
Certificate Translation for Optimizing Compilers?

(extended abstract)

Gilles Barthe, Benjamin Grégoire, César Kunz, and Tamara Rezk

INRIA Sophia-Antipolis, Project EVEREST,
{Gilles.Barthe,Benjamin.Gregoire,Cesar.Kunz,Tamara.Rezk}@sophia.inria.fr

Abstract. Certifying compilation provides a means to ensure that un-
trusted mobile code satisfies its functional specification. A certifying com-
piler generates code as well as a machine-checkable “certificate”, i.e. a for-
mal proof that establishes adherence of the code to specified properties.
While certificates for safety properties can be built fully automatically,
certificates for more expressive and complex properties often require the
use of interactive code verification. We propose a technique to provide
code consumers with the benefits of interactive source code verification.
Our technique, certificate translation, extends program transformations
by offering the means to turn certificates of functional correctness for
programs in high-level languages into certificates for executable code.
The article outlines the principles of certificate translation, using speci-
fications written in first order logic. This translation is instantiated for
standard compiler optimizations in the context of an intermediate RTL
Language.

1 Introduction

Program verification environments provide a means to establish that programs
meet their specifications, and are increasingly being used to validate safety-
critical or security-critical software. Most often, such environments target high-
level languages. However it is usually required to achieve correctness guarantees
for compiled programs, especially in the context of mobile code—because code
consumers may not have access to the source program or, if they do, may not
trust the compiler. Yet there is currently no mechanism for bringing the benefits
of interactive source code verification to code consumers. The objective of our
work is precisely to propose such a mechanism, called certificate translation,
which allows us to transfer evidence from source programs to compiled programs.

The starting point of our work is Proof Carrying Code (PCC) [9], which
provides a means to establish trust in a mobile code infrastructure, by requiring
that mobile code is sent along with a formal proof (a.k.a. certificate) showing its
adherence to a property agreeable by the code consumer. While PCC does not
preclude generating certificates from interactive verification of source programs,
? This work is partially funded by the IST European Project Mobius.

the prominent approach to certificate generation is certifying compilation [11],
which constructs automatically certificates for safety properties such as memory
safety or type safety. Certifying compilation is by design restricted to a specific
class of properties and programs—a deliberate choice of the authors [11] whose
primary goal was to reduce the burden of verification on the code producer side.
In contrast, certificate translation is by design very general and can be used to
enforce arbitrary properties on arbitrary programs. Of course, generality comes
at the cost of automation, so we must assume that programs have been annotated
and proved interactively.

Thus the primary goal of certificate translation is to transform certificates of
original programs into certificates of compiled programs. Given a compiler J.K,
a function J.Kspec to transform specifications, and certificate checkers (expressed
as a ternary relation “c is a certificate that P adheres to φ”, written c : P |= φ),
a certificate translator is a function J.Kcert such that for all programs p, policies
φ, and certificates c,

c : p |= φ =⇒ JcKcert : JpK |= JφKspec

The paper outlines the principles of certificate translation, and illustrates its
mechanisms in the context of an an optimizing compiler for a Register Transfer
Language (RTL). The compiler proceeds in a step by step fashion. For each
optimization step, we build an appropriate certificate translator, and combine
them to obtain a certificate translator for the complete compilation process.

Building a certificate translator for a non-optimizing compiler is relatively
simple to construct since proof obligations are preserved (up to minor differ-
ences). Dealing with optimizations is more challenging. The major difficulty
arises from the fact that certificate translators for optimizations often take as
argument, in addition to the certificate of the original program, a certificate of
the results of the analysis that justifies the optimization. In order to enable such
an aggregation, one must therefore express the results of the analysis in the logic
of the PCC architecture, and enhance the analyzer so that it produces a certifi-
cate of the analysis for each program. The overall architecture of a certificate
translator is given in Figure 1.

Contents. Sections 2 introduces our programming language RTL and our PCC
infrastructure. Section 3 provides a high-level overview of the principles and
components that underline certificate translation, whereas Section 4 describe
certificate translators for several standard optimizations (at RTL level). In sec-
tion 5 we compare our work with recent related developments. We conclude in
Section 6 with future work.

2 Setting

RTL Language. Our language RTL (Register Transfer Language) is a low-level,
side-effect free, language with conditional jumps and function calls, extended
with annotations drawn from a suitable assertion language. The choice of the

Program f

Certificate
Translator

TCB

and

Optimized

Specification of f̄

Program f̄
Program f

Analysis
Results ofSpecification of f

Results of Analysis

VC Gen

Proof
Checker

Analyzer

Analyzer
Certifying

Compiler
Optimizing

Correctness for f
Certificate of

Analysis for f
Proof of

Correctness for f̄
Certificate of

Fig. 1. Overall picture of certificate translation

assertion language does not affect our results, provided assertions are closed
under the connectives and operations that are used by the verification condition
generator.

