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Abstract. A certificate is a mathematical object that can be used to
establish that a piece of mobile code satisfies some security policy. Since
in general certificates cannot be generated automatically, there is an
interest in developing methods to reuse certificates. This article stud-
ies methods that transform certificates of a program into certificates of
another program derived from the initial one by a semantically justified
program transformation. We also study the related problem to transform
certificates of a program instrumented with the results of a semantically
justified program analysis, into a certificate of the original program. The
transformations are conveniently described in the setting of abstract in-
terpretation. We illustrate applications of our results to certificate trans-
lation and to the justification of hybrid certificates.

1 Introduction

A certificate c is a mathematical object that can be checked automatically
against some property φ it intends to prove; certificates arise naturally in logic, in
the context of proof checking (via the Curry-Howard isomorphism) and of result
checking. Certificates are also used to carry evidence of innocuousness of com-
ponents in mobile code: in a typical proof carrying code [18] scenario, a piece of
mobile code is downloaded together with a certificate that shows its adherence
to the consumer policy. While certificate checking is usually well-understood,
certificate generation remains a challenging problem: while it is possible to gen-
erate certificates automatically for properties that are enforceable by automated
program analyses, and in particular type systems, certificate generation remains
necessarily interactive in the general case. It is therefore of interest to develop
methods that simplify the construction of certificates.

In this paper, we use the setting of abstract interpretation [13, 14] to de-
scribe a method for transforming certificates along program transformations.
We provide sufficient conditions for transforming a certificate of a program G
into a certificate of a program G′, where G′ is derived from G by a semantically
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justified program transformation. These results provide substantial leverage on
earlier work on certificate translation [8, 5]; see Section 2. A secondary contri-
bution is to provide an abstract justification of hybrid verification methods, in
which auxiliary verification methods, typically type systems, provide information
to a primary verification method, e.g. a type system or a program logic, which
exploits the information to increase its precision or efficiency. We formulate an
abstract notion of hybrid certificate, in which the certificate for the auxiliary
and primary methods cohabit, and apply our results on certificate translation
to show that hybrid certificates can be translated into primary certificates, and
thus bring the same guarantees (often in more compact form).

2 A primer on certificate translation

The primary goal of certificate translation is to extend the scope of Proof Car-
rying Code [18] to arbitrarily complex policies, by supporting the generation of
certificates from interactive source code verification. The scenario is of interest
in situations where the functional correctness of the downloaded code is essen-
tial, and where certificate issues such as size or checking time are not relevant,
e.g. in wholesale Proof Carrying Code, where one code verifier checks the certifi-
cate prior to distributing a cryptographically signed version to millions of code
consumers [12].

Certificate translation is tightly bound to the compilation infrastructure: for
compilers that do not perform any optimization, proof obligations are preserved
(up to syntactic equality), and hence it is possible to reuse directly certificates
of source code programs for their compilation; see e.g. [8, 6].

In contrast, program optimizations make certificate translation more chal-
lenging. In [5], we show in a simplified setting that one can define certificate
transformers for common program optimizations, provided one can infer au-
tomatically certificates of correctness for the underlying program analyses, by
means of certifying analyzers. The existence of certifying analyzers and certifi-
cate translators is shown individually for each optimization.

Comparison with our previous work. The initial motivation for the present work
is to provide a framework in which to formulate the basic concepts of certificate
translation. The lack of such a framework was a clear limitation of our earlier
work: as a consequence, it was quite difficult to extend our results or even to
assess the scalability of certificate translation.1

The present article addresses these limitations: we capture the essence of cer-
tificate translation in an algebraic setting that abstracts away from the specifics
of programming languages, program transformations, and of verification meth-
ods. By providing sufficient conditions for the existence of certificate transla-
tors, the applicability of the method becomes easy to assess. In fact, our results
1 Since certificate translation relies on program verification, one may consider that the

scalability of certificate translation strictly depends on the scalability of program
verification. However, we are only interested in the scalability of the translation
process.



provide a means to generate, for given verification settings and program trans-
formations, a set of proof obligations that guarantee the existence of certificate
translators. All results of [6, 5, 8] can then be recovered by discharging these
proof obligations. In order to further demonstrate the benefits of our framework
as regards applicability, we show that certificate translation scales to concurrent
languages, and can be used to justify hybrid certificates.

3 Certified solutions

This section extends the basic framework of abstract interpretation with cer-
tificate infrastructures, in order to introduce formally the notion of certified
solution. Definition 5 provides a general definition of certified solution that is
of independent interest from certificate transformation, and provides a unifying
framework for existing ad hoc definitions, see Section 8. For the purpose of this
article, one can think about certified solutions as:

– programs annotated with logical assertions, and bundled with a certificate
of the correctness of the verification conditions, or;

– programs annotated with abstract values (or types), and bundled with a cer-
tificate that the program is correct with respect to the logical interpretation
of the abstract values.

We view programs as flow graphs. Thus, programs are directed pointed graphs
with a distinguished set of output nodes, from which execution may not flow.

Definition 1 (Programs). A program is a pointed directed graph G=〈N, E, lsp〉,
where N is a set of nodes, lsp ∈ N is a distinguished initial node, and E ⊆ N×N
a finitely branching relation; elements of E are called edges. We let O be the set
of nodes without successors.

Throughout this section, we let G = 〈N , E , lsp〉 be a program. Both the analysis
and verification frameworks are coined as abstract interpretations. Note that,
in contrast to abstract interpretation, our domains are pre-orders, rather than
partial orders2.

Definition 2 (Abstract interpretation). Let G = 〈N , E , lsp〉 be a program.
An abstract interpretation of G is a triple I = 〈A, {Te}e∈E , f〉, where

– A is a pre-lattice3 〈DA,vA,wA,tA,uA,>A,⊥A〉 of abstract states. By abuse
of notation, we write A instead of DA;

– f is the flow sense, either forward (f =↓), or backward (f =↑);
2 One natural domain for the verification infrastructure is that of propositions; we do

not want to view it as a partial order, since it would later imply (in Definition 4)
that logically equivalent formulas have the same certificates, which is not desirable.

3 Although it is sufficient to consider meet or join semi-lattices, depending on the
flow of the interpretation, we find it more convenient to require our domains to be
pre-lattices, since we deal both with forward and backwards analyses.



– {Te}e∈E : A→ A is a family of monotone transfer functions.

Thus, an abstraction of the program consists of an abstract domain, e.g. asser-
tions or types, and of transfer functions, e.g. weakest precondition transformers,
or transfer functions. Program semantics can be defined in the same way; how-
ever, there is no need to consider semantics as soundness issues are orthogonal
to the paper. A common means to verify program properties is to consider (pre-
or post-) fixpoints of the transfer functions.

Definition 3 (Solution). A labeling S : N → A is a solution of I if

– f =↑ and for every l in N , S(l) v
d
〈l,l′〉∈E T〈l,l′〉(S(l′));

– f =↓ and for every node l in N , S(l) w
⊔
〈l′,l〉∈E T〈l′,l〉(S(l′)).

In order to capture the notion of certified solution at an appropriate level of
abstraction, we rely on a general notion of certificate infrastructure.

Definition 4 (Certificate infrastructure). A certificate infrastructure for
G consists of an abstract interpretation I = 〈A, {Te}e∈E , f〉 for G, and a proof
algebra P that assigns to every a, a′ ∈ A a set of certificates P(` a v a′) s.t.:

– P is closed under the operations of Figure 1, where a, b, c ∈ A;
– P is sound, i.e. for every a, a′ ∈ A, if a 6v a′, then P(` a v a′) = ∅.

In the sequel, we write c :` a v a′ or c :` a′ w a instead of c ∈ P(` a v a′).

In the context of standard proof carrying code, the underlying pre-lattice is that
of logical assertions, with logical implication ⇒ as pre-order, and the trans-
fer functions are the predicate transformers (based on weakest precondition or
strongest postcondition) induced by instructions at any given program point.
The particular form of certificates is irrelevant for this paper. It may neverthe-
less be helpful for the reader to think about certificates in terms of the Curry-
Howard isomorphism and consider that P is given by the typing judgment in a
dependently typed λ-calculus, i.e. P(φ) = {e ∈ E |` e : φ}, where E is the set
of expressions of the type theory. Under such assumptions, one can provide an
obvious type-theoretical interpretation to the functions of Figure 1; for example,
introu is given by the λ-term λf. λg. λa. 〈fa, ga〉.

