
Certified Reasoning in Memory Hierarchies

Gilles Barthe, César Kunz, and Jorge Luis Sacchini

INRIA Sophia Antipolis-Méditerranée
{Gilles.Barthe,Cesar.Kunz,Jorge-Luis.Sacchini}@inria.fr

Abstract. Parallel programming is rapidly gaining importance as a vec-
tor to develop high performance applications that exploit the improved
capabilities of modern computer architectures. In consequence, there is a
need to develop analysis and verification methods for parallel programs.

Sequoia is a language designed to program parallel divide-and-conquer
programs over a hierarchical, tree-structured, and explicitly managed
memory. Using abstract interpretation, we develop a compositional proof
system to analyze Sequoia programs and reason about them. Then, we
show that common program optimizations transform provably correct
Sequoia programs into provably correct Sequoia programs, provided the
specification and the proof of the original program are strengthened by
certifying analyzers, an extension of program analyzers that produce a
derivation that the results of the analysis are correct.

1 Introduction

As modern computer architectures increasingly offer support for high perfor-
mance parallel programming, there is a quest to invent adequate programming
languages that exploit their capabilities. In order to reflect these new archi-
tectures accurately, parallel programming languages are gradually abandoning
the traditional memory model, in which memory is viewed as a flat and uni-
form structure, in favor of a hierarchical memory model, which considers a tree
of memories with different bandwidth and latency characteristics. Hierarchical
memory is particularly appropriate for divide-and-conquer applications, in which
computations are repeatedly fragmented into smaller computations that will be
executed lower in the memory hierarchy, and programming languages based on
this model perform well for such applications.

As hierarchical memories are gaining broader acceptance [1, 7, 11], there is
an interest in adapting formal methods to them, and in particular in developing
both automated and interactive methods to prove properties of programs over
hierarchical memories. To our best knowledge, there has not been any previous
effort to develop program logics or a general theory of program analysis for such
a language. The objective of this paper is precisely to provide methods to reason
about Sequoia [8, 12, 10], a language designed to program efficient, portable, and
reliable applications for the hierarchical memory.

We indicate in red the modifications with respect to the submitted version.

In the first part of the paper, we use the framework of abstract interpre-
tation [5, 6] to develop a compositional proof system to reason about Sequoia
programs (Sect. 3). The compositional proof system is proved sound w.r.t. safe
programs; our notion of safety enforces that independent subtasks of a program
manipulate distinct parts of the memory, and is very similar to the indepen-
dence notion of strict and-parallelism in the domain of logic programming [9].
In addition, we define a sound and decidable analysis for safety (Sect. 3.2).

In the second part of the paper, we focus on the interplay between program
optimization and program verification. To maximize the performance of appli-
cations, the Sequoia compiler aggressively performs program optimizations such
as code hoisting, instruction scheduling, and SPMD distribution. We show, for
common optimizations described in [12], that program optimizations transform
provably correct programs into provably correct programs (Sect. 4). More pre-
cisely, we provide an algorithm to transform a derivation for the original program
into a derivation for the transformed program. For some optimizations, the algo-
rithm relies on a certifying analyzer, that produces a derivation of the correctness
of its results. These results find applications in proof carrying code [14], in the
context of certificate translation [2, 3].

2 A primer on Sequoia

Sequoia [8, 12, 10] is a language for developing portable and efficient parallel pro-
grams for the memory hierarchy. It is based on a small set of constructs that
control essential aspects of programming over the memory hierarchy, such as
communication, memory movement and computation. Computations are orga-
nized into self-contained units, called tasks. Tasks at the same level execute in
parallel on a dedicated address space, and may rely on subtasks for perform-
ing computations; in this case, each subtask will operate on a smaller (and in
practice faster) fragment of the memory.

Hierarchical memory. A hierarchical memory is a tree of memory modules, i.e.
of partial functions from a set L of locations to a set V of values. In our setting,
values are either integers or booleans: the set V of values is defined as the union
of the set Z of integers and B of booleans. Besides, locations are either scalar
variables, or arrays indices of the form A[i] where A is an array and i is an index:
the set L of locations is defined as the union of the set of identifiers for scalars or
array indices. The set of scalar variables is denoted by NS and the set of array
variables is denoted by NA. The set of variable names is N = NS ∪NA.

Definition 1 (States). The set M = L⇀ V of memories is defined as the set
of partial functions from locations to values. A memory hierarchy representing
the machine structure is a memory tree defined as:

T ::= 〈µ, T1, . . . , Tk〉 k ≥ 0,

where µ ∈M.

Intuitively, 〈µ, ~τ〉 ∈ T represents a memory tree with root memory µ and a
possible empty sequence ~τ of child subtrees. The semantics of programs is given
using an operator, +µ : M×M→M, indexed by a memory µ ∈M, such that:

(µ1 +µ µ2)x =

8><>:
µ1x if µ2x = µx

µ2x if µ1x = µx

v where v ∈ {µ1x, µ2x}

Note that the operator +µ is not deterministic if both µ1 and µ2 modify the
same variable. The operator +µ is generalized over memory hierarchies in T and
sequences ~µ ∈M?. By convention, we set:

Pµ
m≤i≤n µi =

8><>:
µ if n < m

µm if n = m

µm +µ

Pµ
m+1≤i≤n otherwise

Intuitively, µ denotes a memory in a hierarchical memory, corresponding to a
task G to be executed, where G is divided in parallel subtasks G1, . . . , Gn.
Executing each subtask Gi in the initial memory µ returns µi as final memory.
Since subtasks are intended to operate on pairwise disjoint fragments of the
memory µ, it should be the case that, upon termination of the subtasks, the
memories µ1 . . . µn are such that

∑µ
m≤i≤n µi is defined.

Syntax. Sequoia features usual constructions as well as specific constructs for
parallel execution, for spawning new subtasks, and for grouping computations.

Definition 2 (Sequoia Programs). The set of programs is defined by the fol-
lowing grammar:

G ::= Copy↑(~A, ~B) | Copy↓(~A, ~B) | Copy(~A, ~B)
| Kernel〈A = f(B1, . . . , Bn)〉 | Scalar〈a = f(b1, . . . , bn)〉
| Forall i = m : n do G | Group(H) | Execi(G)
| If b then G1 else G2

where a, b are scalar variables, m,n are scalar constants, ~A, ~B are array variables
and H is a dependence graph of programs.

Atomic statements, i.e. Copy, Kernel, and Scalar statements, are given a spe-
cific treatment in the proof system; we let atomStmt denote the set of atomic
statements. A program G in the dependence graph H is maximal if G does not
depend on any other program in H.

Semantics. The semantics of a program G is defined by a judgment of the form
σ ` G → σ′ where σ, σ′ ∈ H, and H = M× T . Every σ ∈ H is a pair 〈µp, τ〉
where µp is the parent memory and τ is a child memory hierarchy. The meaning
of such a judgment is that the evaluation of G with initial memory σ terminates
with final memory σ′. To work with memory hierarchies, we define two functions:
πi :H→H that returns the i-th child of a memory, and⊕i :H×H → H that, given
two memories σ1 and σ2, replaces the i-th child of σ1 with σ2. Formally, they
are defined as πi(µp, 〈µ, ~τ〉) = (µ, τi) and (µp, 〈µ, ~τ〉) ⊕i (µ′, τ ′) = (µp, 〈µ′, ~τ1〉),
where τ1i = τ ′ and τ1j = τj for j 6= i.

µp, 〈µ, ~τ〉 ` Copy↑(~A, ~B) → µp[B 7→ µ(A)], 〈µ, ~τ〉

µp, 〈µ, ~τ〉 ` Copy↓(~A, ~B) → µp, 〈µ[B 7→ µp(A)], ~τ〉

µp, 〈µ, ~τ〉 ` Kernel〈A = f(B1, . . . , Bn)〉 → µp, 〈µ[A 7→ f(B1, . . . , Bn)], ~τ〉

µp, 〈µ, ~τ〉 ` Scalar〈a = f(b1, . . . , bn)〉 → µp, 〈µ[a 7→ f(b1, . . . , bn)], ~τ〉

X the set of maximal elements of H and H ′ = H \X
∀g ∈ X, µ, τ ` g → µg, τgP

g∈X(µg, τg) ` Group(H ′) → µ′, τ ′

µ, τ ` Group(H) → µ′, τ ′

∀j ∈ [m, n] 6= ∅. µp, 〈µ[i 7→ j], ~τ〉 ` G → µj
p, 〈µj , ~τ j〉

µp, 〈µ, ~τ〉 ` Forall i = m : n do G →
Pn

j=m(µj
p, 〈µj [i 7→ µ(i)], ~τ j〉)

πi(µ, τ) ` G → µ′, τ ′

µ, τ ` Execi(G) → (µ, τ)⊕i (µ′, τ ′)

Fig. 1. Sequoia program semantics (excerpt)

Definition 3 (Program semantics). The semantics of a program G is defined
by the rules given in Fig. 1.

We briefly comment on the rules. The constructs Copy↑(~A, ~B), and Copy↓(~A, ~B),
and Copy(~A, ~B) are primitives that enable data to migrate along the tree struc-
ture, from a child to its parent, or from the parent to a child, or locally. The
constructs Kernel〈A = f(B1, . . . , Bn)〉 and Scalar〈a = f(b1, . . . , bn)〉 execute bulk
and scalar computations. We implicitly assume in the rules that array accesses
are in-bound. If this condition is not met then there is no applicable rule, and
the program is stuck.

The construct Group(H) executes the maximal elements X of the depen-
dence graph in parallel, and then merges the result before recursively executing
Group(H \ X). The semantics of Group(H) is deterministic if the elements in
H manipulate distinct regions of the memory, since otherwise the final memory∑

g∈X(µg, τg) is not well-defined in the overlapping regions. A rule not shown in
Fig. 1 states that if H = ∅ the memory hierarchy is left unchanged.