The syntax of expressions, formulas and RTL programs (suitably extended to
accommodate certificates, see Subsection 2), is shown in Figure 2, where n ∈ N
and r ∈ R, with R an infinite set of register names. We let φ and ψ range over
assertions.

comparison / ::=< | ≤ |= | ≥ |>
expressions e ::= n | r | −e | e+ e | e ∗ e | . . .

assertions φ ::= > | e / e | ¬φ | ∀r, φ | . . .
comparisons cmp ::= r / r | r / n

operators op ::= n | r | cmp | n+ r | . . .
instr. desc. ins ::= rd := op, L | rd := f(r), L | cmp ? Lt : Lf | return r | nop, L

instructions I ::= (φ, ins) | ins
fun. decl F ::= {r; ϕ; G; ψ; λ; Λ}
program p ::= f 7→ F

Fig. 2. Syntax of RTL

A program p is defined as a function from RTL function identifiers to function
declarations. We assume that every program comes equipped with a special
function, namely main, and its declaration. A declaration F for a function f
includes its formal parameters r, a precondition ϕ, a (closed) graph code G,
a postcondition ψ, a certificate λ, and a function Λ from reachable labels to
certificates (the notion of reachable label is defined below). For clarity, we often

use in the sequel a subscript f for referring to elements in the declaration of a
function f , e.g. the graph code of a function f as Gf .

As will be defined below, the VCGen generates one proof obligation for each
program point containing an annotation and one proof obligation for the entry
point Lsp. The component λ certifies the latter proof obligation and Λ maps
every program point that contains and assertion to the proof of its related proof
obligation.

Formal parameters are a list of registers from the set R, which we suppose
to be local to f . For specification purposes, we introduce for each register r in
r a (pseudo-)register r∗, not appearing in the code of the function, and which
represents the initial value of a register declared as formal parameter. We let r∗

denote the set {r∗ ∈ R | r ∈ r}. We also introduce a (pseudo-)register res,
not appearing in the code of the function, and which represents the result or
return value of the function. The annotations ϕ and ψ provide the specification
of the function, and are subject to well-formedness constraints. The precondition
of a function f , denoted by function pre(f), is an assertion in which the only
registers to occur are the formal parameters r; in other words, the precondition
of a function can only talk about the initial values of its parameters. The post-
condition of a function f , denoted by function post(f), is an assertion1 in which
the only registers to occur are res and registers from r∗; in other words, the
postcondition of a function can only talk about its result and the initial values
of its parameters.

A graph code of a function is a partial function from labels to instructions. We
assume that every graph code includes a special label, namely Lsp, corresponding
to the starting label of the function, i.e. the first instruction to be executed when
the method is called. Given a function f and a label L in the domain of its graph
code, we will often use f [L] instead of Gf (L), i.e. application of code graph of f
to L.

Instructions are either instruction descriptors or pairs consisting of an an-
notation and an instruction descriptor. An instruction descriptor can be an as-
signment, a function call, a conditional jump or a return instruction. Operations
on registers are those of standard processors, such as movement of registers or
values into registers rd := r, and arithmetic operations between registers or be-
tween a register and a value. Furthermore, every instruction descriptor carries
explicitly its successor(s) label(s); due to this mechanism, we do not need to
include unconditional jumps, i.e. “goto” instructions, in the language. Immedi-
ate successors of a label L in the graph of a function f are denoted by the set
succf (L). We assume that the graph is closed; in particular, if L is associated
with a return instruction, succf (L) = ∅.

Verification Condition Generator. Verification condition generators (VC-
Gens) are partial functions that compute, from a partially but sufficiently an-

1 Notice that a postcondition is not exactly an assertion in the sense that it uses
register names from r∗, which must not appear in preconditions or annotations of
the program.

notated program, a fully annotated program in which all labels of the program
have an explicit precondition attached to them. Programs in the domain of the
VCGen function are called well annotated and can be characterized by an in-
ductive definition. Our definition is decidable and does not impose any specific
structure on programs.

Definition 1 (Well Annotated Program).

– A label L in a function f reaches annotated labels, if its associated instruction
contains an assertion, or if its associated instruction is a return (in that case
the annotation is the post condition), or if all its immediate successors reach
annotated labels:

f [L] = (φ, ins)⇒ L ∈ reachAnnotf

f [L] = return r ⇒ L ∈ reachAnnotf

(∀L′ ∈ succf (L), L′ ∈ reachAnnotf)⇒ L ∈ reachAnnotf

– A function f is well annotated if every reachable point from starting point
Lsp reaches annotated labels. A program p is well annotated if all its functions
are well annotated.

Given a well-annotated program, one can generate an assertion for each label,
using the assertions that were given or previously computed for its successors.
This assertion represents the precondition that an initial state before the execu-
tion of the corresponding label should satisfy for the function to terminate in a
state satisfying its postcondition.