In the sequel, we let I = 〈A, {Te}, f〉 be a certificate infrastructure for G.

Definition 5 (Certified solution). A certified solution for I is a pair 〈S, c〉,
where S : N → A is a labeling and c = (cl)l∈N is a family of certificates s.t. for
every l ∈ N ,

– if f =↑ then cl :` S(l) v
d
〈l,l′〉∈E T〈l,l′〉(S(l′));

– if f =↓ then cl :`
⊔
〈l′,l〉∈E T〈l′,l〉(S(l′)) v S(l).

It follows that S is a solution for I.

Many techniques, including lightweight bytecode verification and abstraction
carrying code, do not bundle code with (certified) solutions, but with a partial
labeling (and some certificates) from which a (certified) solution can be recon-
structed. The remaining of this section relates the construction of a (certified)
solution from a partial labeling.



axiom : P(` a v a)
weaku : P(` a v b) → P(` a u c v b)
weakt : P(` a v b) → P(` a v b t c)
elimu : P(` c u a v b) → P(` c v a) → P(` c v b)
introt : P(` a v c) → P(` b v c) → P(` a t b v c)
introu : P(` a v b) → P(` a v c) → P(` a v b u c)

Fig. 1. Proof Algebra

Definition 6 (Labeling). A partial labeling is a partial function S : N ⇀ A
s.t. entry and output nodes are annotated, i.e. O ∪ {lsp} ⊆ dom(S), and such
that the program is sufficiently annotated, i.e. the restriction GN\dom(S) of G to
nodes that are not annotated is acyclic. A labeling S is total if dom(S) = N .

In a partial labeling, annotations on entry and output nodes serve as specifica-
tion, whereas we need sufficient annotations to reconstruct a total labeling from
a partial one.

Definition 7 (Annotation propagation, verification condition). Let annot
be a partial labeling. The labeling annot is defined by the clause:

– if f =↑, annot(l) =
{

annot(l) if l ∈ dom(annot)d
〈l,l′〉∈E T〈l,l′〉(annot(l′)) otherwise

– if f =↓, annot(l) =
{

annot(l) if l ∈ dom(annot)⊔
〈l′,l〉∈E T〈l′,l〉(annot(l′)) otherwise

For every l ∈ dom(annot), the verification condition vc(l) is defined by the clause

– vc(l) := annot(l) v
d
〈l,l′〉∈E T〈l,l′〉(annot(l′)) if f =↑;

– vc(l) :=
⊔
〈l′,l〉∈E T〈l′,l〉(annot(l′)) v annot(l) if f =↓.

Given a partial labeling annot, one can build a certificate for annot from certifi-
cates for the verification conditions on dom(annot).

Lemma 1. Let annot be a partial labeling for I and assume given cl :` vc(l) for
every l ∈ dom(annot). Then there exists c′ s.t. 〈annot, c′〉 is a certified solution.

In the sequel, we shall abuse language and speak about certified solutions of the
form 〈annot, c〉 where annot is a partial labeling and c is an indexed family of
certificates that establish all verification conditions of annot.

4 Certifying analyzers

The certificate transformations studied in the next sections require that the
analyzers upon which the program transformation is based are certifying, i.e.
produce certificates which justify their results. In this section, we thus provide



sufficient conditions under which every solution may be certified. Proposition 1
below generalizes a previous result of Chaieb [11], who only considered the case
where f =↑ and f ] =↓.

Let G be a program, I] = 〈A], {T ]
e}, f ]〉 be an abstract interpretation,

I = 〈A, {Te}, f〉 a certificate infrastructure of program G, and γ : A] → A
a concretization function.

Proposition 1 (Existence of certifying analyzers). For every solution S]

of I], one can compute c s.t. 〈γ ◦ S], c〉 is a certified solution for I, provided
there exist:

– for every a, a′ ∈ A] s.t. a v] a′, a certificate monotγ(a, a′) :` γ(a) v γ(a′);
– for every x ∈ A, a certificate cons(x) :` φ(x), where φ(x) is defined in

Figure 2 according to the flows of the interpretations.

Proof.

f = f ] =↓

8>>>>>>><>>>>>>>:

hyp:=T ]
〈l′,l〉(S(l′)) v S(l)

p1:=monotγ(hyp) :` γ(T ]
〈l′,l〉(S(l′))) v γ(S(l))

p2:=cons(S(l′)) :` T〈l′,l〉(γ(S(l′))) v γ(T ]
〈l′,l〉(S(l′)))

p3:=weaku(−, p1) :` γ(T ]
〈l′,l〉(S(l′))) u T〈l′,l〉(γ(S(l′))) v γ(S(l))

p4:=elimu(p3, p2) :` T〈l′,l〉(γ(S(l′))) v γ(S(l))
cl:=introt({p4}〈l′,l〉∈E) :`

F
〈l′,l〉∈E T〈l′,l〉(γ(S(l′))) v γ(S(l))

f = f ] =↑

8>>>>><>>>>>:

hyp:=S(l) v] T ]
〈l,l′〉(S(l′))

p1:=monotγ(hyp) :` γ(S(l)) v γ(T ]
〈l,l′〉(S(l′)))

p2:=cons(S(l′)) :` γ(T ]
〈l,l′〉(S(l′))) v T〈l,l′〉(γ(S(l′)))

p3:=trans(p1, p2) :` γ(S(l)) v T〈l,l′〉(γ(S(l′)))
cl:=introu({p4}〈l,l′〉∈E) :` γ(S(l)) v

d
〈l,l′〉∈E T〈l,l′〉(γ(S(l′)))

f =↑ and f ] =↓

8>>>>>>><>>>>>>>:

hyp:=T ]
〈l′,l〉(S(l′)) v] S(l)

p1:=monotγ(hyp) :` γ(T ]
〈l′,l〉(S(l′))) v γ(S(l))

p2:=monotT :` T〈l′,l〉(γ(T ]
〈l′,l〉(S(l′)))) v T〈l′,l〉((γ(S(l)))

p3:=cons(S(l′)) :` γ(S(l′)) v T〈l′,l〉(γ(T ]
〈l′,l〉(S(l′))))

p4:=trans(p3, p2) :` γ(S(l′)) v T〈l′,l〉(γ(S(l)))
cl′ :=introu({p4}〈l′,l〉∈E) :` γ(S(l′)) v

d
〈l′,l〉∈E T〈l′,l〉(γ(S(l)))

f =↓ and f ] =↑

8>>>>>>><>>>>>>>:

hyp:=S(l) v] T ]
〈l,l′〉(S(l′))

p1:=monotγ(hyp) :` γ(S(l)) v γ(T ]
〈l,l′〉(S(l′)))

p2:=monotT :` T〈l,l′〉(γ(S(l))) v T〈l,l′〉(γ(T ]
〈l,l′〉(S(l′))))

p3:=cons(S(l′)) :` T〈l,l′〉(γ(T ]
〈l,l′〉(S(l′)))) v γ(S(l′))

p4:=trans(p3, p2) :` T〈l′,l〉(γ(S(l))) v γ(S(l′))
cl′ :=introt({p4}〈l,l′〉∈E) :`

F
〈l,l′〉∈E T〈l,l′〉(γ(S(l))) v γ(S(l′))

While Proposition 1 provides a means to construct certifying analyzers, it
is sometimes of interest to rely on more direct methods to generate certificates:
in [5], we show how to construct compact certificates for constant propagation
and common sub-expression elimination in an intermediate language.



f = f ] =↓ Te(γ(x)) v γ(T ]
e (x))

f = f ] =↑ Te(γ(x))wγ(T ]
e (x))

f =↑, f ] =↓ Te(γ(T ]
e (x))) w γ(x)

f =↓, f ] =↑ Te(γ(T ]
e (x))) v γ(x)

Fig. 2. Definition of φ(x)

5 Certificate transformation

In this section, we provide sufficient conditions of existence for certificate trans-
formers, that maps certificates of a program G into certificates of another pro-
gram G′, derived from G by a program transformation. Rather than attempting
to prove a general result where G and G′ are related in some complex manner,
we establish three existence results that can be used in combination to cover
many cases of interest.