The construct Forall i = m : n do G executes in parallel n − m instances
of G with a different value of i, and merges the result. As in the case of group
execution, the semantics is deterministic only if iterations manipulate pairwise
distinct parts of the memory. The rule in Fig. 1 considers exclusively the case
where m ≤ n, otherwise the memory hierarchy rests unchanged. Finally, the
construction Execi(G) spawns a new computation on the i-th subtree of the
current memory. We omit the standard semantics for conditional tasks.

The semantics of Fig. 1 is identical to the original semantics defined in [12],
to the exception of the rule for Group(H), which only required X to be a subset

of the maximal elements of H. However, both semantics are equivalent for the
class of programs where subtasks are independent; that is, that modify different
parts of the memory. We say the programs in this class are safe. In Section 3.2
we propose a sound analysis to check that a given program is safe, and show
that both semantics coincide for safe programs.

We conclude this section by introducing useful notations. The extended set
of scalar names, NS+, is defined as

NS+ = NS ∪ {x↑ : x ∈ NS} ∪ {x↓
i1 ...↓ik : x ∈ NS ∧ k ≥ 0 ∧ i1, . . . , ik ∈ N}

We define, in a similar way, the sets NA+, N+, and L+ of extended locations.
These sets allow us to refer to variables at all levels of a memory hierarchy.

Given σ ∈ H, with σ = µp, 〈µ, τ〉, and l ∈ L+, we define σ(l) with the
following rules:

σ(l) =

µp(x) if l = x↑

µ(x) if l = x

(µ, τi1)(x
↓i2 ...↓ik) if l = x↓

i1↓i2 ...↓ik

We also define the functions ↑i, ↓i : NS+ → NS+ with the following rules:

↓i(x) = x↓
i

↓i(x↓
j1 ...↓jn) = x↓

i↓j1 ...↓jn

↓i(x↑) = x

↑i(x) = x↑

↑i(x↓
i↓j1 ...↓jk) = x↓

j1 ...↓jk

Note that ↓i is a total function, while ↑i is undefined in x↑ and x↓
j↓j1 ...↓jk if

j 6= i. These functions are defined likewise for NA+, N+, and L+.

3 Analyzing and reasoning about Sequoia programs

This section presents a proof system for reasoning about Sequoia programs. We
start by generalizing the basics of abstract interpretation to our setting, using
a sound, compositional proof system. Then, we define as an instance of our
setting a program analysis for safety, and show its soundness. Finally, we define
a program logic as an instance of our proof system, and show its soundness for
safe programs.

3.1 Program Analysis

We develop our work using a mild generalization of the framework of abstract
interpretation, in which abstract elements form a pre-lattice.1 We also have
1 A pre-order over A is a reflexive and transitive binary relation, whereas a partial

order is an anti-symmetric pre-order. We prefer to use pre-orders instead of partial
orders because one instance of an abstract interpretation is that of propositions; we
do not want to view it as a partial order since it implies that logically equivalent
formulae are equal, which is not appropriate in the setting of Proof Carrying Code.

specific operators over the abstract domain for each type of program, as shown
below.

Definition 4. An abstract interpretation is a tuple I = 〈A, f, T,+A,weak, π,⊕, ρ〉
where:

– A = 〈A,v,w,t,u,>,⊥〉 is a pre-lattice of abstract states;
– f is the flow sense, either forward (f = ↓), or backward (f = ↑);
– for each s ∈ atomStmt, Ts : A→ A;
– +A : A×A→ A

– for each i ∈ NS , weaki : A→ A

– for each i ∈ N, πA
i : A→ A and ⊕A

i : A×A→ A.
– ρ : A× Bool → A;

Intuitively, for each operation and rule of the semantics, we have a corresponding
operator on the abstract domain that reflects the changes to the memory on
the abstract domain. The set of functions {Ts}s∈atomStmt is the set of transfer
functions corresponding to atomic statements. The operator +A abstracts the
operator + for memories (we omit the reference to the domain when it is clear
from the context). Given an i ∈ NS and a ∈ A, the function weaki(a) removes
any condition on the scalar variable i from a. It is used when processing a
Forall task, with i being the iteration variable, to show that after execution, the
iteration variable has an undefined value. For each i ∈ N, the operators {πA

i }i∈N
and {⊕A

i }i∈N abstract the operations πi and ⊕i for memories (we omit the
reference to the domain when it is clear from the context). Finally, the function
ρ : A× Bool → A is a transfer function used in an If task to update an abstract
value depending on the test condition.

To formalize the connection between the memory states and the abstract
states, we assume a satisfaction relation |= ⊆ H × A that is an approximation
order, i.e., for all σ ∈ H and a1, a2 ∈ A, if σ |= a1 and a1 v a2 then σ |= a2.
The next definition formalizes the intuition given about the relation between the
operators of an abstract interpretation and the semantics of programs.

Definition 5. The abstract interpretation I = 〈A, f, T,+,weak, π,⊕, ρ〉 is con-
sistent if the following holds:

– for every statement s ∈ atomStmt, and σ, σ′ ∈ H s.t. σ ` s→ σ′,
• if f = ↓ and σ |= a, then σ′ |= Ts(a);
• if f = ↑ and σ |= Ts(a), then σ′ |= a.

– for all σ, σ1, σ2 ∈ H and a1, a2 ∈ A, if σ1 |= a1 and σ2 |= a2 then σ1 +σ σ2 |=
a1 + a2.

– for all i ∈ N , a ∈ A, and µp, 〈µ, τ〉 ∈ H, if µp, 〈µ, τ〉 |= a, then for all k ∈ Z
µp, 〈µ[i 7→ k], τ〉 |= weaki(a);

– for all σ ∈ H, if σ |= a then πi(σ) |= πi(a);
– for all σ, σ′ ∈ H, and a, a′ ∈ A, if σ |= a and σ′ |= a′, then σ⊕i σ

′ |= a⊕i a
′;

X the set of maximal elements of H and H ′ = H \X:
∀ g ∈ X.〈a〉 ` g 〈ag〉 〈

P
g∈X ag〉 ` Group(H ′) 〈a′〉

〈a〉 ` Group(H) 〈a′〉
[G]

f = ↑ ∀m ≤ j ≤ n. 〈a′j〉 ` G 〈aj〉
〈
dn

j=m Ti:=j(a
′
j)〉 ` Forall i = m : n do G 〈

Pn
j=m weaki(aj)〉

[FB]

f = ↓ ∀m ≤ j ≤ n. 〈Ti:=j(a)〉 ` G 〈aj〉
〈a〉 ` Forall i = m : n do G 〈

Pn
j=m weaki(aj)〉

[FF]
〈πi(a)〉 ` G 〈a′〉

〈a〉 ` Execi(G) 〈a⊕i a′〉
[E]

f = ↑, s ∈ atomStmt

〈Ts(a)〉 ` s 〈a〉
[AB]

f = ↓, s ∈ atomStmt

〈a〉 ` s 〈Ts(a)〉
[AF]

b v a 〈a〉 ` G 〈a′〉 a′ v b′

〈b〉 ` G 〈b′〉
[SS]

〈ρ(a, cond)〉 ` G1 〈a′〉 〈ρ(a,¬cond)〉 ` G2 〈a′〉
〈a〉 ` If cond then G1 else G2 〈a′〉

[I]

Fig. 2. Program analysis rules (excerpt)

– for all σ ∈ H, a ∈ A and cond ∈ Bool, if σ |= a and σ |=Bool cond, then
σ |= ρ(a, cond) . 2

Definition 6 (Valid Analysis Judgment). Let I = 〈A, f, T,+,weak, π,⊕, ρ〉
be an abstract interpretation. A judgment is a tuple 〈a〉 ` G 〈a′〉, where G is a
program and a, a′ ∈ A. A judgment is valid if it is the root of a derivation tree
built using the rules in Fig. 2.

Lemma 1 (Analysis Soundness). Let G be a Sequoia program and suppose
I = 〈A, f, T,+,weak, π,⊕, ρ〉 is a consistent abstract interpretation. For every
a, a′ ∈ A and σ, σ′ ∈ H, if the judgment 〈a〉 ` G 〈a′〉 is valid and σ ` G → σ′

and σ |= a then σ′ |= a′.

Proof. By induction on the judgment `. Since the abstract interpretation I is
consistent, we have the required conditions for each case of the judgment.

3.2 Program Safety

Intuitively, a program is safe if the subtasks that can be executed in parallel are
independent, i.e., they modify different parts of the memory. This means that
independent subtasks can be executed in any order without affecting the final
result, which justifies the use of our semantics (cf. Proposition 1).

To check safety for a given program, we define an abstract interpretation that
over-approximates the regions of the memory that are read and written by each
2 Given a memory σ and a boolean condition cond , the judgment σ |=Bool cond states

that the condition is valid in the memory σ. The definition is standard so we omit
it.

subtask (region analysis). A program is safe if these regions do not overlap for
subtasks that can be executed in parallel. The presence of arrays makes things
more complicated, since when a program of the form Forall j = m : n do G is
executed, we must check that, for different values of j, G writes non-overlapping
portions of the arrays. This ensures that the final memory does not depend
on the order of execution of the subtasks composing a program. Note that the
compiler for Sequoia described in [12] assumes that programs are safe, but does
not check it. For our purposes of verification, checking this property is essential.

We first define an interval analysis that over-approximates the values of scalar
variables, with domain DI , where

DI = NS+ → Interval ,
Interval = {(a, b) : a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞}, a ≤ b}⊥.

The complete definition is given in Appendix A.
The region analysis is described by two abstract interpretations IR (reading

region) and IW (writing region), both defined over a domain D, where

D = (NA+ → Interval)× P(NS+).

Each element d ∈ D is a pair (a, s), where, for each n ∈ NA+, a(n) represents the
range of indices of array a that are accessed (read or write) by a subtask, and s is
the set of scalar variables that are accessed. The interval analysis described above
is used to determine which part of a given array is accessed by each subtask.

The analyses IR and IW define the judgments 〈a〉`R G〈a′〉 and 〈a〉`W G〈a′〉,
where G is a program, using the rules of Fig. 2. The meaning of these judgments
is stated in Lemma 2 and Lemma 3 below. We first give some definitions.

