
DRAFT—Do not distribute

Modular Verification and Certificate Translation for Advice
Weaving

César Kunz
INRIA Sophia-Antipolis

Abstract
Aspect oriented programming (AOP) is a paradigm that offers a
significant degree of modularity, allowing developers to separate
cross-cutting aspects of a system from its main functionality.

While this kind of programming modularity is appropriate to
encapsulate concerns into single modules, namely aspects, program
development may be highly error-prone due to the level of interfer-
ence between aspects and the original code. Indeed, in order to take
advantages of AOP modularity avoiding the harm of uncontrolled
interference, verification techniques need to be developed. In this
paper, we present a modular verification technique to certify that
a program augmented by the introduction of aspects preserves its
original specification.

Furthermore we define a mechanism to transform certificates
for correctness of AOP programs into certificates for compiled
weaved code, in the spirit of proof carrying code architectures. This
mechanism inherits the modularity of the verification technique
and allows to build a certificate for an augmented code from the
certificates of its components.

1. Introduction
Aspect-oriented programming (AOP) is an emerging paradigm that
offers programmers a new potential for the modularization of pro-
grams, by allowing developers to isolate cross-cutting aspects of
the software from its main functionality.

This paradigm is commonly implemented as an extension to an
already existing language. Consequently, an aspect-oriented pro-
gram typically comprises three parts: a baseline program that per-
forms the main functionality, a set of advices, i.e., computational
units handling different aspects; and point-cuts descriptors that de-
termine how advices are combined with the underlying base pro-
gram.

From an applicative perspective, aspect-orientation is transpar-
ent and AOP compilers target typical back-ends: indeed, it is the
role of the compiler to integrate these concerns into a single ex-
ecutable object, through a weaving mechanism that modifies the
code of each function depending on the advices that operate over
it. This transparency allows to develop the main functionality be-
ing unaware of the rest of the components, a key advantage of AOP.
However, whileobliviousnessis a very desirable property, it may

[copyright notice will appear here]

come at the cost of an unclear interference between each compo-
nent.

Despite recent efforts to pinpoint the semantics of aspects, the
verification of aspect-oriented programs is not well developed. The
lack of verification methods for AOP is partly explained by the non-
modular nature of aspects [4]. Nevertheless, Dantas and Walker [5]
have recently argued that many useful advices are harmless, in that
“they may change the termination behavior but do not influence the
final result of the mainline code.”

A first contribution of this work is the development a sound
and modular verification method for aspect-oriented programs. The
method is based on verification condition generators, which are
commonly used in program verification environments, and adopts
the following principles:

• each function of the program is verified against its specification
in isolation;

• each advice is verified against its corresponding specification;

• proof obligations ensuring preservation of original specifica-
tions are extracted from specifications of functions and advices.
This is done following a rely-guarantee principle, in that the
pre and postconditions of the original function are proved to
be preserved (or refined) under the hypothesis that each ad-
vice is guaranteed to follow its specification. Discharging these
proof obligations automatically may be feasible, depending on
the level of interference between advices and original program.

A second contribution is done in the context of a PCC frame-
work. It consists of extending a compiler for a simple AOP lan-
guage to a standardRTL language with a certificate translator. This
mechanism generates, from the proof of correctness for a source
AOP program, a certificate that the code resulting from the com-
pilation satisfies the intended specification. It illustrates the modu-
larity of the approach, by reusing previously generated certificates
from original methods and introduced advices, which are merged
to form certificates for the augmented methods.

Related work

Non-interference and modularity: Non-interference of advices
with respect to the underlying program as well as with other ad-
vices and modularity of the verification is a main topic in several
publications [4, 5, 6, 7, 8, 10, 13, 14].

Dantas and Walker [5] define the notion ofharmless advice. A
harmless advice may interfere with the control flow (by prevent-
ing termination) and may also perform I/O, but it does not inter-
fere with the final result of the underlying code. This weak inter-
ference property permits to reason about the original program in-
dependently. They propose an information-flow type system over
a core AOP language [14] to check harmlessness with respect to
the main program. This type system can be combined to form part

1 2007/7/3

of our hybrid logic to certify and check that an advice does not
interfere with the original global state. The conditions they check
are coarser-grained that the properties that may be specified in our
framework, but it can be certainly be combined to our hybrid logic
to certify that an advice does not interfere with the original global
state.

In [4], Clifton and Leavens define a notion of modular reasoning
and show why modularity is not a general property in AspectJ and
how this can be improved. One additional benefit that is closely
related to modular reasoning isseparate compilation, a technique
that allows to weave new aspects to an already compiled (or even
already running) program. It mainly consists of a classification for
aspects asspectatorsor assistants; the former include aspects that
only modify the state space they own and do not alter the control
flow. On the other hand,assistantscan interfere with the original
behavior of the program but only ifexplicitly acceptedby the
original program. In our work, we also rely on a declaration for
the level of interference between each method and advice body,
and verification for behavior preservation may be more flexible but
consequently not decidable.

Shmuel Katz et al. [8, 7] propose a classification of aspects as
spectative, regulativeor invasive, depending on the level of inter-
ference with theunderlyingprogram. The main motivation for this
work is to simplify program verification by focusing on the proper-
ties that may be affected by the introduction of an aspect. Program
properties are specified with temporal logic formulae, and each as-
pect category is described, analyzing how already valid properties
are influenced. More concretely it model-checks a state machine
representation of the aspect merged with the representation of the
underlying program. Following the result of this analysis, a con-
crete static procedure to classify advices is proposed. This work re-
sembles our VCGen in the sense that favors modularity of the veri-
fication process and makes emphasis on the preservation of original
properties. However, the main difference when comparing it to our
work come from the weaknesses and strengths of model-checking
with respect to interactive verification.

JML-based verification: Pipa [15] is proposed as an extension
to JML [11] for aspectJ [1], to support specification for aspects in-
variants, pre- and post-conditions for advices and variable introduc-
tions. The main motivation is to transfer the application of current
tools for Java programs to the AspectJ language, by extending an
AspectJ to Java compiler with a simultaneous translation of a Pipa
specification into a standard JML specification. The convenience
and key ideas of the approach are rigorously explained, some ex-
amples are given illustrating the transformation, but the discussion
remains informal.

PPO and certificate translation. Certificate translation for a sim-
ple AOP language is based mainly on previous work on Preserva-
tion of Proof Obligations (PPO). Barthe et al. [3] show that, given a
specific VCGen, a sufficiently simple compiler generates, from an
imperative source program, a stack based low-level piece of code,
whose proof obligations are syntactically equal to that of the source
program. Similar results on a wider verification framework are de-
tailed by Pavlova [12], for a significant subset of Java Bytecode.

2. Setting
We start with the definition of the base program, and later extend
the syntax to introduce aspects.

A base program is defined as a set of methods, together with
global variable declarations and a special main statement. The base
syntax can be found in Fig. 1, wherev stands for any element in
the domain of program variablesV, andg ranges over the set of
predefined method namesF . The domainC of statements is stan-
dard and includes loops and conditional statements, together with

method calls with secondary effects. Each method is composed of
an identifier, its formal parameters and the command representing
the function body.