The computation of the assertions for the labels of a function f is performed
by a function vcgf , and proceeds in a modular way, using annotations from the
function f under consideration, as well as the preconditions and postconditions
of functions called by f . The definition of vcgf (L) proceeds by cases: if L points
to an instruction that carries an assertion φ, then vcgf (L) is set to φ; otherwise,
vcgf (L) is computed by the function vcgidf . The formal definitions of vcgf and

vcgf (L) = φ if Gf (L) = (φ, ins)

vcgf (L) = vcgidf (ins) if Gf (L) = ins

vcgidf (rd := op, L) = vcgf (L){rd←〈op〉}
vcgidf (rd := g(r), L) = pre(g){rg←r}

∧(∀res. post(g){r∗g←r} ⇒ vcgf (L){rd←res})
vcgidf (cmp ? Lt : Lf) = (〈cmp〉 ⇒ vcgf (Lt)) ∧ (¬〈cmp〉 ⇒ vcgf (Lf))

vcgidf (return r) = post(f){res←r}
vcgidf (nop, L) = vcgf (f [L])

Fig. 3. Verification condition generator

vcgidf are given in Figure 3, where e{r←e′} stands for substitution of all occur-
rences of register r in expression e by e′. The definition of vcgidf is standard for

assignment and conditional jumps, where 〈op〉 and 〈cmp〉 is the obvious interpre-
tation of operators in RTL into expressions in the language of assertions. For a
function invocation, vcgidf (rd := g(r), L) is defined as a conjunction of the pre-
condition in the declaration of g where formal parameters are replaced by actual
parameters, and of the assertion ∀res. post(g){r∗g← r} ⇒ vcgf (L){rd← res}.
The second conjunct permits that information in vcgf (L) about registers differ-
ent from rd is propagated to other preconditions. In the remainder of the paper,
we shall abuse notation and write vcgidf (ins) or vcgidf (L) instead of vcgidf (ins, L′)
if f [L] = ins, L′ and neither L′ or ins are relevant to the context.

Certified Programs. Certificates provide a formal representation of proofs,
and are used to verify that the proof obligations generated by the VCGen hold.
For the purpose of certificate translation, we do not need to commit to a specific
format for certificates. Instead, we assume that certificates are closed under
specific operations on certificates, which are captured by an abstract notion of
proof algebra.

Recall that a judgment is a pair consisting of a list of assertions, called
context, and of an assertion, called goal. Then a proof algebra is given by a
set-valued function P over judgments, and by a set of operations, all implicitly
quantified in the obvious way. The operations are standard (given in Figure 4),
to the exception perhaps of the substitution operator that allows to substitute
selected instances of equals by equals, and of the operator ring, which establishes
all ring equalities that will be used to justify the optimizations.

axiom : P(Γ ;A;∆ ` A)
ring : P(Γ ` n1 = n2) if n1 = n2 is a ring equality
intro⇒ : P(Γ ;A ` B)→ P(Γ ` A⇒ B)
elim⇒ : P(Γ ` A⇒ B)→ P(Γ ` A)→ P(Γ ` B)
elim= : P(Γ ` e1 = e2)→ P(Γ ` A{r←e1})→ P(Γ ` A{r←e2})
subst : P(Γ ` A)→ P(Γ{r←e} ` A{r←e})

Fig. 4. Proof Algebra (excerpts)

As a result of working at an abstract level, we do not provide an algorithm for
checking certificates. Instead, we take P(Γ ` φ) to be the set of valid certificates
of the judgment Γ ` φ. In the sequel, we write λ : Γ ` φ to express that λ is a
valid certificate for Γ ` φ, and use proof as a synonym of valid certificate.

Definition 2 (Certified Program).

– A function f with declaration {r; ϕ; G; ψ; λ; Λ} is certified if:
• λ is a proof of ` ϕ⇒ vcgf (Lsp){r∗←r},
• Λ(L) is a proof of ` φ ⇒ vcgidf (ins) for all reachable labels L in f such

that f [L] = (φ, ins).
– A program is certified if all its functions are.

The verification condition generator is sound, in the sense that if the program
p is called with registers set to values that verify the precondition of the function
main, and p terminates normally, then the final state will verify the postcondition
of main.

3 Principles of Certificate Translation

In a classical compiler, transformations operate on unannotated programs, and
are performed in two phases: first, a data flow analysis gathers information about
the program. Then, on the basis of this information, (blocks of) instructions are
rewritten. In certificate translation, we may also rewrite assertions, and we must
also generate certificates for the optimized programs.

Certificate translation is tightly bound to the optimizations considered. Ac-
cording to different optimizations, certificate translators fall in one of the three
categories:

– PPO/IPO (Preservation/Instantiation of Proof Obligations): PPO deals with
transformations for which the annotations are not rewritten, and where the
proof obligations (for the original and transformed programs) coincide. This
category covers transformations such as non-optimizing compilation and un-
reachable code elimination. IPO deals with transformations where the anno-
tations and proof obligations for the transformed program are instances of
annotations and proof obligations for the original program, thus certificate
translation amounts to instantiating certificates. This category covers dead
register elimination and register allocation;

– SCT (Standard Certificate Translation): SCT deals with transformations for
which the annotations are not rewritten, but where the verification condi-
tions do not coincide. This category covers transformations such as loop
unrolling and in-lining;

– CTCA (Certificate Translation with Certifying Analyzers): CTCA deals with
transformations for which the annotations need to be rewritten, and for
which certificate translation relies on having certified previously the analysis
results used by the transformation. This category covers constant propa-
gation, common subexpression elimination, loop induction, and other opti-
mizations that rely on arithmetic.