Given a set of locations L ⊆ L, and memories µ, µ′ ∈M we write µ ≈L µ′ if
µ and µ′ have the same values at the variables in L. This definition is extended
to regions (i.e. elements of D) and memory hierarchies. Given two memories
µ, µ′ ∈M, we denote with Modified(µ, µ′) the set of locations that have different
values in µ and µ′. This definition is also extended to memory hierarchies.

Lemma 2 (Soundness of IR). Assume a program G, R1, R2 ∈ DR with
〈R1〉 `R G 〈R2〉, and σ1, σ2 ∈ H with σ1 ≈R2 σ2. If σ1 ` G → σ′1 and
σ2 ` G→ σ′2, then σ′1 ≈R σ′2, where R = Modified(σ1, σ

′
1) ∪Modified(σ2, σ

′
2).

Lemma 3 (Soundness of IW). Assume a program G, W1,W2 ∈ DW with
〈W1〉 `W G〈W2〉, and σ, σ′ ∈ H. If σ ` G→ σ′ then Modified(σ, σ′) ⊆W2.

Using the region analysis described above, we can determine whether a pro-
gram is safe, using the safety judgment, `Safe G, defined by the rules shown in
Fig. 3. The interesting rules are the rules for Group and Forall. We check that
subtasks that can be executed in parallel have non-overlapping regions. More
specifically, the writing region of one task cannot overlap with neither the read-
ing nor the writing region of another independent task. This ensures that the
final memory does not depend on the order in which tasks are executed. In the

G ∈ atomStmt

`Safe G

πi(s) `Safe G

s `Safe Execi(G)

s `Safe G1 s `Safe G2

s `Safe If b then G1 else G2

∀G, G′ ∈ H with G and G′ not related in H 〈⊥〉 `W G〈wG〉 〈⊥〉 `W G′〈wG′〉
〈⊥〉 `R G〈rG〉 〈⊥〉 `R G′〈rG′〉 (rG ∪ wG) ∩ w′

G = ∅ (rG′ ∪ wG′) ∩ wG = ∅
`Safe Group(H)

∀k, 〈T R
j:=k(⊥)〉 `R G〈rk〉

∀k, 〈T W
j:=k(⊥)〉 `W G〈wk〉 ∀k, k′, (rk ∪ wk) ∩ w′

k = {j}
`Safe Forall j = s : e do G

Fig. 3. Program Safety

case of Forall, there is an overlap between the variables written by each subtask,
namely the iteration variable (since this variable is written at the beginning of
execution). However, in the semantics we restore the previous value of it after
execution of the Forall, since we consider it a local variable. Hence, the final
memory does not depend on the order of execution of parallel subtasks.

The next result justifies the change we made to the Sequoia semantics. In
the original semantics defined in [12], there is a different rule for Group, where
the set X is any set of maximal elements, as opposed to the semantics defined
in Fig. 1 where we take X to be the complete set of maximal elements. This
means that, in the original semantics, the order of execution of parallel subtasks
is not deterministic. However, for safe programs, both semantics give the same
final result, as stated in the proposition below. To differentiate, we use →O to
refer to the original semantics.

Proposition 1. Assume a program G s.t. `Safe G, and a memory hierarchy
σ ∈ H. If σ ` G→ σ1 and σ ` G→O σ2, then σ1 = σ2.

Before proving this proposition, we introduce a useful lemma.

Lemma 4. Assume programs G1 and G2, and regions R1, R2, W1 and W2 s.t.

〈⊥〉 `R G1〈R1〉 〈⊥〉 `R G2〈R2〉
〈⊥〉 `R G1〈W1〉 〈⊥〉 `R G2〈W2〉,

and W1 ∩ (R2 ∪W2) = ∅ and W2 ∩ (R1 ∪W1) = ∅. If σ, σ1, σ2, σ12, σ21 ∈ H are
memories s.t.

σ ` G1 → σ1 σ1 ` G2 → σ12

σ ` G2 → σ2 σ2 ` G1 → σ21,

then σ12 = σ21

Proof. Using soundness of IR and IW .

Proof (Proposition 1). We want to prove that the order of execution of indepen-
dent subtasks does not matter for safe programs. While the original semantics

seems to be non-deterministic because of the choice we can make in the Group
rule, for safe programs, this choice does not matter as the final result will always
be the same.

We consider yet another rule for Group, where we execute all subtasks in
sequential order (we use the symbol →1 to differentiate from other semantics):

{g1, g2, . . . , gn} = H σ = σ1

∀i ∈ {1, . . . , n}, σi ` gi →1 σi+1

σ ` Group(H) →1 σn+1

The condition in the previous rule is that the order g1, . . . , gn respects the de-
pendencies of the graph H. Note that this order is not unique.

Given a safe program G s.t. σ ` G → σ′ we can show by induction on the
semantics that σ ` G →1 σ′. In fact, we can show, using the previous lemma,
that the order in which we execute the subtasks of a Group does not affect the
final memory.

Using a similar reasoning, we can show that if σ ` G →O σ′′, then σ `
G→1 σ′′. Combining both results, we infer that σ′ = σ′′. ut

3.3 Program Verification

We now define a verification infrastructure as an instance of the abstract inter-
pretation I = 〈Prop, ↑, T,+Prop,weak, π,⊕, ρ〉, where Prop is the pre-lattice of
first-order formulae over variables from N+. Before giving the complete defini-
tion of I, we need some preliminary definitions.

Given a formula φ, the formula ↓iφ is obtained by substituting every free
variable v ∈ N+ of φ with ↓iv. In the same way, the formula ↑iφ is obtained
by substituting every free variable v ∈ N+ of φ by ↑iv; if ↑iv is not defined, we
substitute v by a fresh variable, and quantify existentially over all the introduced
fresh variables.

Definition of +. We need some care when defining the operator + on indepen-
dent subtasks. For instance, assume two tasks G1 and G2 that execute in parallel
(this means that the memories σ1 and σ2 after execution are added together)
with post-conditions Q1 and Q2. Intuitively, we want to verify that each Gi sat-
isfies the post-condition Qi and then conclude that after executing both tasks,
the resulting memory satisfies Q1∧Q2. However, this may be false, since Q1 can
refer to variables that are modified by G2. 3 Hence, while Q1 is true after execut-
ing G1, it may be false after executing G1 and G2 in parallel. The solution is to
give a weaker formula than Q1∧Q2. We will have that after execution of G1 and
G2, a formula of the form Q′1∧Q′2 is valid, where Q′1 (resp. Q′2) is a modification
of Q1 (resp. Q2) that does not refer to variables that are modified by G2 (resp.
G1). In fact, Q′1 (resp. Q′2) is defined as an existential quantification over the

3 Remember that we consider only safe programs, so there are no variables which are
modified by both G1 and G2

variables that are modified by G2 (resp. G1). Therefore, to define the operator
+, we require that subtasks are annotated with the set of variables that they
modify. In our case, we use the region analysis given in the previous section. For
two subtasks G1 and G2 that respectively modify the scalar variables in the sets
SW1 and SW2, and the array ranges in AW1 and AW2, we define the merging
operator + as φ1 + φ2 = φ′1 ∧ φ′2 where φ′1 is a weaker version of φ1 defined as
∃X ′. φ1[X

′
/X]∧

∧
A[m,n]∈AW1

A′[m,n] = A[m,n], X ′ representing the set of scalar
and array variables in SW2 ∪ AW2 (and similarly with φ2). We generalize the
operator + for a family of post-conditions {φi}i∈I and a family of specifications
of modified variables {SWi}i∈I and {AWi}i∈I , by defining

∑
i∈I φi as

∧
i∈I φ

′
i

where for every i ∈ I, φ′ = ∃X ′. φ[X
′
/X] ∧

∧
A[m,n]∈AWi

A[m,n] = A′[m,n], s.t.
X ′ represents every scalar or array variable in {SWj}j 6=i∈I or {AWj}j 6=i∈I .

In practice, if an assertion φi refers only to scalar and array variables that
are not declared as modifiable by other member j 6= i, we have φ′i ⇒ φi.

Definition of other components of I. They are defined as follows:

– {Ts}s∈atomStmt are the weakest pre-condition transformers (the complete def-
inition is given in Appendix B);

– weaki(φ) = ∃i. φ, where i ∈ NS+;
– πi(φ) = ↑iφ, where i ∈ N;
– φ1 ⊕i φ2 = φ1 ∧ ↓iφ2, where i ∈ N, and φ1 is obtained from φ1 by replacing

every variable of the form x or x↓
i↓j1 ...↓jk with a fresh variable and then

quantifying existentially all the introduced fresh variables.
– ρ(φ, cond) = φ ∧ cond ;

The satisfaction relation σ |= φ is defined as the validity of the interpretation
of the formula φ in the memory hierarchy σ. To appropriately adapt a standard
semantics J.K to a hierarchy of memories, it suffices to extend the interpretation
for the extended set of variables N+, where JnKσ = σ(n), for n ∈ N+.

In the rest of the paper, we denote as {P} ` G {Q} the judgments in the
domain of logical formulae, and P and Q are said to be pre- and post-conditions
of G respectively. If the judgment {P} ` G {Q} is valid, and the program starts
in a memory σ that satisfies P and finishes in a memory σ′, then σ′ satisfies Q.
The proposition below formalizes this result.

Proposition 2 (Verification Soundness). Assume that 〈P 〉 ` G〈Q〉 is a valid
judgment and that σ ` G→ σ′, where G is a program, P , Q are assertions, and
σ, σ′ ∈ H. If σ |= P then σ′ |= Q.

3.4 Example Program

We show an example of program verification. The program GAdd (shown in
Fig. 4) adds two arrays producing an output array. This task is divided in a
number of independent subtasks that operate on different parts of the arrays.
We use the operators ‖ and ; to describe the dependence graph composing a
Group task, that represent parallel and sequential composition respectively.