In a first instance, certificate transformation as defined in Section 5.1 requires
that the transformed program G′ is a subgraph of the original program G. This
is the case, for example, when G′ is derived from G by applying optimizations
such as constant propagation or common sub-expression elimination. In a sec-
ond instance, Section 5.2 generalizes program transformations by allowing G′ to
contain additional nodes that arise from duplicating fragments of G, as is the
case for transformations such as loop unrolling. Finally, in Section 5.3, we pro-
vide a notion of program skeleton, which abstracts away some of the structure
of the program, to deal with transformations that do not preserve so tightly the
structure of programs, such as code motion.

Throughout this section, we assume given two programs: an initial program
G = 〈N , E , lsp〉 and a transformed program G′ = 〈N ′, E ′, lsp〉. Furthermore,
we assume given the required infrastructure to certify these programs; more
concretely, consider the two abstract interpretations I = 〈A, {Te}e∈E , f〉 and
I ′ = 〈A, {T ′e}e∈E′ , f〉 over G and G′, and a proof algebra P over A. Note that
the abstract interpretations share the same underlying domain and flow sense.

5.1 Basic case

In this section, we assume that G′ is a subgraph of G, i.e. N ′ ⊆ N and E ′ ⊆ E .
Furthermore, we assume given an abstract interpretation I] = 〈A], {T ]

e}e∈E , f
]〉

of G that justifies the transformation from G to G′.

Proposition 2 (Existence of certificate transformers). Let 〈S, cS〉 be a
certified solution for I such that for every 〈l1, l2〉 ∈ E ′ and a ∈ A:

– if f =↑ then justif(l1, l2) :` S(l1) u T〈l1,l2〉(a) v T ′〈l1,l2〉(a);
– if f =↓ then justif(l1, l2) :` T ′〈l1,l2〉(a) v S(l2) u T〈l1,l2〉(a)



Let a = S(l), a′ = S(l′), T = T〈l,l′〉 and T ′ = T ′〈l,l′〉 in:

hyp1:=monotT : P(` b1 v b2) → P(` T (b1) v T (b2))
hyp2:=distribT : P(` T (b1) u T (b2) v T (b1 u b2))

p1:=goal(l′) :` a′ u annot(l′) v annot
′
(l′)

p2:=hyp1(p1) :` T ′(a′ u annot(l′)) v T ′(annot
′
(l′))

p3:=justif(l, l′) :` a u T (a′ u annot(l′)) v T ′(a′ u annot(l′))
p5:=elimu(weaku(−, p2), p3) :` a u T (a′ u annot(l′)) v T ′(annot

′
(l′))

p6:=hyp2 :` T (a′) u T (annot(l′)) v T (a′ u annot(l′))
p7:=axiom :` a v a
p8:=introu(weaku(p7), weaku(p6)) :` a u T (a′) u T (annot(l′)) v a u T (a′ u annot(l′))
p9:=elimu(weaku(p5), p8) :` a u T (a′) u T (annot(l′)) v T ′(annot

′
(l′))

p10:=cS
l :` a v T (a′)

p11:=elimu(p9, p10) :` a u T (annot(l′)) v T ′(annot
′
(l′))

p12:=weaku(p11) :` a u
d
〈l,l′〉∈E T (annot(l′)) v T ′(annot

′
(l′))

goal(l):=introu({p12}〈l,l′〉∈E) :` a u
d
〈l,l′〉∈E T (annot(l′)) v

d
〈l,l′〉∈E T ′(annot

′
(l′))

Fig. 3. Definition of goal(l) for certificate translation (case f =↑)

Then, provided the certificates in Fig. 5 are given for every a1, a2, b1, b2 ∈ A,
one can transform every certified labeling 〈annot, c〉 for G into a certified la-
beling 〈annot′, c′〉 for G′, where annot′(l) = annot(l) u S(l) for every node l in
dom(annot′) = dom(annot) ∩N ′.

Proof. The idea is to build for every l in N ′ the certificate

– goal(l) :` S(l) u annot(l) v annot
′(l) if f =↑, or

– goal(l) :` annot
′(l) v S(l) u annot(l) if f =↓,

from which the existence of a certificate for annot′ follows. We proceed by induc-
tion, using the principle derived from the fact that annot is a sufficient annota-
tion. More concretely, one can attach to every node a weight that corresponds to
the length of the longest path to an annotated node, i.e. a node l ∈ dom(annot).
In the base case, where l ∈ dom(annot′), the certificate goal(l) is defined trivially,
since annot

′(l) = S(l) u annot(l). For the inductive step, where l 6∈ dom(annot′),
the proof is given in Figures 3 and 4 respectively for the backward and forward
case, where the application of certificates assoc←u , assoc→u and commutu is omit-
ted for readability.

Using the results of Proposition 1, Proposition 2 can be instantiated to prove
the existence of certificate transformers for many common optimizations, includ-
ing constant propagation and common subexpression elimination. In a nutshell,
one first runs the certifying analyzer, which provides the solution S, then per-
forms the optimization, and finally one provides a justification justif(l1, l2) for
each edge (instruction) that has been modified by the optimization. This pro-
cess is further illustrated in Section 5.4. However, Proposition 2 does not cover
optimizations that rely on second-order analyses I] to justify their result, such



Let a = S(l), a′ = S(l′), T = T〈l,l′〉 and T ′ = T ′〈l,l′〉 in:

p1:=goal′(l′) :` annot
′
(l′) v a′ u annot(l′)

p2:=monotT ′ :` T ′〈l′,l〉(annot
′
(l′)) v T ′〈l′,l〉(a

′ u annot(l′))

p3:=justif :` T ′〈l′,l〉(a
′ u annot(l′)) v a u T〈l′,l〉(a

′ u annot(l′))

p4:=distribT :` T〈l′,l〉(a
′ u annot(l′)) v T〈l′,l〉(a

′) u T〈l′,l〉(annot(l′))
p5:=weaku(p4) :` a u T〈l′,l〉(a

′ u annot(l′)) v T〈l′,l〉(a
′) u T〈l′,l〉(annot(l′))

p6:=cS
〈l′,l〉 :` T〈l′,l〉(a

′) v a

p7:=weaku(p6) :` T〈l′,l〉(a
′) u T〈l′,l〉(annot(l′)) v a u T〈l′,l〉(annot(l′))

p8:=trans(p2, trans(p3, trans(p5, ))) :` T ′〈l′,l〉(annot
′
(l′)) v a u T〈l′,l〉(annot(l′))

p9:=weakt(axiom) :` T〈l′,l〉(annot(l′)) v
F
〈l,l′〉∈E T (annot(l′))

p10:=introu(weaku(axiom), weaku(p9)) :
` a u T〈l′,l〉(annot(l′)) v a u

F
〈l,l′〉∈E T (annot(l′))

p11:=trans(p8, p10) :` T ′〈l′,l〉(annot
′
(l′)) v a u

F
〈l′,l〉∈E T (annot(l′))

P12:=introt({p13}〈l′,l〉∈E′) :`
F
〈l′,l〉∈E T ′〈l′,l〉(annot

′
(l′)) v a

F
〈l′,l〉∈E T (annot(l′))

Fig. 4. Definition of goal(l) for certificate translation (case f =↓)

monotT : P(` a1 v a2) → P(` T (a1) v T (a2))
distr←(T,u) :` T (a1) u T (a2) v T (a1 u a2)

distr→(T,u) :` T (a1 u a2) v T (a1) u T (a2)

assoc←u : P(` a1 u (b1 u b2) v (a1 u b1) u b2)
assoc→u : P(` (a1 u b1) u b2 v a1 u (b1 u b2))
commutu : P(` a1 u a2 v a2 u a1)

Fig. 5. Requirements for certificate translation.

as dead variable elimination. This motivates the following mild generalization,
in which the transformation is justified w.r.t. a composition operator.