Programs Prog ::= meth∗ c
Methods meth ::= g arg c

Commands c ::= v:=g(e) | v:=e | c; c
| return e | while b do c | skip
| if b then c else c | abort

integer expressions e ::= n | v | e op e | . . .
boolean expressions b ::= true | false

| e rop e | ¬b | b bop b

Figure 1. Syntax of Base Programs

Advices

The syntax for base programs extended with aspects is presented
in Fig. 2. In the figure,a stands for any advice identifier in the
setA. A program extended with aspectsAProg is composed of

Augmented Program AProg ::= Prog aspect∗

Aspects aspect ::= advice∗

Advices advice ::= ptd+ a arg ca
Advice commands ca ::= v:= proceed(e) | ca; ca

| return e | while b do ca
| if b then ca else ca
| v:=e | skip | abort

pointcuts descriptors ptd ::= before(g) ∧ ptd′
| after(g) ∧ ptd′
| around(g) ∧ ptd′

ptd′ ::= | if(b) | cflow(g)
| ptd′ ∧ ptd′ | ptd′ ∨ ptd′
| ¬ptd′

Figure 2. Syntax for Aspect Extension

a sequence of modular components (aspect∗ in the figure) han-
dling different concerns attached to a standard base programProg,
as defined above. Each aspect is implemented by combining of a
set of advices, with its corresponding point-cut descriptors to spec-
ify when an advice should be executed. Advices are computational
units declared similarly to functions, in that they are composed of
an identifiera, a formal parameterarg and a commandca repre-
senting its body. They are intended to be executed, as a result of
a process calledcode weavingat specific execution points (joint-
points), that can be specified with point-cut descriptors. Commonly,
point-cut descriptors are composed of properties that can be stati-
cally checked together with dynamically decidable conditions. The
most common characterization of a point-cut is a function call,
i.e., the fact that a particular function is invoked. In the syntax, it
can be seen that point-cut descriptors may specify that an advice
is executedbefore, after or around the invocation of a particular
methodg, respectively with the descriptorsbefore(g), after(g) and
around(g). In addition, it is also possible to require extra condi-
tions (checkable at run-time) such as whether an arbitrary boolean
expression is validb or whether the current execution occurs under
the dynamic control flow of a call to a particular methodg. The
latter is specified with acflow(g) descriptor and can be checked by
call stack inspection.

For clarity, we initially focus on point-cut descriptors that allow
us to infer statically the exact sequence of advices that execute for
a given join-point. That is, advices may be specified to be executed
when a particular method is invoked, and we will explain later how
we can extend our specification and verification techniques to deal
with dynamic conditions.

2 2007/7/3

<JeKσ
η , η>

θg

⇑ <n, η′>

〈x:=g(e), Lσ, ηM〉 ; Lσ ⊕ [x 7→ n], η′M
whereθg is the static weaving forg

Figure 3. Weaved Function Call Semantics

An advice bodyca, is a command similar to a function body,
extended with a new statementproceed. The argument passing
and returning is explained in following sections, as well as the
behavior of theproceed command. In addition, as can be seen
in Fig. 2, the expressiveness of an advice body is reduced by
disallowing calls to base code functions.

2.1 Semantics

In this section we progressively define the semantics for an AOP
program as defined in the previous section, starting from a standard
semantics for base programs.

We define the semantics for simple imperative statements op-
erationally, i.e, as a relation; involving the statement and two
execution states. To represent the execution state, we distinguish
local storesσ : Σ from global environmentsη : H, which are both
represented as mappings from program variables inV to values (Z).
As an extra condition, we require formal parameters to be consid-
ered different from common program variables, as they may not
appear in the right hand side of an assignment and thus they can-
not be modified. Execution states can be classified as intermediate
(∆I) or final (∆F) states, where intermediate statesLσ, ηM are com-
posed of a local and a global environment (∆I = Σ×H) and final
states<n, η> consist of a final environment and the return value
(∆F = Z×H). The presence of a final state in the right hand side
of the relation indicates that a return command has already been
executed.

A final state expresses the fact that areturn statement has been
executed, and we require execution states to reduce always to final
states before returning from a function call.

Advice Weaving. If we do not consider boolean conditions or
call stack inspection as point-cut descriptors, we are able to infer
statically which advices are triggered to assist the execution ofg,
and in which order. To represent the result of this inference we
use the following notation: we denote the result of augmenting
any methodg with θg, which is composed of a single method
g, or of an advicea appendedbefore, after or around a smaller
augmented methodθ′g respectively denoted bya . θ′g, θ′g / a or
a ./ θ′g (we denoteΘ the set of augmented methods.) When
introducing a dynamic condition (such ascflow) as a point-cut
descriptor, weaving is resolved by inserting at specific points a
piece of code that checks at run-time whether the condition is
satisfied or not. For simplicity, we initially restrict our weaving
semantics to be statically decidable and later show how the VCGen
may be extended to deal with this dynamic conditions.

A new rule for the function call replaces the standard one to rep-
resent the fact that a sequence of advices may be weaved around the
original function. The new rule for function calls (defined in Fig. 3)
relies on a new relation

.

⇑: Θ → ∆F → ∆F which represents the
sequential execution of the components of an augmented method,
and is defined in Fig. 4. The relation

.

⇑ involves two final states and
a sequence of advicesθ, reducing the latter by one in each reduc-
tion step. The case for the trivial empty sequence simply executes
the original methodg, while the cases forbeforeand after aug-
mentation rely on a subset of the rules for;. The case foraround
advices is a bit more complicated since the execution of the advised
function must be explicitly allowed to continue. When an advicea

〈c, L[in 7→ n], ηM〉 ; <n′, η′>

<n, η>
g

⇑ <n′, η′>

〈ca, L[ina 7→ n], ηM〉 ; <n′, η′> <n′, η′>
θ

⇑ <n′′, η′′>

<n, η>
a . θ

⇑ <n′′, η′′>

<n, η>
θ

⇑ <n′, η′> 〈ca, L[in 7→ n′], η′M〉 ; <n′′, η′′>

<n, η>
θ / a

⇑ <n′′, η′′>

〈ca, L[in 7→ n], ηM〉 θ⇒ <n′, η′>

<n, η>
a ./ θ

⇑ <n′, η′>

wherec is body(g), ca is body(a), and
.

⇒ is defined in Fig. 5.

Figure 4. Weaving Semantics

〈c1, Lσ, ηM〉
θ⇒ Lσ′, η′M 〈c2, Lσ′, η′M〉

θ⇒ S

〈c1;c2, Lσ, ηM〉
θ⇒ S

〈c1, Lσ, ηM〉
θ⇒ <n, η′>

〈c1;c2, Lσ, ηM〉
θ⇒ <n, η′>

<n, η>
θ

⇑ (n′, η′)

〈x:= proceed(e), Lσ, ηM〉 θ⇒ <σ ⊕ [x 7→ n′], η′>

〈return e, Lσ, ηM〉 θ⇒ <JeKσ
η , η>

Figure 5. Around Advice Statements Semantics (Excerpt)

is weavedbeforea methodg, execution is yield tog immediately
aftera returns. In the case ofaroundadvices, aproceed statement
signals the permission to continue the execution ofg. To define the
semantics of commands that may containproceed statements, we
introduce a new set of rules for relation

θ⇒: Θ → (C ×∆I) → ∆
(defined in Fig. 5.) It is similar to the small-step semantics for stan-
dard commands (;), but it is more general since takes as parame-
ter the sequence of advices (i.e.θ) to be triggered when aproceed
statement is executed.

3. VCGen
When verifying a base program extended with aspects, several ap-
proaches may be taken. In our case we prefer to keep the modularity
of the verification process by analyzing the validity of the specifi-
cation for each method or advice in isolation.

Both methods and advices have an associated specification com-
posed of a pre and post-condition, together with aframe condi-
tion. This specification states the expected functional behavior of
the corresponding command and is represented as an assertion in a
first order logic. In a general setting an assertion refers to variables
(either global or local), as well as some special-purpose variables.
These later variables may includestarred variables(v?) which ap-
pear in the post-condition and in intermediate assertions and repre-
sent the initial value of some global variablev. We do not need to
refer to starred version of formal parameters, since we are assum-
ing that they are different from program variables and thus they
may not be modified. A postcondition refers to global variables, a
special purposeres represented the return value and the formal pa-
rameter (denoteding for methodg). Global variables may appear
on the postcondition with a (.?) modifier if its value may change
during the execution of the function. Preconditions refers to the
corresponding formal parameter and any global variable.