GAdd = Group(G1 ‖ . . . ‖ Gn)

Gi = Execi(Group(InitArgs;

Kernel〈Z[0, S] = VectAdd(X[0, S], Y [0, S])〉;

Copy↑(Z[0, S], C[i S, (i + 1)S])))

InitArgs = (Copy↓(A[i S, (i + 1)S], X[0, S]) ‖

Copy↓(B[i S, (i + 1)S], Y [0, S]))

Fig. 4. Program code for addition of two arrays

We assume that the top-level of the memory hierarchy has at least n child
memories. The arrays are divided in chunks of size S. Note that the optimum
value of S may depend on the underlying architecture.

The program GAdd is safe, since the subtasks G1,. . . ,Gn are independent
(they modify different parts of array C). We want to derive the following judg-
ment:

{true} ` GAdd {∀k, 0 ≤ k < nS ⇒ C[k] = A[k] +B[k]} (1)

First, we derive, for each i, the following judgment:

{true} ` Gi {Qi}
Qi = ∀k, i S ≤ k < (i+ 1)S ⇒ C[k] = A[k] +B[k]

That is, we show that each subtask Gi computes the addition of arrays A and
B for indices between i S and (i+ 1)S. Now, using the rule for Group we derive

{true} ` GAdd {
∑

i

Qi},

where
∑

iQi =
∧

iQ
′
i and Q′i is obtained from Qi by quantifying existentially

over the variables that are not modified by Qi, as explained in the previous
section. However, since Qi only refers to variables that are not modified by
other subtasks (besides Gi), we have Q′i ⇒ Qi. Using the subsumption rule we
derive (1).

4 Certificate translation

In this section, we show that for the common optimizations considered in [8,
12] we can transform proof of correctness of the original program into proof
of correctness of the optimized program. The problem of certificate translation
along program optimizations in this setting is motivated by research in Proof
Carrying Code (PCC) [15, 14], and in particular by our earlier work on certificate
translation [2, 3].

Strictly, the results of this section are not immediately applicable to PCC
and to certificate translation, since we have not considered formal certificates.
However, it is easy to adapt the notion of valid judgment, including an abstract
notion of certificates, as in [3], and to extend our algorithms to transform certified
Sequoia programs into certified Sequoia programs.

Due to space limitations, we consider simplified versions of the optimizations.

Certified setting. For the purpose of certificate translation, we capture the
notion of certificate infrastructure by an abstract proof algebra, and we assume
that certificates are closed under specific operations of the algebra.

Definition 7 (Certificate infrastructure). A certificate infrastructure con-
sists on a proof algebra P that assigns to every φ ∈ Prop a set of certificates
P(` φ) s.t.:

– P is closed under the operations of Fig. 5, all implicitly quantified in the
obvious way;

– P is sound, i.e. for every φ ∈ Prop, if φ is not valid, then P(φ) = ∅.

In the sequel, we write c :` φ instead of c ∈ P(φ).

The operations of the proof algebra are standard, to the exception of the operator
subst that allows to substitute selected instances of equals by equals, and of the
operator ring, which establishes ring equalities that will be used to justify the
optimizations.

introTrue : P(Γ ` True)
axiom : P(Γ ; A; ∆ ` A)
ring : P(Γ ` n1 = n2) if n1 = n2 is a ring equality

intro∧ : P(Γ ` A) → P(Γ ` B) → P(Γ ` A ∧B)

eliml
∧ : P(Γ ` A ∧B) → P(Γ ` A)

elimr
∧ : P(Γ ` A ∧B) → P(Γ ` B)

intro⇒ : P(Γ ; A ` B) → P(Γ ` A ⇒ B)
elim⇒ : P(Γ ` A ⇒ B) → P(Γ ` A) → P(Γ ` B)

elim= : P(Γ ` e1 = e2) → P(Γ ` A[e1/r]) → P(Γ ` A[e2/r])

subst : P(Γ ` A) → P(Γ [e/r] ` A[e/r])

weak : P(Γ ` A) → P(Γ ; ∆ ` A)

intro∀ : P(Γ ` A) → P(Γ ` ∀r.A) if r is not in Γ

elim∀ : P(Γ ` ∀r.A) → P(Γ ` A)

Fig. 5. Proof Algebra (excerpt)

Definition 8 (Certified Analysis Solution). We say that the verification
judgment {Φ} ` G {Ψ} is certified if it is the root of a derivation tree, built from
the rules in Fig. 2, such that every application of the subsumption rule

ϕ⇒ φ {φ} ` G {φ′} φ′ ⇒ ϕ′

{ϕ} ` G {ϕ′}
[CSS]

is accompanied with certificates c and c′ s.t. c :` ϕ⇒ φ and c′ :` φ′ ⇒ ϕ′.

We call a certificate for the judgment {Φ} ` G {Ψ} a derivation tree together
with a tuple of certificates for each application of the subsumption rule.

4.1 General framework

In this section, we consider the translation of certified verification judgments
when a program G′ is derived from the original program G by a structure pre-
serving transformation that is justifiable by a valid analysis judgment. This cat-
egory of transformations covers several optimizations that improve the efficiency
of an atomic sub-program exploiting conditions ensured by previously executed
statements, including standard optimizations such as constant propagation or
common sub-expression elimination (which are not treated here, but refer to [2,
3]). We illustrate the transformation with copy propagation.

Certifying analyzers. Certificate translation along a program transformation
may require that the analysis that justifies the transformation is certified, i.e.
that there is a certificate of the result of the analysis expressed as logical for-
mulae. In this section, we provide sufficient conditions for the existence of such
extended analyzers, called certifying analyzers.

Consider an abstract interpretation I = 〈A, f, T,+,weak, π,⊕, ρ〉 and assume
that 〈a〉 ` G 〈a′〉 is a valid judgment of the analysis. Let γ : A→ Prop be a con-
cretization function, i.e. a function that for any a ∈ A, returns an interpretation
of a as a logic formula.

We provide sufficient conditions to generate a certified verification judgment
{γ(a)} ` G {γ(a′)} from the valid analysis judgment 〈a〉 ` G 〈a′〉.

Definition 9. An abstract interpretation I = 〈A, f, T,+,weak, π,⊕, ρ〉 is con-
sistent with the verification infrastructure if we have

– for every a1, a2 ∈ A s.t. a1 v a2, a certificate monotγ : γ(a1) ⇒ γ(a2)
– for every a ∈ D, s ∈ atomStmt,

• f = ↑ and conss(a) : γ(Ts(a)) ⇒ wp(γ(a)), or
• f = ↓ and conss(a) : γ(a) ⇒ wp(γ(Ts(a))).

– for every a, a′ ∈ A, the certificates distrib+,γ :` γ(a)+γ(a′) ⇒ γ(a+a′) and
distribu,γ :` γ(a u a′) ⇒ γ(a) ∧ γ(a′);

– for every a ∈ A, i ∈ NS , cweak :` weaki(γ(a)) ⇒ γ(weaki(a));
– for every i ∈ Z a, a′ ∈ A, the certificates cπi :` πi(γ(a)) ⇒ γ(πi(a)) and

c⊕i :` γ(a)⊕i γ(a′) ⇒ γ(a⊕i a
′); and

– for every a ∈ A and b ∈ Bool, a certificate cρ : γ(a) ∧ b⇒ γ(ρ(a, b)).

The following result states that a valid analysis judgment that motivates
a program transformation is certifiable, as long as the analysis I is consistent
with the verification environment. This result is fundamental, since for several
program transformations the certification of the analysis is a component of the
certificate translation.

Lemma 5. Let 〈a〉 ` G 〈a′〉 be a valid analysis judgment. Then, provided I is
consistent with the verification environment, {γ(a)} ` G {γ(a′)} is a certified
verification judgment

Proof. The proof is by induction on the derivation of 〈a〉 ` G 〈a′〉. We consider
only some representative cases.

– Base case. Last rule applied is [AB]. Then a = Ts(a′), with s = G. By
application of the corresponding rule [AB] in the domain of the verification
environment, we get the judgment {wps(γ(a′))} ` s {γ(a′)}. By consistency
of the analysis I, we have a certificate cons :` γ(Ts(a′)) ⇒ wps(γ(a′)),
and then, by application of the subsumption rule [CSS] we get the certified
judgment {γ(Ts(a′))} ` s {γ(a′)}.

– Last rule applied is [SS]. Then we have a sub-derivation tree for the judgment
〈b〉 ` G 〈b′〉 and a v b and b′ v a′. We know, by I.H., that the judgment
{γ(b)} ` G {γ(b′)} is certified. By monotonicity of γ we have certificates
for γ(a) ⇒ γ(b) and γ(b′) ⇒ γ(a′) and then, by subsumption, a certified
judgment {γ(a)} ` G {γ(a′)}

– Last rule applied is [FB]. Then G has the form Forall i = m : n do G′ and a
are a′ are necessarily equal to

dn
j=m Ti:=j(aj) and

∑n
j=m weaki(a′j) respec-

tively, s.t. for every j ∈ [m,n] there is a sub-derivation tree for the judgment
〈aj〉 ` G′ 〈a′j〉. By I.H., we know the judgments {γ(aj)} ` G′ {γ(a′j)} are
certified and, thus, by application of the rule [FB], we get the certified judg-
ment {

∧n
j=m Ti:=j(γ(aj))} ` G′ {

∑n
j=m weaki(γ(a′j))}. It remains to show

that we have a certificate for γ(
dn

j=m Ti:=j(aj)) ⇒
∧n

j=m wpi:=j(γ(aj)) and
a certificate for

∑n
j=m weaki(γ(a′j)) ⇒ γ(

∑n
j=m weaki(a′j)). The former fol-

lows from cons and distrib∧,γ , and the latter from distrib+,γ and cweak.
– Last rule applied is [E]. We know that G is of the form Execi(G′), a′ is equal

to a⊕i a
′′ for some a′′ ∈ A, and that there sub-derivation tree for the judg-

ment 〈πi(a)〉 ` G′ 〈a′′〉. Then, by I.H., the judgment 〈γ(πi(a))〉 ` G′ 〈γ(a′′)〉
is certified. By application of cπi , we get a certificate for πi(γ(a)) ⇒ γ(πi(a))
and then, by subsumption, a certified judgment 〈πi(γ(a))〉 ` G′ 〈γ(a′′)〉. Ap-
plying the rule [E], we get 〈γ(a)〉 ` G′ 〈γ(a)⊕i γ(a′′)〉. Finally, from c⊕i and
application of the subsumption rule [CSS] we have the certified judgment
〈γ(a)〉 ` G′ 〈γ(a⊕i a

′′)〉.