Proposition 3. Let � : A × A → A be a composition operator s.t. for every
a1, a2, b1, b2 ∈ A there exists a certificate

monot� : P(` a1 v a2) → P(` b1 v b2) → P(` a1 � b1 v a2 � b2)

Let 〈S, cS〉 be a certified solution for I s.t. for every 〈l1, l2〉 ∈ E ′ and a ∈ A:

– if f =↑ then justif(l1, l2) :` S(l1) � T〈l1,l2〉(a) v T ′〈l1,l2〉(a � S(l2));
– if f =↓ then justif(l1, l2) :` T ′〈l1,l2〉(a � S(l1)) v S(l2) � T〈l1,l2〉(a)

Then, provided the certificate monotT defined in Fig. 5 exist for all a1, a2 ∈
A, every certified labeling 〈annot, c〉 for G can be transformed into a certified
labeling 〈annot′, c′〉 for G′, where annot′(l) = annot(l) � S(l) for every node l in
dom(annot′) = dom(annot) ∩N ′.
Proof. The proof similar that of Proposition 2. The definition of goal, from which
the existence of c′ follows, is sketched in Figures 6 and 7.



Let a = γ(S(l)), a′ = γ(S(l′)), T = T〈l,l′〉 and T ′ = T ′〈l,l′〉 in:

p1:=goal(l′) :` a′ � annot(l′) v annot
′
(l′)

p2:=monotT ′(p1) :` T ′(a′ � annot(l′)) v T ′(annot
′
(l′))

p3:=justif :` a � T (annot(l′)) v T ′(a′ � annot(l′))
p4:=trans(p3, p2) :` a � T (annot(l′)) v T ′(annot

′
(l′))

p5:=axiom :` T (annot(l′)) v T (annot(l′))
p6:=axiom :` a v a
p7:=weaku(p5) :`

d
〈l,l′〉∈E T〈l,l′〉(annot(l′)) v T (annot(l′))

p8:=monot�(p6, p7) :` a �
d
〈l,l′〉∈E T〈l,l′〉(annot(l′)) v a � T (annot(l′))

p9:=trans(p8, p4) :` a �
d
〈l,l′〉∈E T〈l,l′〉(annot(l′)) v T ′(annot

′
(l′))

p10:=introu({p9}〈l,l′〉∈E) :` a �
d
〈l,l′〉∈E T〈l,l′〉(annot(l′)) v

d
〈l,l′〉∈E T ′〈l,l′〉(annot

′
(l′))

Fig. 6. Definition of goal for relational certificate translation (case f =↑)

Let a = γ(S(l)), a′ = γ(S(l′)), T = T〈l′,l〉 and T ′ = T ′〈l′,l〉 in:

p1:=goal(l′) :` annot
′
(l′) v a′ � annot(l′)

p2:=monotT ′(p1) :` T ′(annot
′
(l′)) v T ′(a′ � annot(l′))

p3:=justif :` T ′(a′ � annot(l′)) v a � T (annot(l′))
p4:=trans(p2, p3) :` T ′(annot

′
(l′)) v a � T (annot(l′))

p5:=axiom :` T (annot(l′)) v T (annot(l′))
p6:=axiom :` a v a
p7:=weakt(p5) :` T (annot(l′)) v

F
〈l′,l〉∈E T〈l′,l〉(annot(l′))

p8:=monot�(p6, p7) :` a � T (annot(l′)) v a �
F
〈l′,l〉∈E T〈l′,l〉(annot(l′))

p9:=trans(p4, p8) :` T ′(annot
′
(l′)) v a �

F
〈l′,l〉∈E T〈l′,l〉(annot(l′))

p10:=introt({p9}〈l′,l〉∈E) :`
F
〈l′,l〉∈E T ′〈l′,l〉(annot

′
(l′)) v a �

F
〈l′,l〉∈E T〈l′,l〉(annot(l′))

Fig. 7. Definition of goal for relational certificate translation (case f =↓)

5.2 Code duplication

In this section, we consider the case where some subgraphs of the initial pro-
gram are duplicated in the transformed program, with the aim to trigger further
program optimizations. Typical cases of code duplication are loop unrolling and
function inlining.

Definition 8 (Node replication). A program G+ = 〈N ∪ N+, E+, lsp〉 is a
result of replicating nodes of program G = 〈N , E, lsp〉 if N+ ⊆ {l+ | l ∈ N} and
E = {〈l1, l2〉 | 〈l, l′〉 ∈ E+ ∧ 〈l, l′〉 ∈ {l1, l+1 } × {l2, l+2 }}.

Let 〈I,P〉 be a certificate infrastructure with I = 〈A, {Te}e∈E , f〉. Then, we
define an extended certificate infrastructure I+ = 〈A, {Te}e∈E+ , f〉 for program
G+, the transfer functions Te for e ∈ E+ \ E being such that for all 〈l1, l2〉 ∈ E+,
with li ∈ {li, l+i }, T〈l1,l2〉 = T〈l1,l2〉.



Proposition 4. Assume the certificates of Fig. 5 exist. Then every certified
solution 〈S, c〉 for G can be transformed into a certified solution 〈S+, c′〉 for G+,
s.t. S+(l+) = S(l) for all l ∈ dom(S).

Proof. The proof proceeds by the induction principle explained in Proposition 2.
It consist mainly on a proof, for all l ∈ N and l ∈ N ∪ N+ s.t. l ∈ {l, l+}. of
the certificate

– goal(l, l) :` annot(l) v annot
+(l), if f =↑, or

– goal(l, l) :` annot
+(l) v annot(l), if f =↓.

For l, l s.t. l ∈ dom(annot), goal is trivial by definition. A sketch of the induc-
tive step for the backward case follows, where we implicitly used the hypothesis
T〈l,l′〉 = T〈l,l′〉:

p1:=goal(l′, l′) :` annot(l′) v annot
+
(l′)

p2:=monotT (p1) :` T〈l,l′〉(annot(l′)) v T〈l,l′〉(annot
+
(l′))

p3:=weak(p2) :`
d
〈l,l′〉∈E T〈l,l′〉(annot(l′)) v T〈l,l′〉(annot

+
(l′))

goal(l):=introu(p3) :`
d
〈l,l′〉∈E T〈l,l′〉(annot(l′)) v

d
〈l,l′〉∈E+ T〈l,l′〉(annot

+
(l′))

5.3 Program skeletons

Proposition 2 requires that the transformation is justified for each edge of the
program; this rules out several well known optimizations such as instruction
swapping or code motion, whose justification involve more than one instruction.
To overcome this limitation, one can abandon the intuitive representation of
programs, where each edge represents one instruction, and cluster several in-
structions into a single edge. The purpose of this section is to capture formally
this idea of clustering, and use it to strengthen our basic result.

Throughout this section, we assume that N0 ⊆ N is a set of nodes such
that G|N\N0 and G′|N ′\N0

are acyclic. We define E0 = E? ∩ N0 × N0 where E?

denote the transitive closure of E . Let 〈I,P〉 be a certificate infrastructure with
I = 〈A, {Te}, f〉. The transfer functions T̂ are defined for every 〈l, l′〉 ∈ E0 and
a ∈ A as Ť〈l,l′〉(a), where Ťe is defined for every e ∈ E as:

– if f =↑,
{
Ť〈l,l′〉 = T〈l,l′〉 〈l, l′〉 ∈ E
Ť〈l,l′〉(a) =

d
{〈l,l′′〉∈E|reaches(l′′,l′)} T〈l,l′′〉(Ť〈l′,l′′〉(a)) 〈l, l′〉 6∈ E

– if f =↓,
{
Ť〈l′,l〉 = T〈l′,l〉 〈l′, l〉 ∈ E
Ť〈l′,l〉(a) =

⊔
{〈l′′,l〉∈E|reaches(l′,l′′)} T〈l′′,l〉(Ť〈l′,l′′〉(a)) 〈l′, l〉 6∈ E

where the condition reaches(l, l′) stands for the existence of a sequence of labels
l1, . . . , lk with l1 = l and lk = l′ s.t. 〈li, li+1〉 ∈ E , for all i ∈ {1, . . . , k − 1}. The
set E ′0 and the transfer functions T̂ ′ are defined in a similar fashion.

The results of the previous sections extend immediately to program skeletons.

Lemma 2. Let 〈S, cI〉 be a certified solution for I s.t dom(S) ⊆ N0. Then
〈Ŝ, ĉÎ〉 = 〈S, cI |N0〉 is a certified solution of Î = 〈A, T̂e, f〉.