3 2007/7/3

let Γ(f)=(Pf , Qf , y) in

wpg(skip, ϕ) = (ϕ, ∅)
wpg(x:=e, ϕ) = (ϕ[e/x], ∅)
wpg(c1;c2, ϕ) =

let (ϕ2, S2)=wp(c2, ϕ) in
let (ϕ1, S1)=wp(c1, ϕ2) in
(ϕ1, S1 ∪ S2)

wpg(return e, ϕ) = (ϕ[e/res], ∅)
wpg(if b then c1 else c2, ϕ) =

let (ϕ1, S1)=wp(c1, ϕ) in
let (ϕ2, S2)=wp(c2, ϕ) in
(b⇒ϕ1 ∧ ¬b⇒ϕ2, S1 ∪ S2)

wpg(while b {Inv} do c, ϕ) =
let (ϕ′, S)=wp(c, Inv) in
(Inv, {Inv⇒(b⇒ϕ′ ∧ ¬b⇒ϕ)} ∪ S)

wpg(x:=f(e), ϕ) =
(Pf [e/inf]∧
∀y′,res.Qf [e/inf][y

′
/y][y/y?]⇒ϕ[res/x][y

′
/y], ∅)

Notice that the definition ofwp is implicitly parametric onΓ.

Figure 6. Weakest Precondition Function

The frame conditions specify the set of global variables that
may be modified by the body of the method or advice.Wg stands
for the set of variables modifiable by methodg, and we denote
|=wg writesWg the fact:

∀v .∃η,η′ .〈body(g), Lσ, ηM〉 ; <n, η′> ∧ ηv 6= η′v⇒v ∈Wg

3.1 Verifying the Base Program

Verifying a particular method involves proving that its body sat-
isfies its pre- and post-condition (possibly with a set of auxiliary
invariants) and independently proving the frame conditions. The
latter may be certified by several means, for instance by dataflow
analyses, non-interference typing systems [5] or even Hoare-logics.
We say that this certification is hybrid since proof validation can be
performed by independent and possibly different analyses.

To verify that a given statementc satisfies a specification, we
define the predicate transformerwp, which takes a functiong with
body statementc, a predicateϕ, and a contextΓ. When verifying
a commandc, since it may include function invocations, a context
Γ is used to specify a pre-condition, a post-condition and the frame
condition for any method that may be called byc. For notational
convenience,Γ is represented as a map from function identifiers
to tuples of the form(P,Q,W) whereP andQ stand for the pre
and post-condition, andW for the set of global variables that may
be modified. In addition, a single variable may stand for the set
of modified variables. Therefore, we may write insteadΓ(f) =

(P,Q, y) and the single substitution[y
′
/y] denotes the simultaneous

substitution of every modified variable by a fresh variable.
We do not need to specify which approach is taken to certify the

frame conditions as long as our VCGen remains hybrid along the
whole compilation process. Instead, we suppose we have a method
to generate a derivation for the judgmentΓ ẁg writesWg, that
certifies that the execution ofg may only modify the variables
in Wg. Under this assumption, we focus on the derivation of the
judgment Γ ÌMP{P}g{Q}.

We start by defining a predicate transformerwp in Fig. 6, that
takes a statementc, a post-conditionφ and a contextΓ specifying
the behavior of any function that may be called byc. The func-
tion wp returns the weakest precondition and a set of verification
conditions that ensure the validity of the post-condition taken as
parameter. To give an intuition, we say that a base code function
g is certified to follow its specification if thewp function returns a
setS of valid proof obligations and a proposition that is implied by

(P⇒φ[y/y?]) ∧
V

PO∈S PO (φ, S) = wpg(body(g), Q)

Γ ÌMP{P}g{Q}

Γ ÌMP{P ′}g{Q′} P⇒P ′ Q′⇒Q

Γ ÌMP{P}g{Q}

Γ ẁg writes Y Y ∩ FV (ϕ) = ∅
Γϕ ÌMP{ϕ}g{ϕ}

Γ1
ÌMP{P}g{Q} Γ2

ÌMP{P ′}g{Q′}
Γ3

ÌMP{P ∧ P ′}g{Q ∧Q′}

where ∀f .Γϕ(f) = (ϕ, ϕ) and
for any functionf , Γ3(f)=(P1 ∧ P2, Q1 ∧Q2,W1 ∪W2)
where(P1, Q1,W1) = Γ1(f) and(P2, Q2,W2) = Γ2(f).

Figure 7. Inference rules for̀ IMP

the pre-condition. The rules for the derivation of judgements over
standard methods can be found in Fig. 7.

When verifying mutually recursive functions, special care must
be taken when defining a rule that removes elements from the con-
text. To this end, we introduce a notation for expressing the quan-
tification of a judgment over a context. That is, we denoteΓ `̀ Γ′

the fact that for every methodf such thatΓ′(f) = (P,Q, y) we
can deriveΓ`{P}f{Q} and Γ ẁf writes y.

Γ ∪ Γ′ `̀IMPΓ

Γ′ `̀IMPΓ

The interpretation of the statement|=IMP{Pg}g{Qg} is that for
any valuesn, n′ and environmentsη, η′ such thatJPg[n/in]Kη and

<n, η>
g

⇑ <n′, η′>, we have thatJQg[n
′
/res]Kη′[y? 7→ η y]. To

give an intuition, we will later require that the result of weaving
advices to the execution of the functiong, simulates the original
(simple imperative) behavior ofg.

We generalize the previous statement by adding a context as
hypothesis, such thatΓ |=IMP{Pg}g{Qg} generalizes the previ-
ous interpretation by taking as assumption that for every spec-
ification Γ(f) = (Pf , Qf ,Wf) we have Γ |=IMP{Pf}f{Qf}
and Γ |=wf writesWf . Soundness of the VCGen implies that
Γ |=IMP{Pg}g{Qg} wheneverΓ ÌMP{Pg}g{Qg}.
Example: To illustrate the approach with a running example we
consider a extended program syntax. Suppose we have a program
Pr, from which we isolate a methodm = slowRetrieve that
returns the value stored in a slow access memory. This behavior
is represented by taking as parameter the integerAddressi and
by accessing a global array variablemem with this index. We also
suppose thatPr contains a methodmain that represents any method
that may invoke functionm.

We extend the original program with the introduction of the
standard functionsf1 = initializeCache, f2 = updateCache
andf3 = isAvailable. We add also two global array variables
available andcache, and suppose they are accessible only by
these functions. At the moment, we have not introduced any advice,
we are simply providing some basic functionality that will prove
useful when introducing new advices. We continue by specifying
the methodm defined in the previous section with pre and post-
conditions

Pm = 0 ≤ i < N
Qm = res = mem[i]

and by declaring thatm does not modify any global variable
(Wm = ∅). To emphasize the modularity of the approach we
will deliberately leave its implementation and verification im-
plicit. Instead, simply suppose that we can derive the judgments

ÌMP{Pm}m{Qm} and {Pm}m{Qm} ÌMP{P}main{Q}, where

4 2007/7/3

(P,Q) is an arbitrary specification. The intention is to prove that
main preserves its original specification(P,Q) after extending the
programPr with the introduction of new aspects.

To specify methodsf1, f2 andf3, we letφ stand for the con-
sistency of thecache variable with respect to theavailability
array:

φ = ∀i.(available[i]⇒cache[i] = mem[i]) .

To specify these new methods we define their respective pre/post-
conditions:

Pf1 = true
Qf1 = φ
Pf2 = 0 ≤ i < N ∧ φ
Qf2 = cache = cache?[i 7→ v] ∧ φ
Pf3 = 0 ≤ i < N
Qf3 = res ⇔ available[i]

Since these functions and the verification of their specification are
standard we omit the actual implementation and the verification
steps.

In addition, since we suppose thatmain does not modify neither
mem nor the new variablesavailable andcache, we can derive in
two steps

{Pm ∧ φ}m{Qm ∧ φ} ÌMP{P ∧ φ}main{Q ∧ φ}

3.2 Verifying Advices in isolation

Verifying the specification of an advice body is similar to base
program statements, since they share most of their commands and
both are specified similarly.