For simplicity, assume for a moment that the transformation .̄ does not mod-
ify the set of reachable annotated labels. Then certificate translation may be
achieved by defining two functions:

T0 : P(` pre(f)⇒ vcgidf (Lsp))→ P(` pre(f̄)⇒ vcgid
f̄

(Lsp))
Tλ : ∀L, P(` φL ⇒ vcgidf (L))→ P(` φ̄L ⇒ vcgid

f̄
(L))

where f̄ is the optimized version of f , and φL is the original assertion at label
L, and φ̄L is the rewritten assertion at label L. Here the function T0 transforms
the proof that the function precondition implies the verification condition at

program point Lsp for f into a proof of the same fact for f̄ , and likewise, the
function Tλ transforms for each reachable annotated label L the proof that its
annotation implies the verification condition at program point L for f into a
proof of the same fact for f̄ .

In the remainder of this section, we justify the need for certifying analyzers,
and show how they can be used for specific transformations. The following ex-
ample, which will be used as a running example in the subsequent paragraphs,
illustrates the need for certifying analyzers.

Example 1. Let f be a certified function with specification: pre(f) ≡ > and
post(f) ≡ res ≥ b ∗ n, where b and n are constants. The graph code of f and its
proofs obligations are given by:

L1 : ri := 0, L2

L2 : ξ, r1 := b+ ri, L3

L3 : ri := c+ ri, L4

L4 : rj := r1 ∗ ri, L5

L5 : ϕ, (ri = n) ? L6 : L3

L6 : return rj

` > ⇒ 0 ≥ 0
` ξ ⇒ φ
` ϕ⇒ (ri = n⇒ φt ∧ ri 6= n⇒ φf)

where, ξ , 0 ≤ ri and ϕ , rj = r1 ∗ ri ∧ r1 ≥ b ∧ ri ≥ 0 and

φ , (b+ ri) ∗ (c+ ri) = (b+ ri) ∗ (c+ ri) ∧ b+ ri ≥ b ∧ c+ ri ≥ 0

φt , rj ≥ b ∗ n
φf , r1 ∗ (c+ ri) = r1 ∗ (c+ ri) ∧ r1 ≥ b ∧ c+ ri ≥ 0

Suppose that constant propagation is applied to the original program, substi-
tuting an occurrence of r1 with b and b + ri with b, as shown in program (a)
in Figure 5. If we do not rewrite assertions, that is we let ξcp = ξ and ϕcp = ϕ
then the third proof obligation is ` ϕ ⇒ (ri = n ⇒ φt ∧ ri 6= n ⇒ φ′f), where
φ′f , b ∗ (c+ ri) = r1 ∗ (c+ ri)∧ r1 ≥ b∧ c+ ri ≥ 0 cannot be proved since there
is no information about the relation between r1 and b. A fortiori the certificate
of the original program cannot be used to obtain a certificate for the optimized
program.

Motivated by the example above, optimized programs are defined augmenting
annotations by using the results of the analysis expressed as an assertion, and
denoted RESA(L) below.

Definition 3. The optimized graph code of a function f is defined as follows:

Gf̄ (L) =
{

(φ ∧ RESA(L), JinsK) if Gf (L) = (φ, ins)
JinsK if Gf (L) = ins

where JinsK is the optimized version of instruction ins. In the sequel, we write φ̄L

for φL ∧ RESA(L).

In addition, we define the precondition and postcondition of f̄ to be those of f .
Then one can encode elementary reasoning with the rules of the proof algebra
to obtain a valid certificate for the optimized function f from a function

T ins
L : ∀L, P(` vcgidf (L)⇒ RESA(L)⇒ vcgid

f
(L))

and a certified program

fA = {rf ; >; GA; >; λA; ΛA}

where GA is a new version of Gf annotated with the results of the analysis, i.e.
Gf such that GA(L) = (RESA(L), ins) for all label L in f .

Thus, certificate translation is reduced to two tasks: defining the function
T ins

L , and producing the certified function fA. The definition of T ins
L depends

upon the program optimization. In the next paragraph we show that T ins
L can

be built for many common program optimizations, using the induction principle
attached to the definition of reachAnnotf . As to the second task, it is delegated
to a procedure, called certifying analyzer, that produces for each function f the
certified function fA. There are two approaches for building certifying analyzers:
one can either perform the analysis and build the certificate simultaneously, or
use a standard analysis and use a decision procedure to generate the certificate
post-analysis. The merits of both approaches will be reported elsewhere; here we
have followed the second approach.

As shown in Figure 1, certifying analyzers do not form part of the Trusted
Computing Base. In particular, no security threat is caused by applying an
erroneous analyzer, or by verifying a program whose assertions are too weak
(e.g. taking RESA(L5) = > in the above example) or too strong (by adding
unprovable assertions), or erroneous. In these cases, it will either be impossible
to generate the certificate of the analysis, or of the optimized program.