Proposition 5. Let 〈Ŝ, ĉÎ〉 = 〈S, cI |N0〉 be a certified solution of Î = 〈A, T̂e, f〉.
Suppose that for every 〈l1, l2〉 ∈ E ′0 and a ∈ A:

– if f =↑ then justif(l1, l2) :` Ŝ(l1) u T̂〈l1,l2〉(a) v T̂ ′〈l1,l2〉(a);
– if f =↓ then justif(l1, l2) :` T̂ ′〈l1,l2〉(a) v Ŝ(l2) u T̂〈l1,l2〉(a)

Then every certified labeling 〈annot, c〉 for G such that dom(annot) ⊆ N0 can be
transformed into a certified labeling 〈annot′, c′〉 for G′, where annot′(l) is defined
as annot(l) u S(l) for all l ∈ dom(annot′) = dom(annot) ∩N ′.

Proposition 5 can be used to prove preservation of proof obligations for non-
optimizing compilers. Indeed, non-optimizing compilation transforms a graph
representation of a program by splitting each node into a subgraph of more
basic nodes, preserving the overall program structure. Thus, one can coalesce
back the generated subgraphs into a skeleton structure similar to the source
program. If we assume that transfer functions of the skeleton representation are
equal to those of the source program (it is not sufficient that the functions are
equivalent w.r.t. v; equality is essential), then proof obligations are preserved
and certificates can be reused without modification.

5.4 Example

We now instantiate the results of this section on the example of a fast exponen-
tiation algorithm. Its representation as a (labeled) graph is given in Figure 8.a;
labels are either assignments of the form x:=e, in which case the node has ex-
actly one successor, or conditional statements of the form b?, in which case the
node has exactly two successor nodes, respectively corresponding to the true and
false branch of the condition.

The certificate infrastructure is built over a weakest precondition calculus
over first-order formulae. Thus, the backward transfer functions are defined, for
any assertion φ, as T〈l,l′〉(φ) = φ[e/x] in case the node l contains the assignment
x:=e, and as b⇒ φ or ¬b⇒ φ respectively for the positive and negative branch
of a jump statement conditioned by the boolean expression b. We assume given
a certificate of functional correctness for the program, i.e. we assume given a
certified solution 〈annot, c〉 of I = 〈A, {Te}, ↑〉, where annot (given in blue in the
Figure) is the partial labeling s.t. the precondition is trivial, annot(l1) = true, the
invariant is annot(l2) = c×x′y′

= xy and the postcondition is annot(l7) = x′=xy.
The first transformation applied is loop unrolling, shown in Figure 8.b. For-

mally, it consists on duplicating a subset of nodes as defined in Section 5.2. In
the example, nodes l2, l3, l4 and l5 are respectively duplicated into the nodes l′2,
l′3, l

′
4, l
′
5 and a new subset of edges is defined accordingly. A certified labeling

〈annot+, c+〉, where annot+(l′2) = annot(l2), can be generated for the program
in Figure 8.b, by application of Proposition 4.

Next, suppose that we know (e.g. from the execution context) that the pro-
gram is called with an even y; such knowledge is formalized by a precondition
y = 2×p. Then, one can consider a forward abstract interpretation that analyses



parity of variables and which variables are modified. A certifying analyzer for
such an abstract interpretation exists by Proposition 1 and will produce a certi-
fied solution 〈S, cS〉 (given in green in the picture), such that S(l1)

def= y = 2× p,
S(l) def= y′ = 2× p ∧ x = x′ for l ∈ {l′2, l′3, l′5} and S(l) = true in any other case.

Figure 8.c contains an optimized version of the program of Figure 8.b, where
jump statements whose conditions can be determined statically have been elim-
inated (nodes l′2 and l′3) and unreachable nodes have been removed (node l′4),
and where assignments have been simplified by propagating the results of the
analysis (node l′5). By Proposition 2, one can build a certificate for the optimized
program, with labeling annot′(l) = annot(l) u S(l) for all nodes l ∈ dom(annot)
(in blue in the figure), provided there exists, for every a ∈ A and for every
modified edge, i.e. for every 〈l, l′〉 ∈ {〈l′2, l′3〉, 〈l′3, l′5〉, 〈l′5, l2〉}, a certificate:

justif〈l,l′〉 :` y′ = 2× p ∧ x = x′ u T〈l,l′〉(a) v T ′〈l,l′〉(a)

The remaining certificates justif(l, l′) for 〈l, l′〉 6∈ {〈l′2, l′3〉, 〈l′3, l′5〉, 〈l′5, l2〉} are triv-
ially generated since T ′〈l,l′〉 = T〈l,l′〉.

A further simple transformation consists of coalescing the nodes l′2, l
′
3 and l′5

to simplify the graph representation. Formally, we use the program skeletons to
cluster the sub-graph constituted by the nodes l′2, l

′
3 and l′5 into a single node.

Then, we define the transfer function T̂〈l′2,l2〉 = T ′〈l′5,l2〉 (formally, one should
have T〈l′2,l2〉 = T ′〈l′2,l′3〉

◦ T ′〈l′3,l′5〉
◦ T ′〈l′5,l2〉 but T ′〈l′2,l′3〉

and T ′〈l′3,l′5〉
are the identity

function). Hence, by a trivial application of Proposition 5, there exists a certified
solution 〈 ˆannot, ĉ〉, for the collapsed program representation 〈N0, E0, lsp〉, s.t.

ˆannot(l) = annot(l) for all l ∈ N0.
Finally, we perform liveness analysis on program variables and remove as-

signments to dead variables. The resulting program is given in Figure 8.d. The
remaining of this subsection is devoted to an explanation of the analysis, and to
a justification of the transformation.

Assuming a standard program semantics, we say that a variable is live at a
certain program point if its value will be needed in the future. An intentional
definition of liveness would classify a variable x as live at a program node l
whenever there is a path from l that reaches a boolean or arithmetic expression
referring to x, without traversing an assignment to x. We prefer to use a more
extensional interpretation of liveness, as in Benton’s Relational Hoare Logic [9],
identifying a declaration of a set of live variables as a relational proposition. To
this end, we generalize the abstract domain A of the certificate infrastructure
to include relational propositions. The extension consists on partitioning the
domain of variables by attaching to each of them an index 〈1〉 or 〈2〉. The set of
transfer functions is also modified accordingly; for instance, the substitution φ[e/x]
corresponding to the assignment x:=e at node l, is replaced by the substitution
φ[e〈1〉/x〈1〉 ][

e〈2〉/x〈2〉 ], where e〈i〉 is the result of indexing every variable occurring at
e with 〈i〉.

Then, we define γ(X) =
∧

v∈X v〈1〉 = v〈2〉 as an interpretation of the fact that
all variables in X are live. In order to generate a certificate for the optimized
program, we apply Proposition 3, using as composition operator over relational



propositions the function � defined as φ � ψ = ∃x1, . . . , xk. φ[x
1
〈2〉/x] . . . [x

k
〈2〉/x] ∧

ψ[x
1
〈1〉/x] . . . [x

k
〈1〉/x] where {x1, . . . , xk} are the set of variables in φ or ψ. For read-

ability, if φ is a non-relational proposition, γ(X) � φ is denoted as the equivalent
proposition ∃y1, . . . , ym. φ where {y1, . . . , ym} = Var −X.

By Proposition 1, we can assume the existence of the certified solution
〈γ ◦ live, c′′〉 s.t. live(l1) = {x, y}, live(l′2) = {x, y, c} and live(l) = {x, y, c, x′, y′}
for l 6∈ {l1, l′2}. Since node l1 contains an assignment to variables x′ and y′ and
this variables are not live in node l′2, we may safely simplify the statement by
removing such assignments. From Proposition 3 we can transform the current
certified solution by assuming the certificate

justif(l1, l′2) :` γ(live(l1)) � T〈l1,l′2〉(φ) v T ′〈l1,l′2〉
(γ(live(l′2)) � φ)

whose goal is equivalent to ` φ[1/c][x/x′ ][y/y′ ] v (∃x′, y′. φ)[1/c].

6 Concurrency

This section generalizes the results on certificate transformation obtained for
sequential programs. Since our goal is to show that the results of Section 4 and
Section 5 scale to a concurrent setting, we base ourselves on a simple verification
framework, without considering issues of usability. Thus, we adopt a verification
infrastructure presented similar to Owicki-Gries logic [19], in the sense that ver-
ification is split in two independent tasks: local correctness, and global stability;
however, we do not attempt to minimize the number of proof obligations by
considering atomically executable code fragments.