For the sake of modularity, we extend the specification and VC-
Gen for around advices. This extension consists of a new specifi-
cation for the behavior expected when calling a proceed statement.
We generalize the specification by introducing a new (proceed)
specificationP ′

a andQ′
a for eacharoundadvicea, and new vari-

ablesin′a and res′a that correspond respectively to the input and
output value for the execution triggered byproceed. The assertion
Q′

a refers to the variablesin′a andres′a, as well as any global vari-
ables (possible starred) andina. Similarly, P ′

a include conditions
overin′a as well asina and any global variable. In addition, a nor-
mal postconditionQa for an around advice may refer also to the
variableres′a. We require that a specification forproceed declares
the set of variables that are allowed to change (W ′

a).
The predicate transformerwp is extended forproceed state-

ments:
wpa(x:= proceed(e), φ) =

(P ′
a[e/in′a]

∧∀y′,res′ .Q
′
a[e/in′a][y

′
/y][y/y?′]⇒φ[res′

/x][y
′
/y][e/in′a], S)

wherey represents any variable that may be modified by the nested
methods invoked byproceed, andP ′

a andQ′
a is the augmented

specification.
By using thiswp function we can prove that an advice satisfies

its specification by deriving a judgmentΓa ÀDV{Pa}a{Qa} for
beforeandafter advices, andΓa ÀDV{(Pa, P

′
a)}a{(Q′

a, Qa)} for
aroundadvices.

Example: We extend then the base program with a set of advices
that improves the store access time by profiting from the introduced
variables and functions. We start by introducing an around advice
a1 = fastRetrieve. This new advice will replace the functional-
ity of methodm by receiving as parameter the store addressi and
returning thecachedvalue if available or, otherwise, by permitting
the original functionm to continue:

around slowRetrieve(Address i) fastRetrieve {
b:= isAvailable(i);
if b

return cache[i]
else

Value v:=proceed(i);
updateCache(i, v);
return v

}

The specification for this advicea1 is

Pa1 = 0 ≤ i < N ∧ φ
P ′

a1
= Pm

Q′
a1

= Qm

Qa1 = Qm ∧ φ

Notice that, sincea1 is intended to be executed only aroundm, we
can safely define theproceed specification(P ′

a1 , Q
′
a1) equal to

the specification form.
We can now prove the correctness ofa1 in isolation, by deriving

ÀDV{(Pa1 , P
′
a1)}a1{(Q′

a1 , Qa1)}. To this end, it is sufficient to
show, as a premise, that the proposition

Pf3 ∧ ∀b.(Qf3 [b/res]⇒
b⇒Qm[cache[i]/res] ∧ φ
∧
¬b⇒Pm ∧ ∀res.(Qm⇒Pf2∧

∀cache′ .(Qf2 [cache
′
/cache][cache/cache?]⇒

(Qm ∧ φ)[cache
′
/cache])))

is implied byPa1 .

3.3 Verifying the weaved code

To verify a methodg included in an augmented program, we
need to compute previously the sequence of advices that is ex-
ecuted around it (θg). We proceed by deriving an appropriate
judgment Γ,Γa ÀOP{P}θg{Q}. To understand the meaning of
this judgment we first define as|=AOP{P}θ{Q} the fact that for

any n, η, n′ andη′ if <n, η>
θ

⇑ <n′, η′> and JP [n/in]Kη then
JQ[n/in][

n′
/res]Kη[y? 7→ η y]. By the judgmentΓ,Γa |=AOP{P}θ{Q}

we mean |=AOP{P}θ{Q} under the hypothesis that for anyf and
a such thatΓ(f) = (Pf , Qf) andΓa = (Pa, Qa), we have respec-
tively that |=IMP{Pf}f{Qf} and |=ADV{Pa}a{Qa}.

The derivation of this judgment is defined inductively on the
construction ofθ and relies strongly on the interference conditions.
Since this frame conditions are defined only for methods and ad-
vices, we should extend this definition to nested termθ. This defini-
tion does not represent any difficulty, its is straightforward and safe
to extend the judgment for frame conditions to augmented methods
(Γ,Γa ẁθg writesW) by takingW as the union of the variables
modifiable by all the components ofθg.

We start by defining the rule that relates executions on the
simple imperative language to executions augmented with advices.
This rule serves as a basis for the construction of the termθf , but
in addition requires that the original specification of the invoked
functions are preserved. We say that an specification(Pg, Qg,W)
is a refinement of(P ′

g, Q
′
g,W

′) if P ′
g ⇒ Pg andQg ⇒ Q′

g and
the setW ′ containsW (modulo introduced variables). This latter
condition reflects the fact that we only care about the variables that
belonged to the original program. Furthermore, a contextΓ refines
a contextΓ′, if for anyg in the domain ofΓ, Γ(g) is a refinement for
Γ′(g). The intention of the rule is to propagate a derivation on the
simple imperative side relying on functionality preservation after
weaving the advices as declared.

Γ ÌMP{P}g{Q} ΓΘ refines Γ

ΓΘ,Γa ÀOP{P}g{Q}

This rule resembles a standard rule for weakening the judgment
by strengthening the hypothesis but it is explicitly stated here to
emphasize the fact that we are requiring functional preservation
when moving to an aspect oriented context.

5 2007/7/3

The next rule helps remove hypothesis from the context, and is
intended to deal with mutually recursive functions:

`̀ADVΓa ΓΘ ∪ Γ′
Θ,Γa `̀AOPΓΘ

Γ′
Θ `̀AOPΓΘ

3.3.1 Around advices.

In this case we need to consider two alternatives, depending on
how much the around advice interferes with the control flow of the
rest of the system. Ifproceed is never executed bya, that implies
also that no subsequent advice is executed, and consequently, any
specification refinement until this point is lost. That means, that
even if we can ensure a stronger postcondition forθ thanks to the
already weaved advices,a ./ θ may not propagate this augmented
specification ifproceed is not always executed. A similar reason
explains why we should not callproceed more than once. We
definecontrol flow preservingadvices as those whose every path
in its control flow contains exactly oneproceed statement. It may
be argued that this condition is too strong, since we are relying
on syntactic properties. An alternative approach may be designing
a special purpose VCGen that ensures that aproceed statement
is executed exactly once. However, since this technique implies
defining a new set of loop invariants, and generating and merging a
new certificate, we prefer instead a static checking approach. Under
the hypothesis thata is a control flow preservingadvice we can
apply the following rule:

Γa ÀDV{(Pa, P ′
a)}a{Q′

a, Qa} Γ,Γa ÀOP{Pθ}θ{Qθ}
P⇒Pa ∧ ∀x′.(P ′

a[x
′
/x]⇒Pθ[in

′
a/inθ][x

′
/x]) Wθ ⊆W ′

a

Qθ[in
′
a/inθ][res

′
/res][y

?′
/y?]⇒Q′

a ∧ ∀x′.(Qa[in/ina][x
′
/x]⇒Q[x

′
/x])

Γ,Γa ÀOP{P}a ./ θ{Q}

wherex′ represents the global variables potentially modified bya,
andW ′

a specifies the variables that are allowed to be modified by
the execution triggered by theproceed statement.
In case that it cannot be checked whether the control flow is pre-
served, we use this rule instead:

Γa ÀDV{(Pa, P ′
a)}a{(Q′

a, Qa)} Γ,Γa ÀOP{Pθ}θ{Qθ}
P ′

a⇒Pθ[in
′
a/inθ] Qθ[in

′
a/inθ][res

′
/res]⇒Q′

a Wθ ⊆W ′
a

Γ,Γa ÀOP{Pa}a ./ θ{Qa}
It can be argued that the rule above restricts the completeness and
modularity of the approach. However we believe that is inherent to
advices with such level of interference. If an around advice replaces
the original functionality of a base function (re-implementation),
then it would be expected to be specified at least as the original
function (and in addition the functionality of subsequent advices
is lost). This former fact may prevent to reuse the advice around
functions with different behavior.

Example: To derive ÀOP{Pa1}a1 ./ m{Qa1} we proceed by
applying the rule for noncontrol-flow preservingaround ad-
vices. This requires the previous derivation of the judgments

ÀOP{Pm}m{Qm} and ÀDV{(Pa1 , P
′
a1)}a1{(Q′

a1 , Qa1)} as
premises. The first judgment is clearly derivable since the con-
text is empty. It remains to discharge two proof obligations, but
according to the rule applied they are trivial by definition ofP ′

a1 ,
Q′

a1 .

3.3.2 Before advices.

In the following rule,w stand for global variables modified by the
body of the advice,y stands for the variables modified by the nested
constructionθ andz for any global variable modified either bya or
θ that appears on the new postconditionQ.

