent E.
Theorem DRF: sequential consistent E.

Summing up, to finish our formalisation, a proof that the to has order type
Omega or less should be developed; and a link between actions and instructions
should be given for correctly synchronised programs. For these proofs the initiali-
sation of actions need to be fixed. We plan to do this in a following version.

The current version of the model occupies 3000 lines in Coq, and has been of
great use to help understanding the model, as well as to identify problems in the
definitions and underspecified assumptions. It is in our plans to use the formalisation
to further explore facts about the JMM, for example the OoTA property.

4 Conclusions & Future Work

In this paper we have presented a formalisation of the Java Memory Model, using the
Coq theorem prover, and we have formally proved the DRF guarantee, as claimed
by the authors of the JMM. Because of the different requirements for the JMM
(allowing many compiler optimisations, avoiding security problems caused by out-of-
thin-air values, and easy programmability), the formal definition is fairly complex,
and needs a formalisation to reason about it. Also, as part of the formalisation
process, we have gained a good insight in the motivation of the rules that define
the validity of executions, and we have tried to convey our insights, hopefully being
more intuitive than the description of the rules as presented in [19].

In the near future, we plan to exploit the DRF guarantee, by linking the JMM
formalisation with BicolanoMT. We will define a mapping from BicolanoMT pro-
grams to the program model, as used for the JMM. Then we will prove that programs
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that are correctly synchronised in BicolanoMT semantics, are also correctly synchro-
nised according to JMM semantics. Moreover, for correctly synchronised programs,
BicolanoMT executions are in a one to one relationship with JMM executions.

We also plan to study the OoTA guarantee more precisely. The authors of the
JMM claim that it does not allow any out-of-thin-air values to be produced, but
they do not give a formal definition. We would like to give a more formal definition
for this property, and then verify whether the JMM actually respects it.

In the more long term, we also would like to study modularity of the JMM: if a
part of a program is data race free, can the behaviour of that part then described
with an interleaving semantics. This property is essential to support compositional
verification. We are also interested in studying whether there are so-called benign
data races, i.e., data races that still result in sequentially consistent executions.
Finally, we are also interested in proving formally that a compiler optimisation is
allowed by the JMM, by showing that the program transformation does not change
the set of legal executions.
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