Consider a program G, an abstract interpretation I] = 〈A], {T ]
e}, f ]〉, a cer-

tificate infrastructure 〈I,P〉 with I = 〈A, {Te}, f〉 and a concretization function
γ : A] → A. The representation of a concurrent program remains a single graph,
abstracting a simplified setting in which every concurrent process executes the
same program description. In a concurrent environment we must extend the
notion of solution of previous section. Given a labeling S, in addition to be a
solution of an abstract interpretation I as defined in Section 3, namely local
solution, we require S to be globally stable. We say that a condition a at node l
is globally stable if a concurrent component executing at any other node l′ will
not invalidate a. We abstract this idea by requiring for every node l and edge
〈l1, l′1〉, that the validity of S(l1) ensures the stability of the value S(l) along the
application of the transfer function T〈l1,l′1〉.

Definition 9 (globally stable solution). A labeling S, is a globally stable
solution of I] if it is a solution of I] and for every edge 〈l1, l′1〉 and node l the
following condition holds:

– f =↑ and S(l1) u S(l) v] T ]
〈l1,l′1〉

(S(l)) or,

– f =↓ and T ]
〈l′1,l1〉(S(l′1) u S(l)) v] S(l).



(a) Original program (b) Program after loop unrolling

(c) Program after optimizing transfor-
mations

(d) Program after node coalescing and
dead assignment elimination

Fig. 8. Certificate translation example

To give an intuition of this definition, consider the statement y:=2× x at node
l1 with successor l′1. A labeling S such that S(l1) = x ≥ 0 and S(l′1) = y ≥ 0,
satisfies the condition of being a solution of a weakest precondition calculus at
node l1. In a concurrent environment we must also verify that the conditions
x ≥ 0 and y ≥ 0 are not invalidated by any other statement. For instance, if
node l2 contains the statement x:=zy, we are due to ensure that it does not
invalidate neither x ≥ 0 nor y ≥ 0, modulo the validity of S(l2). Being the latter
task trivial, the former is feasible assuming S(l2) = even(y)∧y ≥ 0. Respectively,
S(l2) must also be proved stable with respect to the assignment at node l1.

Definition 10 (certified globally stable solution). A certified globally stable
solution for I is a triple 〈S, c, c′〉 where 〈S, c〉 is a certified solution of I and for
all 〈l1, l′1〉 ∈ E and l ∈ N ,



– f =↑ and c′(l1, l′1, l) :` S(l1) u S(l) v T 〈l1,l′1〉(S(l)) or,
– f =↓ and c′(l1, l′1, l) :` T 〈l′1,l1〉(S(l′1) u S(l)) v S(l).

Certifying analyzers can be extended to a concurrent setting.

Lemma 3 (Certifying Analyzers). Consider a solution S for the abstract
interpretation I]. Assume for every a, a′ ∈ A] s.t. a v] a′, the certificates
monotγ(a, a′) and cons defined in Proposition 1, and the certificate distrib(γ,u)

in Fig. 5. Then, one can compute c′ s.t. 〈γ ◦S, c, c′〉 is a certified globally stable
solution for I.

Proof.

f = f ] =↑

8>>>>>>><>>>>>>>:

hyp:=S(l) u S(l1) v] T ]
〈l,l′〉(S(l1))

p1:=monotγ :` γ(S(l) u S(l1)) v γ(T ]
〈l,l′〉(S(l1)))

p2:=distr(γ,u) :` γ(S(l)) u γ(S(l1)) v γ(S(l) u S(l1))

p3:=trans(p2, p1) :` γ(S(l)) u γ(S(l1)) v γ(T ]
〈l,l′〉(S(l1)))

p4:=cons :` γ(T ]
〈l,l′〉(S(l1))) v T〈l,l′〉(γ ◦ S(l1))

p5:=trans(p3, p4) :` γ ◦ S(l) u γ ◦ S(l1) v T〈l,l′〉(γ ◦ S(l1))

f =↓, f ] =↑

8>>>>>>>>>><>>>>>>>>>>:

hyp:=S(l) u S(l1) v] T ]
〈l,l′〉(S(l1))

p1:=monotγ :` γ(S(l) u S(l1)) v γ(T ]
〈l,l′〉(S(l1)))

p2:=distr(γ,u) :` γ(S(l)) u γ(S(l1)) v γ(S(l) u S(l1))

p3:=trans(p2, p1) :` γ(S(l)) u γ(S(l1)) v γ(T ]
〈l,l′〉(S(l1)))

p4:=monotT (p3) :`T〈l,l′〉(γ(S(l)) u γ(S(l1))) vT〈l,l′〉(γ(T ]
〈l,l′〉(S(l1))))

p5:=cons :` T〈l,l′〉(γ(T ]
〈l,l′〉(S(l1)))) v γ ◦ S(l1)

p6:=trans(p4, p5) :` T〈l,l′〉(γ(S(l)) u γ(S(l1))) v γ ◦ S(l1)

f = f ] =↓

8>>>>>>>>><>>>>>>>>>:

hyp:=T ]
〈l′,l〉(S(l′) u S(l1)) v] S(l1)

p1:=monotγ :` γ(T ]
〈l′,l〉(S(l′) u S(l1))) v γ(S(l1))

p2:=cons :` T〈l′,l〉(γ(S(l′) u S(l1))) v γ(T ]
〈l′,l〉(S(l′) u S(l1)))

p3:=trans(p2, p1) :` T〈l′,l〉(γ(S(l′) u S(l1))) v γ(S(l1))
p4:=distr(γ,u) :` γ(S(l′)) u γ(S(l1)) v γ(S(l′) u S(l1))
p5:=monotT (p4) :`T〈l′,l〉(γ(S(l′)) u γ(S(l1)))vT〈l′,l〉(γ(S(l′) u S(l1)))
p6:=trans(p5, p3) :` T〈l′,l〉(γ(S(l′)) u γ(S(l1))) v γ(S(l1))

f =↑, f ] =↓

8>>>>>>><>>>>>>>:

hyp:=T ]
〈l′,l〉(S(l′) u S(l1)) v] S(l1)

p1:=monotγ :` γ(T ]
〈l′,l〉(S(l′) u S(l1))) v γ(S(l1))

p2:=monotT (p1) :` T〈l′,l〉((γ(T ]
〈l′,l〉(S(l′) u S(l1))))) v T〈l′,l〉(γ(S(l1)))

p3:=cons :` γ((S(l′) u S(l1))) v T〈l′,l〉((γ(T ]
〈l′,l〉(S(l′) u S(l1))))

p4:=distr(γ,u) :` γ ◦ S(l′) u γ ◦ S(l1) v γ(S(l′) u S(l1))
p5:=trans(p4, trans(p3, p2)) :` γ ◦ S(l′) u γ ◦ S(l1) v T〈l′,l〉(γ(S(l1)))

Let G′ = 〈N ′, E ′, lsp〉 be a program transformed from G s.t. N ′ ⊆ N and E ′ ⊆ E
with associated certificate infrastructure 〈I ′,P〉, where I ′ = 〈A, {T ′e}, f〉. The fol-
lowing proposition generalizes certificate transformation for sequential programs
(Proposition 2) for a concurrent setting.

Proposition 6 (Existence of certificate transformers). Assume the exis-
tence of the certificates assocu, commutu and distr(T,u) defined in Fig. 5. Let



〈R, cR, c
′
R〉 be a certified globally stable solution of I s.t. for every 〈l1, l2〉 ∈ E

and a ∈ A we have the certificates:

– justif(l1, l2) :` T ′〈l1,l2〉(a) v R(l2) u T〈l1,l2〉(a), if f =↓; or
– justif(l1, l2) :` R(l1) u T〈l1,l2〉(a) v T ′〈l1,l2〉(a) if f =↑.

Then one can transform every certified globally stable labeling 〈S, c, c′〉 for G
into a certified labeling 〈S′, c2, c

′
2〉 for G′, where for all l ∈ N ′, we define S′(l)

equal to S(l) uR(l).