Certificate translation. Let G′ be a program derived from G by a structure
preserving transformation, i.e. G and G′ have the same structure but differ on
the leaves of the abstract syntax tree.

Definition 10 (justified transformation). Let s and s′ be atomic statements
and R a logic formula. The substitution of s by s′ is justified by R if for every
assertion φ, we have a certificate justif :` R ∧ wps(φ) ⇒ wps′(φ). We say that
a derivation tree for the judgment {P} ` G {Q} justifies a structure preserving
transformation from G to G′, if the substitution of every atomic subprogram g in
G by g′ is justified by a pre-condition R s.t. {R} ` g {R′} is the corresponding
derivation sub-tree of {P} ` G {Q}.

The following result, in combination with Lemma 5, states that certificate
translation from G to G′ is feasible if G′ is derived from G by a structure pre-
serving transformation that is justified by a valid analysis judgment.

Lemma 6. Let G′ by a program derived from G by a structure preserving trans-
formation, justified by the certified judgment {R} ` G {R′}. Then we can build
a derivation tree for the judgment {P ∧R} ` G′ {Q∧R′} from the certificate of
the original judgment {P} ` G {Q}.

Proof. The proof is by induction on the derivation of {P} ` G {Q}. We consider
only some representative cases, and assume w.l.g. (by trivial applications of the
subsumption rule) that {P} ` G {Q} and {R} ` G {R′} are derived applying
exactly the same rules. For simplicity, we assume the existence of the following
extra certificates, built by application of the operators of the proof algebra, and
by definition of wp, weak, πi and ⊕i:

1. distrib∧,wp :` wps(φ) ∧ wps(ψ) ⇒ wps(φ ∧ ψ)
2. distrib∧,weak :` weaki(φ ∧ ψ) ⇒ weaki(φ) ∧ weaki(ψ)
3. distrib∧,πi

:` πi(φ ∧ ψ) ⇒ πi(φ) ∧ πi(ψ)
4. distrib∧,⊕i :` (φ ∧ ψ)⊕i (φi ∧ ψi) ⇒ (φ⊕i φi) ∧ (ψ ⊕i ψi)
5. commut∧ :` φ ∧ ψ ⇒ ψ ∧ φ
6. assoc∧ :` (φ ∧ ψ) ∧ ϕ⇒ φ ∧ (ψ ∧ ϕ)

– Base case: last rule applied is [AB]. Let s = G and s′ = G′, then we have
R = wps(R′) and P = wps(Q). Since R justifies the substitution of s by s′,
there exist a certificate for R ∧ wps(R′ ∧ Q) ⇒ wps′(R′ ∧ Q). By definition
of R and distrib∧,wp, we have a certificate for R ∧ P ⇒ wps′(R′ ∧Q), then,
by subsumption we get the certified judgment {R ∧ P} ` G′ {R′ ∧Q}.

– If the last rule applied is [CSS], we know that the judgments 〈P1〉 ` G 〈Q1〉
and 〈R1〉 ` G 〈R′1〉 are certified, and there exists certificates for P ⇒ P1,
Q1 ⇒ Q, R⇒ R1 and R′1 ⇒ R1. The judgment 〈P1 ∧R1〉 ` G′ 〈Q1 ∧R′1〉 is
certified, by I.H. Besides, using rules of the proof algebra, we get certificates
for the judgments P ∧R⇒ P1∧R1, Q1∧R′1 ⇒ Q∧R. By application of the
subsumption rule [CSS], we get the certified judgment {P∧R} ` G′ {Q∧R′}.

– If the last rule applied is [FB], we have that G is equal to the program
Forall i = m : n do G1, that G′ is equal to Forall i = m : n do G′1, P =∧n

j=m wpi:=j(Pj), R =
∧n

j=m wpi:=j(Rj), Q =
∑n

j=m weaki(Qj) and R′ =∑n
j=m weaki(R′j). In addition, we know the judgments {Pj} ` G1 {Qj} and

{Rj} ` G1 {R′j} are certified, for every j ∈ [m,n]. By I.H., we get the

certified judgments {Pj ∧Rj} ` G′1 {Qj ∧R′j}, and therefore, by application
of the rule [FB], we have the certified judgment

{
∧n

j=m wpi:=j(Pj ∧Rj)} ` G′1 {
∑n

j=m weaki(Qj ∧R′j)}

From commut∧, assoc∧ and distrib∧,wp, we can define a certificate for P ∧
R⇒

∧n
j=m wpi:=j(Pj ∧Rj). From distrib∧,weak and assoc+ we have a certifi-

cate for
∑n

j=m weaki(Qj ∧ R′j) ⇒ Q ∧ R′. Therefore, by application of the
subsumption rule [CSS] we get the desired result.

– If the last rule applied is [E], then G = Execi(G1), G′ = Execi(G′1), for some
G1, G

′
1, and Q and R′ are equal to P ⊕i Qi and R ⊕i Ri, respectively, for

some Qi, Ri. In addition we know that the judgments {πi(P)} ` G1 {Qi}
and {πi(R)} ` G1 {Ri} are certified. By I.H., we have the certified judgment
{πi(P)∧πi(R)} ` G′1 {Qi∧Ri}. From distrib∧,πi we get the certificate πi(P ∧
R) ⇒ πi(P)∧πi(R), and hence, by subsumption the certified judgment {P ∧
R} ` G′ {(P ∧R)⊕i (Qi ∧Ri)}. In addition, by application of distrib∧,⊕i we
have a certificate for (P ∧R)⊕i (Qi∧Ri) ⇒ (P ⊕iQi)∧(R⊕iRi). Therefore,
by application of the subsumption rule [CSS], we get the desired result.

Copy propagation for arrays. Since array operations are common in pro-
grams targeting data intensive applications, it is of interest to extend traditional
copy propagation to consider copy operations between arrays. Naturally, this
transformation requires a richer analysis domain to relate not simply arrays but
array intervals.

Consider an abstract interpretation I = 〈A, ↓,+,weak, π,⊕, ρ〉 with domain
A = P(NA × Interval × NA × Interval). An element (A, [m,n], A′, [m′, n′]) in
NA × Interval ×NA × Interval , denoted A[m,n] = A′[m′, n′] for readability, is
satisfied by a memory hierarchy σ ∈ H if the intervals [m,n] and [m′, n′] are
equally sized and the arrays A and A′ coincide on that ranges. An element a
of the abstract domain A is satisfied by a memory hierarchy σ ∈ H if for all
A[m,n] ∈ S, σ satisfies A[m,n].

Definition 11. Let a be an abstract element such that A[m,n] = A′[m′, n′] ∈ a.
Consider an atomic statement s that reads an array range A[x, y] such that
[x, y] ⊆ [m,n]. Then, the judgment 〈a〉 ` s 〈a′〉 induces a transformation of s
into s′ if s′ is the result of substituting every access of A[i] in s by A′[i−m+m′].

For instance, let s be the statement Kernel〈Z = V ectAdd(B[0, k], C[0, k])〉 and
a ∈ A such that B[0, k] = A[m,m+ k] ∈ a. Then, for any a′ ∈ A the judgment
〈a〉 ` s 〈a′〉 induces the substitution of the atomic statement s by the statement
Kernel〈Z = V ectAdd(A[m,m+ k], C[0, k])〉.

Let the program G and a, a′ ∈ A s.t. there is a derivation of the judgment
〈a〉 ` G 〈a′〉. We say that the derivation tree of 〈a〉 ` G 〈a′〉 induces a struc-
ture preserving transformation of G into G′ if every substitution of an atomic
statement s in G by s′ in G′, is induced by a judgment 〈b〉 ` s 〈b′〉, root of a
derivation subtree of 〈a〉 ` G 〈a′〉.

Consider the certified judgment {Φ} ` G {Ψ}. A first requirement to trans-
late the judgment along array copy propagation is a certificate of the analysis
judgment 〈a〉 ` G 〈a′〉. To this end, we interpret the result of the analysis with
a concretization function γ : A→ Prop defined as

γ(A[m,n] = A′[m′, n′]) .= (n−m = n′ −m′) ∧ (∀m≤i≤n. A[i] = A′[i+m′ −m])

Lemma 7. Consider a program G and a valid analysis judgment 〈a〉 ` G 〈a′〉.
Assume that the abstract interpretation I is consistent with the verification en-
vironment, and that the judgment {γ(a)} ` G {γ(a′)} justifies a copy propaga-
tion transformation from G to a program G′. Then, for every certified judgment
{Φ} ` G {Ψ} we have a certified judgment {γ(a) ∧ Φ} ` G′ {γ(a′) ∧ Ψ}.

Consider again the substitution of Kernel〈Z = V ectAdd(B[0, k], C[0, k]〉 by
the statement Kernel〈Z = V ectAdd(A[m,m+ k], C[0, k]〉 induced by 〈a〉 ` s 〈a′〉
such that B[0, k] = A[m,m+k] ∈ a. The interpretation γ(a) is such that γ(a) ⇒
γ(B[0, k] = A[m,m+k]). Hence, to show that this atomic substitution is justified
by the analysis consists on requiring the validity of the following proposition:

γ(B[0, k] = A[m,m+ k]) ∧ φ[B[0,k],C[0,k]/Z] ⇒ φ[A[m,m+k],C[0,k]/Z]

4.2 SPMD Distribution

SPMD distribution is a common parallelization technique that spreads over mul-
tiple processors the execution of the same program over independent fragments
of data.

Consider a subprogram Execi(Forall j = 0 : k.n do g) executing in parallel k.n
instances of g in the i-th child memory. Since we are considering safe programs,
we can assume that each instance of g operates over independent data.