Γa ÀDV{Pa}a{Qa} Γ,Γa ÀOP{Pθ}θ{Qθ}
(Qθ[

y′
/y][y/y?] ∧Qa[inθ/res]⇒Q[y

′
/y])[w

′
/w][z/z?]

P [ina/in]⇒Pa ∧ (Qa[w
′
/w][w/w?]⇒Pθ[

res/inθ][w
′
/w])

Γ,Γa ÀOP{P}a . θ{Q}

e ::= n | x constant| variable
instr ::= nop | assert φ

| x := e | x := e op e assignment
| jmp l | jmpif e cmp e, l jump
| x:=invoke g e | return e invocation and return

Figure 8. INSTRUCTION SET

(it is important to mention that ifv is a variable, thenv′ must always
be a fresh variable. That means that even whenw = y we require
thatw′ 6= y′).

Example: The judgment ÀOP{Pa1}a1 ./ m{Qa1}, derived
previously, requires a pre-condition that is stronger than the origi-
nal one (Pm) (recall thatPa1 is defined asPm∧φ.) For this reason,
we initially proposed to extend the specification formain by deriv-
ing {Pm ∧ φ}m{Qm ∧ φ} ÌMP{P ∧ φ}main{Q ∧ φ}. To prove
preservation of the specification formain we need to weaken the
precondition by introducing abeforeadvice to ensure the validity
of φ. We do not need to fully specify the implementation of this
new advicea2 that will simply call the functioninitializeCache.
We will instead suppose that it is verified in isolation to satisfy
the judgment ÀDV{true}a2{φ} and that it does not modify any
variable that may occur inP . Under this assumptions, we can
apply the derivation rule forbefore advices with the premises
P⇒ true ∧ (φ⇒P ∧ φ) andQ ∧ φ ∧ φ⇒Q to get the judgment
{Pm ∧ φ}m{Qm ∧ φ} ÀOP{P}a2 .main{Q}.

3.3.3 After advices.

The case for weaving an after advice is symmetric to the previous
one. Under the same hypothesis overw, y and z we have the
following rule:

Γa ÀDV{Pa}a{Qa} Γ,Γa ÀOP{Pθ}θ{Qθ}
(Qa[w

′
/w][w/w?] ∧Qθ[ina/res]⇒Q[w

′
/w])[y

′
/y][z/z?]

P [in/inθ]⇒Pθ ∧ (Qθ[y
′
/y][y/y?]⇒Pa[res/ina][y

′
/y])

Γ,Γa ÀOP{P}θ / a{Q}

4. Target Setting
In this section our target PCC architecture is defined. That is, we
present an appropriate lower level language, without aspects, to-
gether with a logical framework to verify input/output specifica-
tions for procedures. We also define a compiler from our simple
AOP language to the lower level language. In the followings sec-
tions we study the relation of the verification conditions on the
source side with the verification conditions on the target side.

The target language is a non-structured RTL language, with
function calls. The syntax is defined in Fig. 8. For simplicity,
variables are defined in the same setV as before, and functions
have a single formal parameter.

4.1 Compiler

A definition of the compiler for standard commands can be found
in Fig. 9. It relies on a compiler for expressions and conditional
jumps, respectively denotedCe andCb in the figure. The compiler
is standard with the exception of the function call statement. In this
case, instead of invoking a procedureg, the invocation refers to
a procedurefθg representing the result of augmentingg with its
corresponding advices.

Compiler for advice commands: The compiler function for ad-
vice commands is similar toCc but it takes an extra parameter that
represents the code that has to be executed when aproceed state-
ment is executed.

Ca(l, x:= proceed(e), f) = let (l′, ins)=Cy
e(l, e) in

(l′ + 1, ins :: [x:=invoke f y])

6 2007/7/3

Cc(l, skip) = (l + 1, [l : nop])
Cc(l, x:=e) = Cx

e(l, e)
Cc(l, c1;c2) = let (l1, ins1)=Cc(l, c1) in

let (l2, ins2)=Cc(l1, c2) in
(l2, ins1 :: ins2)

Cc(l, if b then c1 else c2) =
let (l1, ins1)=Cc(l + 1, c1) in
let (l2, ins2)=Cc(l1 + 1, c2) in
let (lb, insb)=Cb(l2 + 1, l + 1, l1 + 1, b) in
(lb, [l : jmp l2 + 1] :: ins1 :: [l1 : jmp lb] :: ins2

:: [l2 : jmp lb] :: insb)
Cc(l, while b do c) =

let (lc, insc)=Cc(l + 2, c) in
let (lb, insb)=Cb(lc + 1, l + 2, l + 1, b) in
(lb, [l : jmp lc] :: [l + 1 : jmp lb] :: insc

:: [lc : assert] :: insb)
Cc(l, x:=h(e)) = let (l′, ins)=Cy

e(l, e) in
(l′ + 1, ins :: [l′, x:=invoke fθh

y])
Cc(l, return e) = let (l′, ins)=Cy

e(l, e) in
(l′ + 1, ins :: [l′ : return y])

Figure 9. Compiler for standard commands

Cw(g) = let (, ins) = Cc(1, body(g)) in
[g 7→ ins]

Cw(a . θ) = let (, insa)=Ca(1, body(a), fθ) in
let c = {x:=a(in); x:=fθ(x); return x}
let (, ins)=Cc(1, c) in
[fa.θ 7→ ins]

Cw(θ / a) = let (, insa)=Ca(1, body(a), fθ) in
let c = {x:=fθ(in); x:=a(x); return x}
let (, ins)=Cc(1, c) in
[fθ/a 7→ ins]

Cw(a ./ θ) = let (, insa)=Ca(1, body(a), fθ) in
[fa./θ 7→ insa]

Figure 10. Compiler for methods

Compiler for methods: When compiling the whole program,
sinceRTL function calls contains only literal function identifiers,
we must infer statically how advices are weaved. Therefore, for
any methodg we suppose we have already computed the represen-
tation of the weavingθg, to assign a static function identifier for
each component ofθg.
For instance, ifθ = a . θ′ we letfθ points to the compilation of
θ = a . θ′, that calls firsta and then the functionfθ′ that points to
the compilation of the remaining components. The definition of a
compiler fot methods is given in Fig. 10. In addition, when compil-
ing standard commands, the result of compiling a call to methodh
is a call to functionfθh , which is in charge of calling the resulting
weaved code.

4.2 Verification over the target language

Verification ofRTL programs can be defined in terms of a weak-
est precondition functionwp, as long as the sequence of instruc-
tions under consideration iswell-annotated[2, 3, 12]. Intuitively,
a sequence of instructions iswell-annotatedif there are not non-
annotated cycles in the control-flow (for computability ofwp func-
tion.) The definition of a VCGen for programs at theRTL level can
be found in Fig. 11.

5. Certificate Translation
In this section we study the relation of the verification conditions
in the high-level side with its RTL counterpart, showing that the
simple compiler defined in previous section is amenable to be
extended with a certificate translator. The first result is taken from

Let (ins, l′) = Cc(l, body(g)), (Pf , Qf) = Γ(f) and
(ϕ′, S′) = wpins(succ(l), ϕ) in

wpins(l : ⊥, ϕ) = (ϕ, ∅) (ins[l] is undefined)
wpins(l : nop, ϕ) = (ϕ′, S′)
wpins(l : assert ψ, ϕ) = (ψ, {ψ⇒ϕ′} ∪ S′)
wpins(l : x := e, ϕ) = (ϕ′[e/x], S′)
wpins(l : x := e1 op e2, ϕ) = (ϕ′[e1 op e2/x], S′)
wpins(l : jmp l′, ϕ) = wpins(l

′, ϕ)
wpins(l : jmpif e1 cmp e2, l′, ϕ) =

let (ϕ′′, S′′)=wpins(l
′, ϕ) in

(e1 cmp e2⇒ϕ′′ ∧ ¬e1 cmp e2⇒ϕ′, S′ ∪ S′′)
wpins(l : x:=invoke f e, ϕ) =

(Pf [e/in] ∧ ∀res, y′.Qf [e/in][y
′
/y][y/y?]⇒ϕ′[res/x][y

′
/y], S′)

wpins(l : return e, ϕ) = (ϕ[e/res], ∅)

(Pg⇒φ[y/y?]) ∧
V

PO∈S PO
(l′, ins) = Cc(l, body(g)) (φ, S) = wpins(l, Qg)

Γ R̀TL{Pg}g{Qg}

Γ ∪ Γ′ `̀RTLΓ

Γ′ `̀RTLΓ

Figure 11. Target VCGen

similar work on preservation of proof obligations [3, 12], and then,
auxiliary lemmas about not modifiable variables are stated. Finally
a certificate translation is defined forbefore, after and around
weaving of advices.