Proof. Building the certificate cS′ is exactly the same procedure as in section 5.
The case for the certificate c′S′ for non-interference follows:

case f =↑, let T = T〈l1,l′1〉 and T ′ = T ′〈l1,l′1〉
in:

p1:=justif :` R(l1) u T (R(l2)) v T ′(R(l2))
p2:=weaku :` R(l1) uR(l2) u T (R(l2)) v T ′(R(l2))
p3:=c′R :` R(l1) uR(l2) v T (R(l2))
p4:=introu(p3, axiom) :` R(l1) uR(l2) v T (R(l2)) uR(l1) uR(l2)
p5:=trans(p4, p2) :` R(l1) uR(l2) v T ′(R(l2))
p6:=c′S :` S(l1) u S(l2) v T (S(l2))
p7:=justif :` R(l1) u T (S(l2)) v T ′(S(l2))
p8:=introu(weaku(p6), axiom) :` S(l1) u S(l2) uR(l1) v T (S(l2)) uR(l1)
p9:=trans(p8, p7) :` S(l1) u S(l2) uR(l1) v T ′(S(l2))

p10:=introu(weaku(p9), weaku(p5)) :` S′(l1) u S′(l2) v T ′(S(l2)) u T ′(R(l2))
p11:=distribT :` T ′(S(l2)) u T ′(R(l2)) v T ′(S′(l2))
c′S :=trans(p10, p11) :` S′(l1) u S′(l2) v T ′(S′(l2))

case f =↓, let T = T〈l′1,l1〉 and T ′ = T ′〈l′1,l1〉 in:

p1:=c′R :` T (R(l′1) uR(l2)) v R(l2)
p2:=c′S :` T (S(l′1) u S(l2)) v S(l2)
p3:=introu(weak(p1), weak(p2)) :` T (S(l′1) u S(l2)) u T (R(l′1) uR(l2)) v S′(l2)
p4:=distr(T,u)T (S′(l′1) u S′(l2))T (S(l′1) u S(l2)) u T (R(l′1) uR(l2))
p5:=trans(p4, p3) :` T (S′(l′1) u S′(l2)) v S′(l2)
p6:=weak(p5) :` T (S′(l′1) u S′(l2)) u (R(l1)) v S′(l2)
p7:=justif :` T ′(S′(l′1) u S′(l2) v T (S′(l′1) u S′(l2)) u (R(l1))
c′S :=trans(p7, p6) :` T ′(S′(l′1) u S′(l2)) v S′(l2)

7 Hybrid certificates

In the preceding sections, we have considered scenarios where program analyses
are used to justify program transformations. Here we look at another scenario
where preliminary program analyses are used to gain valuable information (e.g.
on its heap or on its control flow graph) that is exploited by another, main,
verification task to increase either its precision or its efficiency. Such a scenario
is rather common in verification of object-oriented programs. For example, a



semantically sound weakest precondition for a field assignment x.f :=e must
consider the case of normal execution, as well as the case when x is a null pointer
and an exception is raised. However, it is sound to use a simplified weakest
precondition considering only the normal case, provided a safety analysis result
ensures that the variable x is not a null pointer,

We focus on the case where the preliminary analysis can be certified, and
define hybrid certificates, that consist of a certified solution of the preliminary
analysis, and a certificate of the program specification in a variant of the main
verification framework. Thus, we consider certificate infrastructures 〈I],P]〉 and
〈I,P〉 for program G = 〈N , E , lsp〉, with I] = 〈A], {T ]

e}, f ]〉 and I = 〈A, {Te}, f〉,
and let γ : A] → A be a monotone concretization function.

Definition 11 (Hybrid certified solution). An hybrid certified solution of
〈I], I〉 is a pair 〈p], p〉 where p] and p are certified solutions of I] and I respec-
tively.

We apply the results of the previous section to conclude that every hybrid certi-
fied solution can be transformed into a certified solution, from which the sound-
ness of hybrid verification methods follows (assuming soundness of the primary
verification method).

Corollary 1. Every hybrid certified solution 〈〈S], c]〉, 〈S, c〉〉, can be transformed
into a certified solution 〈S′, c′〉 for I = 〈A, {T ′e}, f〉, s.t. S′(l) = S(l) u γ(S](l))
for all l ∈ dom(S), provided we are given, for all 〈l, l′〉 ∈ E and a ∈ A, the
certificates

– justif(l, l′) :` γ(S](l)) u T〈l,l′〉(a) v T ′〈l,l′〉(a) if f =↑, or
– justif(l, l′) :` T ′〈l,l′〉(a) v γ(S](l′)) u T〈l,l′〉(a) if f =↓

and cons(x) :` φ(x), where φ(x) is defined in Figure 2.

8 Related work

Certified solutions. Abstraction Carrying Code (ACC) is an instance of Proof
Carrying Code where programs come with a solution in an abstract interpreta-
tion that can be used to specify the consumer policy [2]. ACC is closely related
to our notion of certified solution; in fact, one may view the latter as a natural
extension of ACC to settings where the pre-order relation is either undecidable,
or expensive to compute, and where the use of certificates is required in order to
check solutions. Abstraction Carrying Code offers the possibility to generate and
update certificates incrementally [1]. Besson et al [10] have recently developed
a program analysis framework in which certificates are used to verify inclusions
between elements of the abstract domain of polyhedra. Their analysis is also
an instance of a certified solution. Rival [20, 21] proposed a method to translate
the result of a static analysis along program compilation. Result validation is
restricted to post-fixpoint checking, i.e. there is no notion of certificate.



Certifying analyzers. We are aware of two previous works on certifying, or proof-
producing, program analyses. Both consider the backwards case. Seo, Yang and
Yi [23] consider a generic backwards abstract interpretation for a simple imper-
ative language and provide an algorithm that automatically constructs safety
proofs in Hoare logic from abstract interpretation results. Chaieb [11] considers
a flow chart language equipped with a weakest precondition calculus, and pro-
vides sufficient conditions of the existence of certificates for solutions of back-
wards abstract interpretations. The technique was applied in the context of a
certified PCC infrastructure [24].

Certificate translation. Müller and co-workers [3, 16] define a proof transforming
compiler for sequential Java. They consider Hoare logics for source and bytecode
programs, and transform a correct derivation for a Java program into a correct
derivation for the JVM program obtained by non-optimizing compilation.

Saabas and Uustalu [22] develop type-based methods to establish the ex-
istence of certifying analyzers and certificate transformers. They illustrate the
feasibility of their method by explaining in detail two particular transforma-
tions: common subexpression elimination and dead variable elimination. They
demonstrate the correctness of both transformations, by derivability of Hoare
logic proofs, and provide an algorithm to transform a Hoare proof of the original
program to a Hoare proof of the transformed program.

Hybrid certificates. Grégoire and Sacchini [15] have proved the soundness in
Coq of a hybrid verification condition generator for JVM programs; they use
a null pointer analysis to reduce the number of proof obligations. In a similar
way, Barthe, Pichardie and Rezk [7] rely on hybrid verification techniques for
verifying information flow in JVM programs. More generally, hybrid verification
is heavily used, both for type based analyses [17] and functional verification [4].

9 Conclusion

We have provided a crisp formalization of certificate translation in a mild ex-
tension of abstract interpretation in which solutions carry a certificate of their
correctness. Our formalization allows us to give a rational reconstruction of our
earlier work, to extend our earlier results to novel settings, and more generally
to establish the scalability of certificate translation. A further benefit of the
formalization is that it can be used to justify hybrid certificates.

Our next goal is to extend our results to relational program logics, which have
recently emerged as a means to show information flow policies for programs. In
parallel, we intend to refine our results on concurrent programs to verification
methods that mitigate the explosion of verification conditions. Such verification
methods should be expressible in our framework, using program skeletons to
cluster atomically executable subsets of adjacent nodes into single nodes. Finally,
we are also interested in the problem of transforming standard certificates into
hybrid certificates. We conjecture that such a transformation is definable for
certificates in a suitable normal form, and can be used for trimming proofs.
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APPENDIX

A Verification Infrastructure Soundness

Due to space constraints, we have omitted in the paper a formalization of pro-
gram semantics and the soundness of certificate infrastructures. In this appendix,
we briefly provide sufficient conditions for a verification infrastructure to be
sound. We begin by specifying the semantics of programs as a transition relation
on states. The definition of states implicitly considers sequential programs, but
we allow the semantics to be non-deterministic. Hereafter, we let G = 〈N , E , lsp〉
be a graph representation of a program and I = 〈A, {Te}, f〉 an abstract inter-
pretation of G.