G′ is transformed from G by applying SPMD distribution if G′ is the result
of substituting every subprogram Execi(Forall j = 1 : k.n do g) by the equivalent
subprogram Group(G1 || . . . || Gk) where for any i ∈ [1, k], the program Gi is
defined as Execi(Forall j = 1 + (i− 1)n : i.n do g).

The following result follows from the commutativity and associativity of the
operator + and the distributivity of the function ↓ w.r.t. the operator +, in the
domain of logic formulae.

Lemma 8. Let G′ be a program transformed from G by SPMD distribution.
Then it is possible to translate a certified verification judgment {Φ} ` G {Ψ}
into a certified judgment {Φ} ` G′ {Ψ}.

Proof. To prove this, we show that a certificate of the judgment {P} ` G {Q}
corresponding to a subprogram of the form G = Execi(Forall j = 1 : k.n do g)
can be transformed into a certificate of the judgment {P} ` G′ {Q}, where
G′ = Group(G1 || . . . || Gk) with Gi = Execi(Forall j = 1 + (i − 1)n : n.i do G).
For simplicity, we refrain from considering the application of the subsumption
rule [CSS]. Then, by application of rule [E], Q is equal to ↓i(Q′) for some

Q′, and the judgment {↑i(P)} ` Forall j = 0 : k.n do G {Q′} is certified.
We know then that, by application of the rule [FB], Q′ =

∑k.n
j′=1 weakj(Qj′),

that ↑i(P) =
∧k.n

j′=1 wpj:=j′(Pj′) and that for each j′ ∈ [1, k.n] we have a cer-
tified judgment {Pj′} ` G {Qj′}. For each i ∈ [1, k] we construct a derivation
for the judgment {↑i(P)} ` Forall j = 1 + (i − 1)n : n.i do G {Q′i} where
Q′i =

∑n.i
j′=1+(i−1)n weakj(Qj′), by application of the rule [FB] and [CSS] with

a certificate of ↑i(P) ⇒
∧i.n

j′=1+(i−1)n wpj:=j′(Pj′). By application of rule [E] we
have a derivation for {P} ` Execi(Forall j = 1 + (i − 1)n : n.i do G) {↓i(Q′i)}.
Finally, by a simple application of the rule RGroup we get the certified judg-
ment {P} ` Group(G1 || . . . || Gk) {

∑k
i=1(↓

i(Q′i))}. To complete the proof notice
that by definition of

∑
and ↓i,

∑k
i=1(↓

i(
∑n.i

j′=1+(i−1)n weakj(Qj′))) is equal to

↓i(
∑k.n

j′=1 weakj(Qj′)).

4.3 Exec Grouping

The execution of the task Execi(G) starts the computation of the subprogram
G on the i-th child memory. Since the operation of delegating execution to one
of the child nodes may be costly for a parent processor, there is an interest on
merging relatively small and independent Exec operations executing in the same
node in a single Exec operation.

G′ is the result of applying Exec grouping to a program G, if it is defined
by substituting every subprogram Group({Execi(G1), . . . ,Execi(Gk)} ∪H) in G,
where {G1, . . . , Gk} are independent and maximal subprograms, with the sub-
program Group({Execi(Group({G1, . . . , Gk}))} ∪H).

The commutativity and associativity of the operator + : Prop → Prop and
the distributivity of the operation ↓i : Prop → Prop w.r.t. + enable us to prove
the following result.

Lemma 9. Let G′ be a program transformed from G by Exec grouping. Then,
it is possible to translate a certified judgment {Φ} ` G {Ψ} into the certified
judgment {Φ} ` G′ {Ψ}.

Proof. To prove this lemma we show that for a subprogram G of the form
Group({Execi(G1), . . . ,Execi(Gk)} ∪ H) with Gj maximal elements, and certi-
fied judgment {P} ` G {Q}, the judgment {P} ` G′ {Q} is also certified, with
G′ equal to Group({Execi(Group({G1, . . . , Gk}))}∪H). For simplicity, we do not
consider the application of the subsumption rule [CSS], and we assume the exis-
tence of the certificate distrib+,⊕i :` φ⊕i(ψ+ϕ) ⇒ (φ⊕iψ)+(φ⊕iϕ), built by ap-
plication of the operators of the proof algebra, and by definition of ⊕i. If we con-
sider the last application of rule [G], we know there are sets X and H ′ such that
X∪{Execi(Gj) | j ∈ [1, k]} are the maximal elements in H, H ′ = H\(X∪{Gi}),
and we have the certified judgments {P} ` Gj {Qj} for j ∈ [1, k], {P} ` G {Qg}
for g ∈ X, and {

∑
j∈[1,k]Qj +

∑
g∈X Qg} ` Group(H ′) {Q}. It can be seen

that if X ∪ {Execi(Gj) | j ∈ [1, k]} is the set of maximal elements in H,
then X ∪ {Execi(Group({Gj) | j ∈ [1, k]}))} are also the maximal elements in

H ′∪X ∪{Execi(Group({Gj) | j ∈ [1, k]}))}. Hence, if we show that the judgment
{P} ` Execi(Group({Gj) | j ∈ [1, k]})) {

∑
j∈[1,k]Qj} is certified, by definition

of
∑

, and application of the rule [G] we get the desired result. To show that
{P} ` Execi(Group({Gj) | j ∈ [1, k]})) {

∑
j∈[1,k]Qj} is a certified judgment, we

analyze the derivation of {P} ` Execi(Gj) {Qj} for each j ∈ [1, k]. We have then
that Qj = P ⊕i Q

′
j for some Q′j, and the certified judgment {↑i(P)} ` Gj {Q′j}.

Since Gj are independent subprograms, by application of the rule [G] we get
the certified judgment {↑i(P)} ` Group({Gj | j ∈ [1, k]}) {

∑
j∈[1,k]Q

′
j}, and

by application of [E], the certified judgment {P} ` Execi(Group({Gj | j ∈
[1, k]})) {P ⊕i

∑
j∈[1,k]Q

′
j}. Finally, from distrib+,⊕i we have a certificate for

P ⊕i

∑
j∈[1,k]Q

′
j ⇒

∑
j∈[1,k](P ⊕i Q

′
j), which together with an application of

rule [CSS] enables us to certify the judgment {P} ` Execi(Group({Gj | j ∈
[1, k]})) {

∑
j∈[1,k]Qj}.

4.4 Copy Grouping

A common property of the execution environments targeted by Sequoia pro-
grams is that scheduling several memory transfers simultaneously in a single
copy operation is more efficient than executing them independently.

Copy grouping is an optimization that takes advantage of this fact and con-
sists on clustering multiple independent copy operations in a single copy opera-
tion.

More precisely, we say that G′ is the result of applying copy grouping to a
program G, if every subprogram g of the form Group(H ∪ {g1, g2}) is replaced
by g′ = Group(H ∪ {g1,2}), such that g1 = Copy(A1, B1) and g2 = Copy(A2, B2)
are independent and maximal and g1,2 merges both copy operations in a single
operation Copy(A1, A2, B1, B2).

Lemma 10. Let G′ the result of applying copy grouping to a program G. Assume
that {P} ` G {Q} is a certified judgment. Then, assuming we have a certificate
c :` Tg1(Q1) ∧ Tg2(Q2) ⇒ Tg1,2(Q1 + Q2), we can give a certificate for the
judgment {P} ` G′ {Q}.

Proof. To prove this lemma we show that for every subprogram G of the form
Group(H ∪ {g1, g2}) transformed into the program G′ = Group(H ∪ {g1,2}), we
can certify the judgment {P} ` G′ {Q} from a certificate of the judgment {P} `
G {Q}. For simplicity, we refrain ourselves from considering applications of the
subsumption rule [CSS]. If we do not consider [CSS], the last rule applied for the
derivation of {P} ` G {Q} is [G]. Then, for some sets X and H ′, X ∪ {g1, g2}
is the set of maximal elements in H ∪{g1, g2}, and H ′ = H \X. In addition, we
have the judgments {P} ` g1 {Q1}, {P} ` g2 {Q2}, and {Q1+Q2+

∑
g∈X Qg} `

Group(H ′) {Q} and a judgment {P} ` g {Qg} for every g in X. It can be seen
that the dependence conditions do not change when merging the copy operations
g1 and g2. Hence, X ∪{g1,2} is the set of maximal elements in H ∪{g1,2}. Based
on this conditions, and by application of rule [G] and by associativity of +, it
sufficient to show that we can certify the judgment {P} ` Tg1,2 {Q1 + Q2}. To

this end, since we have certificates for P ⇒ Tg1(Q1) and P ⇒ Tg2(Q2) (the only
applicable rules are [AB] and [CSS]) and the certificate c, we can construct a
certificate for P ⇒ Tg1,2(Q1 +Q2) to certify the judgment {P} ` g1,2 {Q1 +Q2}.

5 Conclusion

We have used the framework of abstract interpretation to develop a sound proof
system to reason about Sequoia programs, and to provide sufficient conditions for
the existence of certificate translators. Then, we have instantiated these results
to common optimizations described in [12]. Our results lay the foundations for
extending Proof-Carrying Code to parallel languages.

There are several directions for future work. First, it would be of interest
to investigate weaker definitions of safe programs. The semantics of Sequoia
programs, and the definition of safety, rules out the possibility of races, in which
two subtasks can write on the same scalar variable or on the same interval of an
array. While there may be limited interest to extend the definition of Sequoia
programs to support non-deterministic computations, it would seem worthwhile
to allow for benign data races, where parallel subtasks are allowed to modify
the same variables, with the condition that they do it in an identical manner.
This notion of benign data races [13] is also closely related to non-strict and-
parallelism, as studied in [9]. In future work, we intend to develop a static analysis
that supports a relaxed notion of safety that allows for such benign races, and
adapts our analysis and verification framework accordingly.

In a different direction, it would be interesting to develop a prototype imple-
mentation of the proof system and to use it for verifying examples of Sequoia
programs. We also intend to extend our results on certificate translation by using
Sequoia to support parallel executions of sequential programs.

Finally, it would be interesting to see how separation logic compares with our
work. In particular, if we can replace the region analysis with classical separation
logic [16] or permission-accounting separation logic [4].