(a) Constant propagation
L1 : ri := 0, L2

L2 : ξcp, r1 := b, L3

L3 : ri := c+ ri, L4

L4 : rj := b ∗ ri, L5

L5 : ϕcp, (ri = n) ? L6 : L3

L6 : return rj

(b) Loop induction
L1 : ri := 0, L2

L2 : ξli, r1 := b, L3

L3 : r′j := b ∗ ri, L
′
3

L′3 : ri := c+ ri, L
′′
3

L′′3 : r′j := m+ r′j , L4

L4 : rj := r′j , L5

L5 : ϕli, (ri = n) ? L6 : L′3
L6 : return rj

(c) Dead register
L1 : ri := 0, L2

L2 : ξdr, set r̂1 := b, L3

L3 : r′j := b ∗ ri, L
′
3

L′3 : ri := c+ ri, L
′′
3

L′′3 : r′j := m+ r′j , L4

L4 : set r̂j := r′j , L5

L5 : ϕdr, (ri = n) ? L6 : L′3
L6 : return r′j

Fig. 5. Example of different optimizations

4 Instances of Certificate Translation

This section provides instances of certificate translations for common RTL opti-
mizations. The order of optimizations is chosen for the clarity of exposition and
does not necessarily reflect the order in which the optimizations are performed
by a compiler. Due to space constraints, we only describe certificate translators
for constant propagation, loop induction, and dead register elimination. Other

transformations (common subexpression elimination, inlining, register alloca-
tion, loop unrolling, unreachable code elimination) will be described in the full
version of the article.

4.1 Constant Propagation

Goal. Constant propagation aims at minimizing run-time evaluation of expres-
sions and access to registers with constant values.

Description. Constant propagation relies on a data flow analysis that returns
a function A : PP × R → Z⊥ (PP denoting the set of program points) such
that A(L, r) = n if r holds value n every time execution reaches label L. The
optimization consists in replacing instructions by an equivalent one that exploits
the information provided by A. For example, if r1 is known to hold n1 at label
L, and the instruction is r := r1 + r2, then the instruction is rewritten into
r := n1 + r2. Likewise, conditionals which can be evaluated are replaced with
nop instructions.

Certifying Analyzer. We have implemented a certifying analyzer for constant
propagation as an extension of the standard data flow algorithm. First, we attach
to each reachable label L the assertion EQA(L) (since the result of the analysis
is a conjunction of equations, we now write EQA(L) instead of RESA(L)):

EQA(L) ≡
∧

r∈{r|A(L,r) 6=⊥}

r = A(L, r)

To derive a certificate for the analysis we have to prove that, for each reachable
label L,

` EQA(L)⇒ vcgidfA
(L)

After performing all ⇒-eliminations (i.e. moving hypotheses to the context),
and rewriting all equalities from the context in the goal, one is left to prove
closed equalities of the form n = n′ (i.e. n, n′ are numbers and not arithmetic
expressions with variables). If the assertions are correct, then the certificate is
obtained by applying reflexivity of equality (an instance of the ring rule). If the
assertions are not correct, the program cannot be certified.

Certificate Translation. The function T ins
L is defined by case analysis, using the

fact that the transformation of operations is correct relative to the results of the
analysis:

Top : ∀L, ∀op,P(` EQA(L)⇒ 〈op〉 = 〈JopKopL 〉)

The expression 〈JopKopL 〉 represents the substitution of variables by constants in
op. The function Top is built using the ring axiom of the proof algebra; a similar
result is required for comparisons and branching instructions.

Example 2. Recall function f , defined in Example 1. Using the compiler and
transforming the assertions as explained before, we obtain the optimized program
shown in Figure 5 (a), where assertions at L1 and L3 have been transformed into
ξcp , ξ ∧ ri = 0 and ϕcp , ϕ ∧ r1 = b. It is left to the reader to check that all
proof obligations become provable with the new annotations.

4.2 Loop Induction

Goal. Loop induction register strength reduction aims at reducing the number
of multiplication operations inside a loop, which in many processors are more
costly than addition operations.

Description. Loop induction depends on two analyzes. The first one is a loop
analysis that detects loops and returns for each loop its set of labels {L1, . . . , Ln},
and its header LH , a distinguished label in the above set such that any jump
that goes inside the loop from an instruction outside the loop, is a jump to LH .

The second analysis detects inside a loop an induction register ri (defined in
the loop by an instruction of the form ri := ri + c) and its derived induction
register rd (defined in the loop by an instruction of the form rd := ri ∗ b). More
precisely, the analysis returns: an induction register ri and the label Li in which
its definition appears, a derived induction register rd and the label Ld in which
its definition appears, a new register name r′d not used in the original program,
two new labels L′′

i and L′′
H not in the domain of Gf and two constant values b, c

that correspond to the coefficient of rd and increment of ri.
The transformation replaces assignments to the derived induction register rd

with less costly assignments to an equivalent induction register r′d. Then rd is
defined as a copy of r′d.