A.1 Certified Solutions

Definition 12 (States, semantics). Let Env be an abstract set of environ-
ments. The set of states is defined as State = N×Env. The semantics of program
G is given by an abstract relation  ⊆ State× State.

For every abstract domain A, we assume that |=A⊆ Env × A is a satisfaction
relation, s.t. v is an approximation order, i.e., that for all η ∈ Env, a1, a2 ∈ A,
if |=A η : a1 and a1 v a2 then |=A η : a2. In the following, we write simply |=
omitting the subscript A.

Definition 13 (Consistency). We say that I is consistent with the semantics
of G w.r.t. |= iff for all states 〈l, η〉, 〈l′, η′〉 ∈ State such that 〈l, η〉 〈l′, η′〉, and
for all a ∈ A:

– if f =↓ and |= η : a, then |= η′ : Te(a);
– if f =↑ and |= η : Te(a), then |= η′ : a.

Lemma 4. Let S be a solution of the abstract interpretation I = 〈A, {Te}, f〉
and assume I consistent with the semantics of G. Then, if 〈l, η〉 k 〈l′, η′〉 and
|= η : S(l) then |= η′ : S(l′).

Proof. The proof is by natural induction on k.

Corollary 2. Let 〈annot, c〉 be a certified partial labeling of 〈I,P〉 and assume
I consistent with the semantics of G. Then, if 〈lsp, η〉  ∗ 〈lo, η′〉 with lo ∈ O
and |= η : annot(lsp) then |= η′ : annot(lo).

Proof. This result follows from Lemma 4 and Lemma 1.



A.2 Code Duplication

In Section 5.2 we have defined a program transformation that consists on dupli-
cating some of the original nodes in G, and updating the set of labels accordingly.
Let G+ = 〈N+, E+, lsp〉 be a result of duplicating nodes in program G. In the
following, we define the extended semantics relation for program G+ and show
the soundness of the abstract interpretation I+.

Definition 14. The extended set of states is defined as State+ = N+ × Env.
The semantics relation +

 ⊆ State+×State+ is defined from s.t. 〈l, η〉 +
 〈l′, η′〉

iff 〈l, η〉 〈l′, η′〉, with 〈l, l′〉 ∈ ({l, l+} × {l′, l′+}) ∩ E+.

The following result implies as a corollary the soundness of 〈I+,P〉 from the
soundness of 〈I,P〉.

Lemma 5. For all η, η′ ∈ Env and l, l
′ ∈ N+, s.t. 〈l, η〉 +

 
∗
〈l′, η′〉 we have that

〈l, η〉 ∗ 〈l′, η′〉.

Proof. The proposition

∀η, η′ ∈ Env. ∀l, l′ ∈ N+. 〈l, η〉 +
 

k
〈l′, η′〉 ⇒ 〈l, η′〉 k 〈l, η′〉

is proved by definition of +
 and natural induction over k.

A.3 Program Skeletons

In Section 5.3 we have proposed to cluster adjacent nodes with the aim of con-
sidering a broader set of program transformations. This new representation must
come accompanied with a corresponding semantics and a set of derived abstract
interpretations. Although it is not essential for the results of the paper, we can
show that the consistency of an abstract interpretation is propagated along node
clustering.

Definition 15. The semantics of program Ĝ is defined as a relation  ̂ ⊆
State0 × State0, where State0 is a restriction of State over the set of nodes N0,
such that 〈l, η〉 ̂〈l′, η′〉 iff ∃k ∈ N. 〈l, η〉 k 〈l′, η′〉.

Lemma 6. Let I be an abstract interpretation of program G, and I+ the corre-
sponding derived abstract interpretation for G+. Then the consistency of Î w.r.t.
 ̂ follows from the consistency of I w.r.t.  .

Proof.

case f =↑: We have to show that for all 〈l, l′〉 ∈ E0, a ∈ A, if 〈l, η〉 ̂〈l′, η′〉
and |= η : T̂〈l,l′〉(a) then |= η′ : a. Equivalently, we show by induction on
k that 〈l, η〉  k 〈l′, η′〉 and |= η : Ť〈l,l′〉(a) implies |= η′ : a. The base case



is straightforward by definition of Ť〈l,l′〉 in case 〈l, l′〉 ∈ E. In the inductive
step, we have 〈l, η〉 〈l′′, η′′〉 k 〈l′, η′〉 and

|= η :
l

{〈l,l′′〉|reaches(l′′,l′)}

T〈l,l′′〉(Ť〈l′′,l′〉(a))

Since v is an approximation relation we have |= η : T〈l,l′′〉(Ť〈l′′,l′〉(a)) which
by consistency of T with respect to  implies |= η′′ : Ť〈l′′,l′〉(a). By I.H.,
|= η′ : a follows.

case f =↓: We show by induction on k that |= η : a and 〈l, η〉  k 〈l′, η′〉 then
|= η′ : Ť〈l,l′〉(a). The base case is straightforward. For the inductive step,
consider the sequence 〈l, η〉  k 〈l′′, η′′〉  〈l′, η′〉. It follows from |= η : a
and inductive hypothesis that |= η′′ : Ť〈l,l′′〉(a) and then, by consistency of I
with respect to  we have |= η′ : T〈l′′,l′〉(Ť〈l,l′′〉(a)). Then, |= η′ : Ť〈l,l′〉(a)
follows from definition of Ť〈l,l′〉 and the fact that v is an approximation
relation.

A.4 Concurrency

Definition 16. – We define Gq = 〈N q, Eq, lsp
q〉 the concurrent representation

of program G = 〈N , E , lsp〉, where
• N q = N k

• Eq = {〈l1 . . . lk, l′1 . . . l′k〉 | ∃i. 0 < i ≤ k ∧ 〈li, l′i〉 ∈ E ∧ ∀j 6= i. lj = l′j}
• lsp . . . lsp

– The set of concurrent states is defined as Stateq = N q × Env.
– The semantics relation q

 ⊆ Stateq × Stateq is s.t. for all 〈l, η〉 and 〈l′, η′〉 in
Stateq, 〈l, η〉  〈l′, η′〉 whenever l = 〈l1 . . . li . . . lk〉, l′ = 〈l1 . . . l′i . . . lk〉 and
〈li, η〉

q
 〈l′i, η′〉.

– Similarly, if l = 〈l1 . . . li . . . lk〉 and l′ = 〈l1 . . . l′i . . . lk〉, we define the transfer
function T〈l,l′〉 = T〈li,l′i〉.

Given a labeling S :N → A, we define the labeling Sq s.t. Sq(l)=S(l1)u. . .uS(lk)
for all l = l1 . . . lk in N q. The consistency of Iq w.r.t. q

 follows directly from
the consistency of I w.r.t  .

Lemma 7. Let S be a globally stable solution of I = 〈A, {Te}e∈E , f〉, then Sq is
a solution of Iq = 〈A, {T q

e}e∈Eq , f〉.

Proof. Consider first the case f =↓, and the edge 〈l, l′〉 s.t. l = l1 . . . li . . . lk
and l′ = l1 . . . l

′
i . . . lk. Since 〈l′, l〉 is an arbitrary edge in Eq it is sufficient

enough to show that T〈l′,l〉(Sq(l′)) v Sq(l) or, what is the same, T〈l′i,li〉(S
q(l′)) v

Sq(l). Consider first the node li. We know by definition of Sq and monotonic-
ity of T that T〈l′i,li〉(S

q(l′)) v T〈l′i,li〉(S(l′i)) and then, since T〈l′i,li〉(S(l′i)) v
S(li), it follows by transitivity that T〈l′i,li〉(S

q(l′)) v S(li). Consider now any
other node lj different from li. We can show that T〈l′i,li〉(S

q(l′)) v S(lj), since



T〈l′i,li〉(S
q(l′)) v T〈l′i,li〉(S(lj) u S(l′i)) by monotonicity of T and since global sta-

bility implies T〈l′i,li〉(S(lj) u S(l′i)) v S(lj). Then it follows that T〈l′i,li〉(S
q(l′)) v

S(l1) u . . . u S(lk). For the case f =↑ the proof is similar, but we must assume
the distributivity of transfer functions with respect to the operator u.