Lemma 1. Supposefθg points to the compilation of methodg
(i.e., no advices have been weaved tog). Let Cc(l, c) = (l′, ins)
and let ins′ be a sequence of instructions containingins, i.e. ins
is equal to the infixins′[l, . . . , l′). If (φ′, S′) = wpins′(l

′, φ) and
(φ′′, S′′) = wp(c, φ′) thenwpins′(l, φ) ≡ (φ′′, S′′ ∪ S′).

We are abusing notation, when we say(φ, S) ≡ (φ′, S′) we
meanφ ≡ φ′ and that for any propositionP in S there is an
equivalent propositionP ′ in S′ and vice-versa.

Lemma 2. The rule

Γ1
ÌMP{P}g{Q} Γ2

ÌMP{P ′}g{Q′}
Γ3

ÌMP{P ∧ P ′}g{Q ∧Q′}

where for any functionf , Γ3(f)=(P1 ∧ P2, Q1 ∧Q2,W1 ∪W2)
where(P1, Q1,W1) = Γ1(f) and(P2, Q2,W2) = Γ2(f).

is redundant, in the sense that the same result can be obtained by
applying thewp function with a suitable context and a different
specification.

Proof. The proof is by simple structural induction on a com-
mand c. It can be proved that for any assertionϕ if we com-
pute (φ1, S1) = wp(c, ϕ,Γ1), (φ2, S2) = wp(c, ϕ,Γ2) and
(φ1, S3) = wp(c, ϕ,Γ3) thenφ1 ∧ φ2 implies φ3, andS3 can
be proved fromS1 andS2. Furthermore, it can be proved that if
c does not contain function invocations then proof obligations are
indeed equivalent.

Lemma 3. Suppose we have an assertionφ and c is the function
body for functionf . Suppose also thatφ does not containres nor
a variable that may be modified byc. Under the hypothesis that
the frame condition is verified, we can generate a certificate for
Γφ ÌMP{φ}f{φ}where for any function literalg, Γφ(g) = (φ, φ).
(Consequently, one of the derivation rules for`IMP is redundant.)

Proof. Since the possible approaches to verify which variables are
modified by a statement may differ on simplicity and completeness,
we consider two cases. Letc be the body of functionf :

7 2007/7/3

• A simple to verify approach is to require that only variables
declared as modifiable appear in the right hand side of an
assignment (or a function call). Under this strong hypothesis,
is straightforward to generate a certificate for the validity ofφ
along the whole programc. To this end, it is sufficient to show
that for every statementc, if we replace every assertion onc (i.e
invariants and postcondition) withφ (the resulting command
namedc′), and compute(φ′, S) = wp(c′, φ), thenφ ≡ φ′ and
S contains proof obligations of the formφ⇒χ with χ ≡ φ.

• However, if the condition of non-interference for a variable,
x for instance, is guaranteed by proving that the statement
x = Zx is valid at both the pre and postcondition, then it may
be the case thatx is modified and restored later. Formally that
means that for any variabley not modifiable by the statementc,
(φ, S) = wp(c, y = Zy,Γy=Zy) (where the contextΓy=Zy is
such that for anyg, Γy=Zy (g) = (y = Zy, y = Zy)) is such
asφ is implied byy = Zy andS contains only valid proposi-
tions. However, we cannot assume anything about verification
conditions inS, since it contains proofs for intermediate loop
invariants that not necessarily implyy = Zy.
We proceed instead by renamingφ to remove every modifiable
variable:φ[Z/x]. We know from the previous case that we can
prove that this assertion is preserved alongc, deriving the judg-
ment Γφ[Z/x] ÌMP{φ[Z/x]}f{φ[Z/x]}. We can then merge this re-
sult with the derivation ofΓx=Z ÌMP{x = Z}f{x = Z} to get
Γ ÌMP{φ}f{φ}.

The following result follows from Lemmas 1, 2 and 3.

Corollary 1 (standard PPO). Supposef is a function in an
advice-free program and we have a certificate forΓ ÌMP{P}f{Q},
then we can generate a certificate forΓ R̀TL{P}f{Q}.
Corollary 2 (beforeand after advice code PPO).Supposea is an
afteror beforeadvice (it does not containproceed statements) and
we have a certificate forΓa ÀDV{Pa}a{Qa}, then we can generate
a certificate for Γa R̀TL{Pa}a{Qa}.

Suppose that for a given methodg, we have computed the
weaving representationθg. We can show that for every auxiliary
function representing a sub-term ofθg, we can generate a certificate
that it satisfies the specification inferred by using the rules for
the weaving representations. Since we have defined the body of
each auxiliary function by compiling a particular statement we can
concentrate on a high level version and rely on the PPO for standard
statements.

Lemma 4 (embedding a simple imperative program in an as-
pect oriented context). A certificate for ΓΘ ∪ Γa R̀TL{P}f{Q}
can be generated from the derivation ofΓΘ,Γa ÀOP{P}f{Q}.

Proof. To derive ΓΘ,Γa ÀOP{P}f{Q} we need the premise
Γ ÌMP{P}f{Q} and thatΓΘ is a refinementfor Γ (that implies
thatWθf ∩ Orig ⊆ Wf whereOrig is the set of original pro-
gram variables). By Corollary 1 we know that we can certify
Γ R̀TL{P}f{Q}. To transform this certificate in a certificate for
ΓΘ R̀TL{P}f{Q}, we can show thatwpins is a monotone function
on the context. That means that ifφ1 is stronger thanφ2 andΓ2 is
a refinement ofΓ1 then if we compute(φ′1, S1) = wpins(l, φ1,Γ1)
and (φ′2, S2) = wpins(l, φ2,Γ2), then φ′1 is stronger thanφ′2
and S2 contains weaker proof obligations thanS1. This prop-
erty is standard and can be proved by induction onl (the in-
duction principle comes fromins being the result of compiling
a commandc.) We show only the function call case. Suppose
ins[l] = x:=invoke g w and let(P 1

g , Q
1
g) and(P 2

g , Q
2
g) stand re-

spectively forΓ1(f) andΓ2(f). Thenwpins(l, φ1,Γ1) = (φ′1, S1),
with φ′1 =P 2

g [w/in] ∧ ∀res,y′ .Q2
g[w/in][

y′
/y][y/y?]⇒φ′′1 [y

′
/y][res/x] and

(φ′′1 , S1) = wp(succ(l), φ1). In the other hand if we compute
wpins(l, φ2,Γ2) we get(φ′2, S2) whereφ′2 is equal to the propo-
sition P 2

g [w/in] ∧ ∀res, z′.Q2
g[w/in][

z′
/z][

z/z?] ⇒ φ′′2 [z
′
/z][

res/x] and
(φ′′2 , S2) = wp(succ(l), φ2). Then, by inductive hypothesis, we
have thatS2 is provable fromS1 and thatφ′′1 is stronger thatφ′′2 .
This latter condition, together withP 1

g andQ2
g being respectively

stronger thanP 2
g andQ1

g, and that modified variables represented
by y includes the ones represented byz, we have thatφ′2 is weaker
thanφ′1.

Lemma 5 (translation for before weaving certificates). It is
possible to generate, from a derivation ofΓ,Γa ÀOP{P}a . θ{Q},
a certificate for Γ ∪ Γa R̀TL{P}fa.θ{Q}.