Certifying Analyzer. Only the second analysis needs to be certified. First, we
define EQA(L) ≡ r′d = b∗ri if L ∈ {L′′

H , L1, . . . , Ln}\{LH} and EQA(L) ≡ > if
L is a label outside the loop or equal to LH . Then, we need to create a certificate
that the analysis is correct. One (minor) novelty w.r.t. constant propagation is
that the definition of fA includes two extra labels L′′

H and L′′
i , not present in

the original function f . The definition of fA is given by the clauses:

fA[LH] = (EQA(LH), r′d := b ∗ ri, L
′′
H)

fA[L′′H] = (EQA(L′′H), insLH)
fA[L] = (EQA(L), insL) if L ∈ dom(Gf), L 6∈ {LH , Li}
fA[Li] = (EQA(Li), insLi{L′i←L′′i })
fA[L′′i] = (>, r′d := r′d + b ∗ c, L′i)

where insL is the instruction descriptor of f [L], and L′
i is the successor label

of Li in f . Interestingly, the certified analyzer must use the fact that the loop
analysis is correct in the sense that one can only enter a loop through its header.
If the loop analysis is not correct, then the certificate cannot be constructed.

f [LH] = r′d := b ∗ ri, L
′′
H

f [L′′H] = f [LH]

f [Li] = ri := ri + c, L′′i
f [L′′i] = r′d := r′d + b ∗ c, L′i{LH←L′′H}
f [Ld] = rd := r′d, L

′
d{LH←L′′H}

f [L] = (φ ∧ r′d = b ∗ ri, ins{LH←L′′H}) if f [L] = (φ, ins)

f [L] = f [L]{LH←L′′H} in any other case inside the loop

Fig. 6. Loop Induction

Certificate Translation. Figure 6 shows how instructions for labels L1 . . . Ln of
a function f are transformed into instructions for the optimized function f . As
expected, the transformation for instructions outside the loop is the identity, i.e.
f [L] = f [L] for L 6∈ {L1, . . . , Ln}.

Certificate translation proceeds as with constant propagation, using the in-
duction principle attached to the definition of reachAnnotf , and the certificate
of the analysis, to produce a certificate for f̄ .

Example 3. Applying loop induction to program (a) in Figure 5, we obtain
program (b) where m denotes the result of the product b ∗ c and ξli , ξcp and
ϕli , ϕcp ∧ r′j = b ∗ ri.

4.3 Dead Register Elimination

Goal. Dead register elimination aims at deleting assignments to registers that
are not live at the label where the assignment is performed. As mentioned in the
introduction, we propose a transformation that performs simultaneously dead
variable elimination in instructions and in assertions.

Description. A register r is live at label L if r is read at label L or there is a
path from L that reaches a label L′ where r is read and does not go through
an instruction that defines r (including L, but not L′). A register r is read at
label L if it appears in an assignment with a function call, or it appears in a
conditional jump, or in a return instruction, or on the right side of an assignment
of an assignment operation to a register r′ that is live. In the following, we denote
L(L, r) = > when a register is live at L.

In order to deal with assertions, we extend the definition of liveness to asser-
tions. A register r is live in an assertion at label L, denoted by L(L, r) = >φ, if
it is not live at label L and there is a path from L that reaches a label L′ such
that r appears in assertion at L′ or where r is used to define a register which is
live in an assertion.

By abuse of notation, we use L(L, r) = ⊥ if r is dead in the code and in
assertions.

The transformation deletes assignments to registers that are not live. In or-
der to deal with dead registers in assertions, we rely on the introduction of ghost

variables. Ghost variables are expressions in our language of assertions (we as-
sume that sets of ghost variables names and R are disjoint). We introduce as
part of RTL, “ghost assignments”of the form set v̂ := op, L, where v̂ is a ghost
variable. Ghost assignments do not affect the semantics of RTL, but they affect
the calculus of vcg in the same way as normal assignments.

The transformation is shown below where σL = {r← r̂ | L(L, r) = >φ} and
deadc(L,L′) = {r|L(L, r) = > ∧ L(L′, r) = >φ}.

ghostL((φ, ins)) = (φσL, ghostidL (ins))
ghostL(ins) = ghostidL (ins)

The analysis ghostidL (ins) is defined in Figure 7. We use set r̂ := r, as
syntactic sugar for a sequence of assignments set r̂i := ri, where for each
register ri in r, r̂i in r̂ is its corresponding ghost variable. The function ghost
transforms each instruction of f into a the set of instructions of f . Intuitively,
it introduces for any instruction ins (with successor L′) at label L, a ghost
assignment set r̂ := r, L′ immediately after L (at a new label L′′) if the register
r is live at L but not live at the immediate successor L′ of L. In addition, the
function ghostL performs dead register elimination if ins is of the form rd := op,
and the register rd is not live at L.

Instantiation of Proof Obligations. Certificate translation for dead register elim-
ination falls in the IPO category, i.e. the certificate of the optimized program is
an instance of the certificate of the source program. This is shown by proving
that ghost variable introduction preserves vcg up to substitution.

Lemma 1. ∀L, vcgf̄ (L) = vcgf (L)σL

A consequence of this lemma is that if the function f is certified, then it is
possible to reuse the certificate of f to certify f , as from each proof p :` φL ⇒
vcgf (L) we can obtain a proof p :` φ̄L ⇒ vcgf̄ (L) by applying subst rule of
Figure 4 to p with substitution σL.

After ghost variable introduction has been applied, registers that occur free
in vcgf (L) , are live at L, i.e. L(L, r) = >.