References

1. Alpern, B., Carter, L., and Ferrante, J. Modeling parallel computers as memory
hierarchies. In Proc. Programming Models for Massively Parallel Computers, 1993.

2. G. Barthe, B. Grégoire, C. Kunz, and T. Rezk. Certificate translation for optimiz-
ing compilers. In K. Yi, editor, SAS, volume 4134 of Lecture Notes in Computer
Science, pages 301–317. Springer, 2006.

3. G. Barthe and C. Kunz. Certificate translation in abstract interpretation. In
S. Drossopoulou, editor, ESOP, Lecture Notes in Computer Science. Springer,
2008. To appear.

4. R. Bornat, P. O’Hearn, C. Calcagno, and M. Parkinson. Permission accounting
in separation logic. In Principles of Programming Languages, pages 259–270, New
York, NY, USA, 2005. ACM Press.

5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Principles
of Programming Languages, pages 238–252, 1977.

6. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Principles of Programming Languages, pages 269–282, 1979.

7. W. J. Dally, F. Labonte, A. Das, P. Hanrahan, J. Ho Ahn, J. Gummaraju, M. Erez,
N. Jayasena, I. Buck, T. J. Knight, and U. J. Kapasi. Merrimac: Supercomputing
with streams. In SC, page 35. ACM, 2003.

8. K. Fatahalian, D. Reiter Horn, T. J. Knight, L. Leem, M. Houston, J. Young Park,
M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan. Sequoia: programming
the memory hierarchy. In SC, page 83. ACM Press, 2006.

9. M. V. Hermenegildo and F. Rossi. Strict and nonstrict independent and-parallelism
in logic programs: Correctness, efficiency, and compile-time conditions. J. Log.
Program., 22(1):1–45, 1995.

10. M. Houston, J. Young Park, M. Ren, T. Knight, K. Fatahalian, A. Aiken, W. J.
Dally, and P. Hanrahan. A portable runtime interface for multi-level memory
hierarchies. In M. L. Scott, editor, PPOPP. ACM, 2008.

11. Ujval J. Kapasi, Scott Rixner, William J. Dally, Brucek Khailany, Jung Ho Ahn,
Peter R. Mattson, and John D. Owens. Programmable stream processors. IEEE
Computer, 36(8):54–62, 2003.

12. T. J. Knight, J. Young Park, M. Ren, M. Houston, M. Erez, K. Fatahalian,
A. Aiken, W. J. Dally, and P. Hanrahan. Compilation for explicitly managed
memory hierarchies. In K. A. Yelick and J. M. Mellor-Crummey, editors, PPOPP,
pages 226–236. ACM, 2007.

13. Satish Narayanasamy, Zhenghao Wang, Jordan Tigani, Andrew Edwards, and Brad
Calder. Automatically classifying benign and harmful data races using replay
analysis. In Jeanne Ferrante and Kathryn S. McKinley, editors, PLDI, pages 22–
31. ACM, 2007.

14. G. C. Necula. Proof-carrying code. In Principles of Programming Languages, pages
106–119, New York, NY, USA, 1997. ACM Press.

15. G.C. Necula and P. Lee. Safe kernel extensions without run-time checking. In
Proceedings of OSDI’96, pages 229–243. Usenix, 1996.

16. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Logic in Computer Science, Copenhagen, Denmark, July 2002. IEEE Press.

A Region analysis

In this section we give the complete definition of the region analyses IR and IW ,
described in Sect. 3.2. First, we need some preliminary definitions.

Given a function f : NS+ → X for some set X, we define the functions
↓if : NS+ → X as (↓if)(x) = f(↓ix), and ↑if : NS+ → X as

(↑if)(x) =

{
f(↑ix) if x ∈ dom(↑i)
⊥ otherwise

Given a set of variables V ⊆ NS+ we define ↓iV as ↓iV = {↓ix : x ∈ V } and
↑iV as ↑iV = {↑ix : x ∈ V ∩ dom(↑i)}. These definitions of ↑i and ↓i can be
extended to functions with domains NA+ and N+, and also to subsets of NA+

and N+.

Interval analysis. We define an interval analysis that assigns to each scalar
variable the range of possible values. It serves as a basis for defining the region
analysis below, where the results given by this analysis are used to approximate
which part of an array is read (or written) by each subtask. That way we can
check that two parallel subtasks are not writing in the same part of an array.

We use an instance of the abstract interpretation

II = 〈AI, ↓, T I,+,weakI, πI,⊕I, ρI〉,

where the domain AI is defined as:

AI = (NS+ → Interval),
Interval = {(a, b) : a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞}, a ≤ b}⊥.

To define the transfer functions, we assume, for simplicity, that scalar functions
only take one parameter. However, we also consider a special case of Scalar, where
the function is a binary operation, op ∈ {+,−, ∗}. This way we can obtain more
accurate results for operations that are common for computing array indices.
The transfer functions T I

s are defined as follows:

T I
s(f) =

f ⊕ {a 7→ (−∞,∞)} if s = Scalar〈a = f(b)〉

f ⊕ {c 7→ [a1 op b1, a2 op b2]}
if s = Scalar〈c = a op b〉,
f(a) = [a1, a2], f(b) = [b1, b2]

f otherwise

The operator + is t, the standard join operator for the interval domain; the
operator weakI

i is defined as weakI
i(f) = f ⊕ {i 7→ (−∞,∞)}; the function ρI

is defined as ρI(f, b) = f . The operator πI
i is defined as πI

i(f) = ↓if , and the
operator ⊕I

i is defined as f1 ⊕I
i f2 = f1

i t ↑if2, where

f
i
(v) =

{
⊥ if v = x↓

i↓j1 ...↓jk , or v = x

f(v) otherwise

A satisfaction relation |=R for II is defined as follows:

σ |=R a = ∀v ∈ NS+, a1 ≤ σ(v) ≤ a2,

where a(v) = [a1, a2]. Note that if a = ⊥ or a(v) = ⊥ for some v ∈ NS+, then
there is no σ such that σ |=R a.

Lemma 11. The abstract interpretation II = 〈AI, ↓, T I,+,weakI, πI,⊕I, ρI〉 is
sound.

Proof. We need to prove that the II is consistent. This means proving that the
operators defined in II satisfy the conditions stated in Def. 5. We treat here the
cases of +, π and ⊕:

(+): Given memories σ, σ′ ∈ H, and values a, a′ ∈ AI, such that σ |= a and
σ′ |= a′, we want to prove that σ + σ′ |= a t a′ (since the operator + is
defined as t). Notice that for every scalar variable v ∈ NS+, (σ + σ′)(v) ∈
{σ(v), σ′(v)}. The result follows from the fact that |= is an approximation
order.

(π): Given a memory σ ∈ H, we have that πi(σ) = ↓iσ. It is easy to see that if
σ |= a, then ↓iσ |= ↓ia.

(⊕): Similar to the previous case. Given memories σ, σ′ ∈ H, we have that
σ ⊕i σ

′ = σi t ↑iσ′, where σi is defined the same as above and extended to
locations in the obvious way. It is easy to see that if σ |= a, and σ′ |= a′,
then σi t ↑iσ′ |= ai t ↑ia′.

ut

Region analysis. To define the read and write regions of a task, we will assume
that programs are annotated with the results computed with II. That is, for
a given program G, we assume we have a derivation of 〈>〉 ` G〈a〉, and we
annotate each subtask G′ of G with a1, written in subscript as G′a1

, if we have
a sub-derivation 〈a1〉 ` G′〈a2〉 for some a2 ∈ AI. 4 For our region analysis, only
the first component of the interval analysis is of interest, since it contains the
possible values of the scalar variables before executing the statement.

The read and write regions of a task are defined by two abstract interpreta-
tions

IR = 〈DR, ↓, TR,+,weakR, πR,⊕R, ρR〉,
IW = 〈DW , ↓, TW ,+,weakW , πW ,⊕W , ρW 〉,

given below. The domainsDR andDW are the same for both frameworks, namely

DR = DW = (NA+ → Interval)× P(NS+),

and P(NS+) is the lattice of subsets of variables from NS+. The first component
represents, for each array variable, the range used; and the second component
represents the set of scalar variables used. The transfer functions TR

s and TW
s

are defined below. For each s ∈ atomStmt, we assume we have a ∈ AI computed
using II as mentioned above. For each scalar variable m, we write m1 and m2 to
mean the possible range of m, i.e., a(m) = [m1,m2]. The functions TR

s and TW
s

are defined depending on the statement s with the following rules. Again, for
simplicity, we consider that Scalar and Kernel functions take only one parameter,
and we only consider one case of Copy, since the others are similar.

T R
s (da, ds) =

8><>:
(da, ds ∪ {b}) if s = Scalar〈a = f(b)〉
(da t {A 7→ [s1

A, e2
A]}, ds∪{sA, eA, sB}) if s = Copy↑(A[sA, eA], B[sB])

(da t {B 7→ [s1
B , e2

B]}, ds∪{sA, eA, sB , eB}) if s = Kernel〈A[sA, eA] = f(B[sB , eB])〉

4 Note that this is only a technical detail of our presentation. We could have as well
defined the region analysis and the interval analysis simultaneously.

T W
s (da, ds) =

8>>><>>>:
(da, ds ∪ {a}) if s = Scalar〈a = f(b)〉

(da t {B↑ 7→ [s1
B , s′]}, ds)

if s = Copy↑(A[sA, eA], B[sB]), and

s′ = s2
B + e2

A − s1
A

(da t {A 7→ [s1
A, e2

A]}, ds) if s = Kernel〈A[sA, eA] = f(B[sB , eB])〉

The operator + is t, weakR
i and weakW

i are defined as weakR
i (da, ds) =

weakW
i (da, ds) = (da, ds\{i}); and finally ρR(d, b) = ρW (d, b) = d. The functions

πR
i and πW

i are defined as πR
i (da, ds) = πW

i (da, ds) = (↓ida, ↑ids), and (d1
a, d

1
s)⊕R

i

(d2
a, d

2
s) = (d1

a, d
1
s)⊕W

i (d2
a, d

2
s) = (d1

a

i
t ↑id2

a, d
1
s ∪ d2

s).
We prove soundness of the abstract interpretations IR and IW , as stated in

Lemma 2 and Lemma 3.