Proof. If we have derived the judgmentΓ,Γa ÀOP{P}a . θ{Q},
then we have as hypothesis:

1. Γa ÀDV{Pa}a{Qa},
2. Γ,Γa ÀOP{Pθ}θ{Qθ},
3. (Qθ[

y′
/y][y/y?] ∧Qa[inθ/res]⇒Q[y

′
/y])[w

′
/w][z/z?],

4. P [ina/in]⇒(Pa ∧Qa[w
′
/w][w/w?]⇒Pθ[

res/inθ][w
′
/w]).

From Γa ÀDV{Pa}a{Qa} and Corollary 2 we can certify
the judgment Γa R̀TL{Pa}a{Qa} and by inductive hypothesis
Γ ∪ Γa R̀TL{Pθ}fθ{Qθ}.

To complete the proof we need to specify thatfθ preserves
Qa modulo modified variables. To this end, we rely on the in-
troduction of logical variables in the specification of a program.
Thus now a pre- and post-condition may refer to a logic vari-
able Z, and Γ′

R̀TL{P (Z)}g{Q(Z)} is interpreted as for any
constantvalue v, the judgmentΓ′

R̀TL{P (v)}g{Q(v)} is valid.
Now, letQ′

a stand forQa[inθ/res][
Zy?/y?][Zy/y][Zina/ina]. SinceQ′

a

contains only global variables not modified byFθ (andinθ), we
can easily generate a certificate for the extended specification
Γ ∪ Γa R̀TL{Pθ ∧Q′

a}θ{Qθ ∧Q′
a}.

Now we modify the predicate transformerwp for the case of
function invocation, so we can profit from the existence of logical
variables:

wp(x:=invoke g v, φ) =

(Pg [v/ing][e
′
/Z]∧

∀y′, res.Pg [v/ing][y
′
/y][y/y?][e

′
/Z]⇒φ[res/x][y

′
/y], S)

where e′ is any appropriate expression (with the same type as
Z). This makes the VCGen not decidable, unless we insert some
annotations around the function call. (Notice that, for soundness,
substitutions must be performed in the given order).

The weaving functionfa.θ is compiled exactly from the code

x:=a(in);
x:=fθ(x);
return x

When computing the weakest precondition for the compilation of
the first statement above we get:

Pa[in/ina] ∧ ∀res, w′.(Qa[in/ina][w
′
/w][w/w?]⇒(ϕ)[res/x][w

′
/w]) ,

whereϕ is the weakest precondition for the rest of the body offa.θ

(after simplifications):

ϕ = Pθ[x/inθ] ∧Qa[x/res]∧
∀res′.(Qθ[res

′
/res][x/inθ][y

′
/y][y/y?] ∧Qa[x/res]⇒Q[res

′
/res][y

′
/y])

If we compose it with the rest of the proof obligation, that is, the
proposition

P⇒(Pa[in/ina]∧
∀res, w′.(Qa[in/ina][w

′
/w][w/w?]⇒(ϕ)[res/x][w

′
/w]))[z/z?]

wherez are the global variables possibly modified both bya andθ,
we can see that it is sufficient to require the premises

8 2007/7/3

• (Qθ[
y′
/y][y/y?] ∧Qa[inθ/res]⇒Q[y

′
/y])[w

′
/w][z/z?]

• P [ina/in]⇒Pa ∧ (Qa[w
′
/w][w/w?]⇒Pθ[

res/inθ][w
′
/w])

Lemma 6 (translation for after weaving certificates).
A certificate for Γ ∪ Γa R̀TL{P}fθ/a{Q} can be derived from a
certificate of Γ,Γa ÀOP{P}θ / a{Q}.

Proof. The proof for the case of advices weavedafter a function
call is symmetrical to the previous case.

Lemma 7 (translation for around weaving certificates).
A certificate for Γ ∪ Γa R̀TL{P}fa./θ{Q} can be derived from a
certificate of Γ,Γa ÀOP{P}a ./ θ{Q}

Proof. Suppose we have derived the judgment{P}a ./ θ{Q} by
using the rule

Γa ÀDV{Pa}a{Qa} Γ,Γa ÀOP{Pθ}θ{Qθ}
P⇒Pa ∧ ∀x′.(P ′

a[x
′
/x]⇒Pθ[in

′
a/inθ][x

′
/x])

Qθ[in
′
a/inθ][res

′
/res][y

?′
/y?]⇒Q′

a ∧ ∀x′.(Qa[in/ina][x
′
/x]⇒Q[x

′
/x])

Wθ ⊆W ′
a

Γ,Γa ÀOP{P}a ./ θ{Q}
thena is acontrol-flow preservingadvice. By definitiona is such
that for any program point, either it is located before or after
a proceed statement. That implies, on the RTL side, that the
result of compilinga is a sequence of instructions such as every
instruction occurs either before or after (in the control flow graph)
an invocation tofθ, and no invocation tofθ can reach an invocation
to fθ.

From Γ,Γa ÀOP{Pθ}θ{Qθ} and by inductive hypothesis we
have a certificate forΓ ∪ Γa R̀TL{Pθ}fθ{Qθ}.

We proceed by extending the original compiler:

• replacing any intermediate assertionφ that occurs before a
proceed statement withφ ∧ ∀x′.(P ′

a[x
′
/x]⇒Pθ[

in′a/inθ][x
′
/x]),

• replacing any intermediate assertionφ that occurs after a pro-
ceed statement withφ ∧ ∀x′.(Qa[in/ina][x

′
/x]⇒Q[x

′
/x]) and

we can prove inductively that for any subcommandca of a, if
(l′, ins) = Ca(l, ca, fθ) and ins′ is the modified (as explained)
variant forins, and we let(φ, S) and(φ′, S′) stand respectively for
wp(ca, ψ) andwpins′(l, ψ

′) thenS′ can be discharged fromS, and
φ′ is implied byφ∧∀x′.(P ′

a[x
′
/x]⇒Pθ[

in′a/inθ][x
′
/x]) (if l is located

before an invocation tofθ) or φ ∧ ∀x′.(Qa[in/ina][x
′
/x]⇒Q[x

′
/x]),

otherwise.

Proof. To prove this sub-lemma we can rely on the equivalence of
verification conditions between simple commands (that does not
contain aproceed) and itsRTL compilation result. In addition,
since we know that neither∀x′.(P ′

a[x
′
/x] ⇒ Pθ[

in′a/inθ][x
′
/x]) nor

∀x′.(Qa[in/ina][x
′
/x]⇒Q[x

′
/x]) contain modifiable variables, its is

clear thatwpins ≡ wpins′ and then the conclusion holds for this
cases. Therefore, the only cases remaining are thereturn (since
the post-condition is changed) andproceed statements.

• caseca = return e.
Statementc occurs obviously after aproceed statement. Since
wp(c, ψ) = (Qa[e/res], ∅) and wp(c, ψ) = (Q[e/res], ∅) we
can see thatwp(c, ψ)[in/ina] ∧ ∀x′.(Qa[in/ina][x

′
/x]⇒ Q[x

′
/x])

implieswp(c, ψ)
• caseca = w:= proceed(e). We focus on the assertion re-

turned bywp, since this statement does not generate proof obli-
gations. In one side we have

P ′
a[e/in′a] ∧ ∀res′, y′.(Q′

a[e/in′a][y
′
/y][y/y?′]⇒φ[y

′
/y][res

′
/w][e/in′a])

and we have to prove that this together with the proposition
∀x′.(P ′

a[x
′
/x]⇒Pθ[

in′a/inθ][x
′
/x]) implies the corresponding as-

sertionPθ[
e/inθ] ∧ ∀res, y′.(Qθ[

e/inθ][y
′
/y][y/y?]⇒φ′[y

′
/y][res/w])

for the modified statement. It is clear by definition thatPθ[
e/inθ]

is implied byP ′
a[e/in′a] ∧ ∀x′.(P ′

a[x
′
/x]⇒Pθ[

in′a/inθ][x
′
/x]), thus

we can focus on provingQθ[
e/inθ][y

′
/y][y/y?]⇒φ′[y

′
/y][res/w] tak-

ingQ′
a[e/in′a][y

′
/y][y/y?′]⇒φ[y

′
/y][res

′
/w][e/in′a] as hypothesis. The

former assertion can be proved by taking first the stronger (by
Inductive Hypothesis) formula

Qθ[
e/inθ][y

′
/y][y/y?]⇒

(φ ∧ ∀x′.(Qa[in/ina][x
′
/x]⇒Q[x

′
/x]))[y

′
/y][res/w] ,

which in turn may be split to:

Qθ[
e/inθ][y

′
/y][y/y?]⇒φ[y

′
/y][res/w]

and

Qθ[
e/inθ][y

′
/y][y/y?]⇒

(∀x′.(Qa[in/ina][x
′
/x]⇒Q[x

′
/x]))[y

′
/y][res/w] .