Example 4. In Figure 5, applying first copy propagation to program (b), we can
then apply ghost variable introduction to obtain program (c), where ξdr , ξli
and ϕdr , r̂j = r̂1 ∗ ri ∧ r̂1 ≥ b ∧ ri ≥ 0 ∧ r̂1 = b ∧ r′j = b ∗ ri ∧ r′j = r̂j .

5 Related work

Certified Compilation. Compiler correctness [6] aims at showing that a com-
piler preserves the semantics of programs. Because compilers are complex pro-
grams, the task of compiler verification can be daunting; in order to tame the
complexity of verification and bring stronger guarantees on the validity of com-
piler correctness proofs, certified compilation [8] advocates the use of a proof as-
sistant for machine-checking compiler correctness results. Section 2 of [8] shows

ghostidL (return r) = return r
ghostidL (rd := f(r), L′) = L : rd := f(r), L′′

L′′ : set t̂ := t, L′ for each t ∈ deadc(L,L
′)

ghostidL (nop, L′) = nop, L′

ghostidL (cmp ? L1 : L2) = L : cmp ? L′1 : L′2
L′1 : set t̂1 := t1, L1 wheret1 = deadc(L,L1)

L′2 : set t̂2 := t2, L2 where t2 = deadc(L,L2)
ghostidL (rd := op, L′) = nop, L′ if L(L′, rd) = ⊥

= set r̂d := opσL, L
′ if L(L′, rd) = >φ

= L : rd := op, L′′

L′′ 7→ set t̂ := t, L′

where t = deadc(L,L
′)

if L(L′, rd) = >

Fig. 7. Ghost Variable Introduction-Dead Register Elimination

that it is theoretically possible to derive certificate translation from certifying
compilation. However, we think that the approach is restrictive and unpractical:

– certificates encapsulate the definition of the compiler and its correctness
proof on the one hand, and the source code and its certificate on the other
hand. Thus certificates are large and costly to check;

– with the above notion of certified compiler, the approach is necessarily con-
fined to properties about the input/output behavior of programs, and rules
out interesting properties involving intermediate program points that are
expressed with assertions or ghost variables;

– and a further difficulty with this approach is that it requires that the source
code is accessible to the code consumer, which is in general not the case.

For similar reasons, it is not appropriate to take as certificates of optimized
programs pairs that consist of a certificate for the unoptimized program and of
a proof that the optimizations are semantics preserving.

Certifying Compilation. Certifying compilation is concerned with generating
automatically safety certificates. The Touchstone compiler [11] is a notable exam-
ple of certifying compiler, which generates type-safety certificates for a fragment
of C. In Chapter 6 of [10], Necula studies the impact of program optimizations
on certifying compilation. For most standard optimizations an informal analysis
is made, indicating whether the transformation requires reinforcing the program
invariants, or whether the transformation does not change proof obligations.

There are many commonalities between his work and ours, but also some no-
table differences. First, the VCGen used by Necula propagates invariants back-
wards, whereas ours generates a proof obligation for each invariant. This has
subtle implications on the modifications required for the invariant. A main dif-
ference is that we not only have to strengthen invariants, but also transform
the certificate; further, when he observes that the transformation produces a
logically equivalent proof obligation, we have to define a function that maps

proofs of the original proof obligation into proofs of the new proof obligation
after optimization.

Provable Optimizations through Sound Elementary Rules. Rhodium [7]
is a domain-specific language for declaring and proving correct program opti-
mizations. The domain-specific language is used to declare local transformation
rules and to combine them into the optimization. Transformations written in
Rhodium are given a semantic interpretation that is used to generate sufficient
conditions for the correctness of the transformation. The proof obligations are
in turn submitted to an automatic prover that attempts to discharge them au-
tomatically. The idea also underlies the work of Benton [4], who proposes to
use a relational Hoare logic to justify transformation rules from which optimiza-
tions can be built. The perspective of decomposing optimizations through sound
elementary rules is appealing, but left for future work.

Spec# and BML Project. The Spec# project [2] defines an extension of
C# with annotations, and a compiler from annotated programs to annotated
.NET files, which can be run using the .NET platform, and checked against
their specifications at run-time or verified statically with an automatic prover.
The Spec# project implicitly assumes some relation between source and byte-
code levels, but does not attempt to formalize this relation. There is no notion
of certificate, and thus no need to transform them. A similar line of work for
Java was pursued independently by Pavlova and Burdy [5] who define a Byte-
code Modeling Language into which annotations of the Java Modeling Language
and a VCGen for annotated bytecode programs; the generated proof obligations
are sent to an automatic theorem prover. They partially formalize the relation
between proof obligations at source code and bytecode level, but they do not
consider certificates.

In a similar spirit, Bannwart and Müller [1], provide Hoare-like logics for
significant sequential fragments of Java source code and bytecode, and illustrate
how derivations of correctness can be mapped from source programs to bytecode
programs obtained by non-optimizing compilation.

Certifying Analyzers. Specific instances of certifying analyzers have been
studied independently by Wildmoser, Chaieb and Nipkow [13] in the context of
a bytecode language and by Seo, Yang and Yi [12] in the context of a simple
imperative language. Seo, Yang and Yi propose an algorithm that automatically
constructs safety proofs in Hoare logic from abstract interpretation results.