Proof (Lemma 2). Given a program G, regions R1, R2 ∈ DR with 〈R1〉 `R

G 〈R2〉, and σ1, σ2 ∈ H with σ1 ≈R2 σ2. If σ1 ` G → σ′1 and σ2 ` G → σ′2, we
want to prove that

I. R1 v R2,
II. Modified(σ1, σ

′
1) = Modified(σ2, σ

′
2), and

III. σ′1 ≈R σ′2, where R = R2 ∪Modified(σ1, σ
′
1).

From this, the conclusion of Lemma 2 follows immediately.
We prove I by induction on the derivation of 〈R1〉 `R G 〈R2〉. All cases are

simple.
II and III are proved simultaneously by induction on the derivation of 〈R1〉 `R

G 〈R2〉. We show a few cases.

– Last rule applied is [G]. Let us assume that G = Group(H), and X is the set
of maximal elements in H with H = X ∪H ′. For every g ∈ X there exists
Rg ∈ DR such that 〈R1〉 `R g 〈Rg〉. Also, 〈

∑
g∈X Rg〉 `R Group(H ′) 〈R2〉.

From the derivation of σ1 ` Group(H) → σ′1, we have that, for each g ∈ X,
there exists σg

1 ∈ H such that σ1 ` g → σg
1 . Analogously, for each g ∈ X,

there exists σg
2 ∈ H such that σ2 ` g → σg

2 . Since R1 v Rg v R2, we
have that σ1 ≈Rg σ2. By IH, we have, for each g ∈ X, Modified(σ1, σ

g
1) =

Modified(σ2, σ
g
2), and σg

1 ≈Sg σg
2 , where Sg = Rg ∪ Modified(σ1, σ

g
1). This

means that σg
1 ≈Tg σg

2 , where Tg = R2 ∪ Modified(σ1, σ
g
1), since initially

σ1 ≈R2 σ2.
Hence,

∑
g∈X σg

1 ≈R

∑
g∈X σg

2 , where R = R2∪
⋃

g∈X Modified(σ1, σ
g
1). The

result follows from applying IH to Group(H ′).
– Last rule applied is [FF]. For each k ∈ [m,n] we have 〈Tj:=k(R1)〉 `R G〈Rk〉.

From the semantics, we have σ1[j 7→ k] ` G→ σk
1 and σ2[j 7→ k] ` G→ σk

2 .
By IH, and proceed similarly as with the case for [G].

– Last rule applied is [AF]. We only consider the case whereG = Copy(A[sA, eA], B[sB]),
with fG being the result of the interval analysis for the statement G. We
have that R2 = R1t{A 7→ [s1A, e

2
A]}, where fG(sA) = [s1A, s

2
A] and fG(eA) =

[e1A, e
2
A]. The range [s1A, e

2
A] is an over-approximation of the actual range that

is read from array A, hence the results follows.

Proof (Lemma 3). Assume a program G, regions W1,W2 ∈ DW with 〈W1〉 `W

G 〈W2〉. If σ ` G→ σ′, we want to prove that

I. W1 vW2,
II. Modified(σ, σ′) ⊆W2

To prove I, we proceed by induction on 〈W1〉 `W g 〈W2〉. All cases are simple.
To prove I, we also proceed by induction on 〈W1〉 `W g 〈W2〉. We consider a

few cases:

– Last rule applied is [G]. Let us assume that G = Group(H), and X is the
set of maximal elements in H with H = X ∪ H ′. For every g ∈ X there
exists Wg ∈ DW such that 〈W1〉 `R g 〈Wg〉. From the derivation of σ `
Group(H) → σg, we have that, for each g ∈ X, there exists σg ∈ H such
that σ ` g → σg. By IH, we have Modified(σ, σg) ⊆ Wg, for all g ∈ X.
Again, by IH, Modified(σ′, σg) ⊆W2. Since W1 vWg vW2 for each g ∈ X,
the result follows from the fact that

Modified(σ, σ′) ⊆
⋃

g∈X

(Modified(σ, σg) ∪Modified(σg, σ
′)) .

– Last rule applied is [AF]. We only consider the case whereG = Copy(A[sA, eA], B[sB]),
with fG being the result of the interval analysis for the statement G. We have
that W2 = W1 t {B 7→ [s1B , s

2
B + e2A − sA1]}. The range [s1B , s

2
B + e2A − sA1]

is an over-approximation of the actual range that is written from array B,
hence the results follows.

B Weakest pre-condition

In this section we present the complete definition of the weakest pre-condition
transformers for atomic statements presented in Sect. 3.3.

The transfer function for copy to the parent memory is

{P} ` Copy↑(A[m,n], B[k]) {Q},

where P = Q[B
↑⊕[k,k+n−m] 7→A[m]/B↑]. Given two arrays A and B and scalars

m, n and k, we write B ⊕ [m,n] 7→ A[k] to mean the array obtained from B
by replacing the range [m,n] with values from A[k, k + n − m]. The transfer
functions for other types of copy (from the parent memory, and intra-memory)
are treated similarly.

The case of Kernel and Scalar are similar, so we will only consider the former.
For each function appearing in a Kernel or Scalar statement, we assume that
we have a pre- and a post-condition. To illustrate, let us consider a function f
with one parameter of array-type, and also returning and array. The pre- and
post-condition of f are first order formulae. Also, the pre-condition can refer to
the input variable (with arg), to the range of indices read of the argument (with
argstart and argend), and to the range of indices written of the result array (with

resstart and resend). The post-condition can also refer to the result variable (with
res).

Lets assume that f doubles each value of the input array, so the pre- and
post-condition could be written as follows:

Pre = (resend − resstart = argend − argstart)
Post = ∀x, resstart ≤ x ≤ resend ⇒ res[x] = 2 · arg[x− resstart + argstart]

The pre-condition states that the input and output array must have the same
length, and the post-condition states that all values of the result array are the
double of the values of the argument, for the corresponding ranges.

The transfer function for a function f with pre-condition Pre and post-
condition Post is the following:

{P} ` Kernel〈A[k, l] = f(B[m,n])〉 {Q},

where

P = P ′ ∧ ∀res, Q′ ⇒ Q[res/A]

P ′ = Pre[B/arg][m/argstart
][n/argend

][k/resstart][
l/resend

]

Q′ = Post [B/arg][m/argstart
][n/argend

][k/resstart][
l/resend

]

C Example program

In this section we present the complete verification of the program presented in
Sect. 3.4. We recall the code of the program:

GAdd = Group(G1 ‖ . . . ‖ Gn)

Gi = Execi(Group(InitArgs; Add;CopyZC))
InitArgs = CopyAX ‖ CopyBY

CopyAX = Copy↓(A[i S, (i+ 1)S], X[0, S])

CopyBY = Copy↓(B[i S, (i+ 1)S], Y [0, S]))
Add = Kernel〈Z[0, S] = VectAdd(X[0, S], Y [0, S])〉

CopyZC = Copy↑(Z[0, S], C[i S, (i+ 1)S])

As we mention in Appendix B, we assume a pre- and a post-condition for each
function used in a Kernel or Scalar. In the case of VectAdd we have the following:

PreVectAdd = (resend − resstart = arg1,end − arg1,start = arg2,end − arg2,start)

PostVectAdd = ∀k. resstart ≤ k < resend ⇒
res[k] = arg1[k − resstart + arg1,start] + arg2[k − resstart + arg2,start]

Note that we require that the array arguments have the same length. We want
to verify that the program satisfies the following judgment:

{true} ` GAdd {Post} (2)

Post = ∀k. 0 ≤ k < nS ⇒ C[k] = A[k] +B[k] (3)

First, we derive, for each Gi, the following judgment:

{true} ` Gi {Posti} (4)

Posti = ∀k, i S ≤ k < (i+ 1)S ⇒ C[k] = A[k] +B[k]

Applying the rule for atomic statement to the last action in the program we
have:

{Q2} ` CopyZC {Posti}
Q2 = ∀k, i S ≤ k < (i+ 1)S ⇒ (C ⊕ [i S, (i+ 1)S] 7→ Z[0])[k] = A[k] +B[k]

Applying subsumption we obtain the judgment:

{Q′2} ` CopyZC {Posti} (5)

Q′2 = ∀k. 0 ≤ k < S ⇒ Z[k] = A[k + i S] +B[k + i, S]

since Q′2 ⇒ Q2. Applying the atomic statement rule once again:

{Q3} ` Add {Q′2} (6)

Q3 = (S = S ∧ S = S ∧ S = S) ∧
(∀R. (∀k. 0 ≤ k < S ⇒ R[k] = X[k] + Y [k]) ⇒

(∀k. 0 ≤ k < S ⇒ R[k] = A[k + i S] +B[k + i S]))

Applying the rule for Group to (5) and (6), we obtain:

{Q3} ` Group(Add;CopyZC) {Posti} (7)

On the other hand we have that

{Q5} ` CopyAX {Q4} (8)

Q5 = ∀k. 0 ≤ k < S ⇒ (X ⊕ [0, S] 7→ A[i S])[k] = A[k + i S]
Q4 = ∀k. 0 ≤ k < S ⇒ X[k] = A[k + i S]

Applying the subsumption rule we obtain

{true} ` CopyAX {Q4} (9)

since true ⇒ Q5. Analogously, we have the following judgment:

{true} ` CopyBY {Q6} (10)

Q6 = ∀k. 0 ≤ k < S ⇒ Y [k] = B[k + i S]

Since Q4 ∧Q6 ⇒ Q3, we have, applying the subsumption rule on (7),

{Q4 ∧Q6} ` Group(Add;CopyZC) {Posti} (11)

We have Q4 + Q6 ⇒ Q4 ∧ Q6. Hence, applying the rule for Group to (9), (10),
and (11) we obtain

{true} ` Group(InitArgs ‖ (Add;CopyZC)) {Posti}

which is the desired result.