6 Concluding Remarks

Certificate translation provides a means to bring the benefits of source code
verification to code consumers using PCC architectures. Certificate translation
significantly extends the scope of PCC in that it allows to consider complex

security policies and complex programs— at the cost of requiring interactive
verification. The primary motivation for certificate translation are mobile code
scenarios, possibly involving with several code producers and intermediaries,
where security-sensitive applications justify interactive verification. One impor-
tant constraint for these scenarios (which originate from mobile phone industry)
is that only the code after compilation and optimization is available to the code
consumer or a trusted third party: this assumption makes it impossible to use
ideas from certified compilation, or to use as certificates for optimized programs
a pair consisting of a certificate of the unoptimized program, and a proof of
correctness of the optimizations.

There are many directions for future work, including:

– On a side, we would like to build a generic certificate translation, instead
of developing a translator per optimization. One natural approach would
be to describe standard program optimizations as a combination of more
elementary transformations in the style of Rhodium.

– On a practical side, we have developed a prototype certificate translator for
our RTL language. This prototype generates proof obligations for the initial
program that are sent to the Coq theorem prover. Once the proofs obligations
are solved, the proofs are sent to the certificate translator that automatically
optimizes the program and transforms the proofs. In the medium term, we
intend to extend our prototype to a mainstream programming language such
as C or Java to an assembly language.

– On an experimental side, we would like to gather metrics about the size of
certificates—which is an important issue, although not always central in the
scenarios we have in mind. Preliminary experiments using λ-terms as certifi-
cates indicate that their size does not explode during translation, provided
we perform after certificate translation a pass of reduction that eliminates all
the redexes created by the translation. For example, the size of certificates
remains unchanged for dead register elimination. For constant propagation,
the size of certificates grows linearly w.r.t. the size of the code. There are
other opportunities to reduce certificate size; in particular, not all annota-
tions generated by certifying analyzers are used to build the certificate for
the optimized program, so we could use enriched analyses with dependency
information to eliminate all annotations that are not used to prove the op-
timized program, i.e. annotations that are not directly used to justify an
optimization, and annotations that are not used (recursively) to justify such
annotations;

– On an applicative side, we would like to experiment with certificate trans-
lation in realistic settings. E.g. certificate translation could be useful in the
component-based development of security-sensitive software, as the software
integrator, who will be liable for the resulting product, could reasonably re-
quire that components originating from untrusted third parties are certified
against their requirements, and use certificate translation to derive a certifi-
cate for the overall software from certificates of each component. The ben-
efits of certificate translation seem highest in situations where integration

of components involves advanced compilation techniques, e.g. compilation
from Domain-Specific Languages to conventional languages.

References

1. F. Bannwart and P. Müller. A program logic for bytecode. In F. Spoto, editor,
Proceedings of Bytecode’05, Electronic Notes in Theoretical Computer Science. El-
sevier Publishing, 2005.

2. M. Barnett, K.R.M. Leino, and W. Schulte. The Spec# Programming System: An
Overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean,
editors, Proceedings of CASSIS’04, volume 3362 of Lecture Notes in Computer
Science, pages 50–71. Springer-Verlag, 2005.

3. G. Barthe, T.Rezk, and A. Saabas. Proof obligations preserving compilation. In
Proceedings of FAST’05, volume 3866 of Lecture Notes in Computer Science, pages
112–126. Springer-Verlag, 2005.

4. N. Benton. Simple relational correctness proofs for static analyses and program
transformations. In Proceedings of POPL’04, pages 14–25. ACM Press, 2004.

5. L. Burdy and M. Pavlova. Annotation carrying code. In Proceedings of SAC’06.
ACM Press, 2006.

6. J. D. Guttman and M. Wand. Special issue on VLISP. Lisp and Symbolic Com-
putation, 8(1/2), March 1995.

7. S. Lerner, T. Millstein, E. Rice, and C. Chambers. Automated soundness proofs for
dataflow analyses and transformations via local rules. In Proceedings of POPL’05,
pages 364–377. ACM Press, 2005.

8. X. Leroy. Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In Proceedings of POPL’06, pages 42–54. ACM Press, 2006.

9. G.C. Necula. Proof-Carrying Code. In Proceedings of POPL’97, pages 106–119.
ACM Press, 1997.

10. G.C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University,
October 1998. Available as Technical Report CMU-CS-98-154.

11. G.C. Necula and P. Lee. The Design and Implementation of a Certifying Compiler.
In Proceedings of PLDI’98, pages 333–344. ACM Press, 1998.

12. S. Seo, H. Yang, and K. Yi. Automatic Construction of Hoare Proofs from Abstract
Interpretation Results. In A. Ohori, editor, Proceedings of APLAS’03, volume 2895
of Lecture Notes in Computer Science, pages 230–245. Springer-Verlag, 2003.

13. M. Wildmoser, A. Chaieb, and T. Nipkow. Bytecode analysis for proof carrying
code. In F. Spoto, editor, Proceedings of BYTECODE’05, Electronic Notes in
Theoretical Computer Science. Elsevier Publishing, 2005.