The former can be discharged since we have a proof for
Qθ[

in′a/inθ][res
′
/res][

y?′
/y?] ⇒ Q′

a and we already have as hy-
pothesis thatQ′

a[e/in′a][y
′
/y][y/y?′] ⇒ φ[y

′
/y][res

′
/w][e/in′a] (notice

thatin′a may not occur inφ.)
The latter is a rewriting for one of the premises of the applied
rule:Qθ[

in′a/inθ][res
′
/res]⇒∀x′.(Qa[in/ina][x

′
/x]⇒Q[x

′
/x]).

To derive Γ ∪ Γa R̀TL{P}a ./ θ{Q} we must prove that every
proof obligation inS is valid and thatP implies φ[x/x?], where
(φ, S) = wpins(1, false) and (ins,) = Ca(ca, 1, fθ). By hy-
pothesis, sinceΓa ÀDV{Pa}a{Qa} has been derived, we have as
premises thatS′ contains only valid proof obligations andPa im-
pliesφ′[x/x?], where(φ′, S′) = wpa(ca, false). By previous sub-
lemma we know thatS is provable fromS′ and thatφ is equivalent
to φ′ ∧ ∀x′.(P ′

a[x/x?]⇒ Pθ[
in′a/inθ][x/x?]). Therefore by using the

premiseP⇒Pa ∧∀x′.(P ′
a[x/x?]⇒Pθ[

in′a/inθ][x/x?]) of the rule for
aroundadvices applied, we get a proof for the remaining verifica-
tion conditionP⇒φ[x/x?].

6. Extensions for dynamic point-cuts descriptors
Extension for Conditional point-cut descriptors

We can extend the language for point-cut descriptors with a boolean
conditionb that is checked at runtime to decide whether an advice is
executed or not. Usually when compiling AOP, since this condition
is not statically decidable, this residue is ignored at first, and a
piece of code that checks for this is attached to the weaved code,
and thereforeθ must be statically over-approximated. We simulate
this approach by attaching a corresponding boolean condition to

the constructors forθ: “
b
.”, “

b
/” and “

b
./”.

Γ,Γa ÀOP{P ∧ b}a . θ{Q} Γ,Γa ÀOP{P ∧ ¬b}θ{Q}

Γ,Γa ÀOP{P}a
b
. θ{Q}

Γ,Γa ÀOP{P ∧ b}θ / a{Q} Γ,Γa ÀOP{P ∧ ¬b}θ{Q}

Γ,Γa ÀOP{P}θ
b
/ a{Q}

Γ,Γa ÀOP{P ∧ b}a ./ θ{Q} Γ,Γa ÀOP{P ∧ ¬b}θ{Q}

Γ,Γa ÀOP{P}a
b
./ θ{Q}

Example: Recall the previous example, we have shown that
ΓΘ,Γa ÀOP{Pm}a2 . (a1 ./ m){Qa1} is a valid judgment. Since

9 2007/7/3

Pm represents the boolean condition0 ≤ i < N we can intro-
duce an advice triggeredbeforea2 . (a1 ./ m) (but under the
conditionb = ¬(0 ≤ i < N)) to enforce the precondition. The
implementation of this advice will take any possible measure to
deal with the initial states that does not satisfy the precondition
Pm. For simplicity, we considerer the body of this new advicea3

to be anabort statement, and its specificationPa3 = true and
Qa3 = Pm. It can be easily shown that the advice satisfies its spec-
ification. Using the rule for before advices we can derive the judg-
ment ΓΘ,Γa ÀOP{¬Pm}a3 . a2 . (a1 ./ m){Qa1}, and together
with the judgmentΓΘ,Γa ÀOP{Pm}a2 . (a1 ./ m){Qa1} we can
apply one of the conditional rules to derive the more refined judg-

ment ΓΘ,Γa ÀOP{true}a3
b
. a2 . (a1 ./ m){Qa1}, which states

that original functionality is indeed preserved.
Extending the definition for the semantics relation

.

⇑ to consider
this case is straightforward. Compiling the augmented construction

a
b
.θ is similar toa.θ, but with the call to functiona executed under

a conditional statement that checks for the conditionb. Therefore,
under this simple definition, it is not difficult to see the the rules
given above permits to translate the certificate of an augmented
method to a certificate for its correspondingRTL representation.

Extension for cflow point-cut descriptors

We may also define a set of rules to deal withcflow point-cut
descriptors. As can be seen in the following set of rules, since a
priory we cannot associate eachcflow declaration to a condition
specifiable in our logic, we are not able to analyze them statically.
When defining the semantics of this weaving with residue, we may
(and certainly have to) extend execution states to include a call
stack, so that we can decide whether acflow condition is valid.
However, specifying and reasoning about a call stack will generate
huge and discouraging proof obligations.

Γ,Γa ÀOP{P}a . θ{Q} Γ,Γa ÀOP{P}θ{Q}

Γ,Γa ÀOP{P}a
cflow
. θ{Q}

Γ,Γa ÀOP{P}θ / a{Q} Γ,Γa ÀOP{P}θ{Q}

Γ,Γa ÀOP{P}θ
cflow
/ a{Q}

Γ,Γa ÀOP{P}a ./ θ{Q} Γ,Γa ÀOP{P}θ{Q}

Γ,Γa ÀOP{P}a
cflow
./ θ{Q}

The simplicity of this rules comes with the cost of incomplete-
ness, but that is not surprising considering the harmfulness of a
cflow declaration.

However, it can be dealt easily and modularly with non-
interfering advices. To illustrate this, ifa is an around advice
that does not modify any variable (but iscontrol-flow preserving),
with a trivial specification, we can deriveΓ,Γa ÀOP{P}a ./ θ{Q}
from Γ,Γa ÀOP{P}θ{Q}. And then, by applying one of the rules

above, we getΓ,Γa ÀOP{P}a
cflow
./ θ{Q}.

7. Conclusion
We have shown that it is possible to extend a Hoare-like verification
environment to verify that the result of weaving an advice to a
standard method preserves the originally intended functionality.
We have done this, by showing also that the whole process can
be conducted modularly by relying on an earlier verification of the
method and advice in isolation.

Assuming that the verification process outputs a representation
of the proof (aka. certificate), we have complemented the previous
result by extending a simple compiler with a certificate translator.
More precisely, we showed that for a given simple compiler, we
can define a mechanism that builds a certificate of correctness for
the result of augmenting a standard method with advices from

the certificates of its components. This modularity condition is
desirable in any PCC environment, since it allows to reuse already
generated code certificates.

Merging the original certificate with proofs of equivalence of
verification conditions may imply a significant growth on the final
proof representation. For this reason, one possible direction for fur-
ther research is defining a more appropriate VCGen or supporting
verification with deduction modulo equivalence.

References
[1] AspectJ Team. The AspectJ programming guide. Version 1.5.3.

Available fromhttp://eclipse.org/aspectj, 2006.

[2] Gilles Barthe, Benjamin Grégoire, Ćesar Kunz, and Tamara Rezk.
Certificate translation for optimizing compilers. In Kwangkeun Yi,
editor, SAS, volume 4134 ofLecture Notes in Computer Science,
pages 301–317. Springer, 2006.

[3] Gilles Barthe, Tamara Rezk, and Ando Saabas. Proof obligations
preserving compilation. In Theodosis Dimitrakos, Fabio Martinelli,
Peter Y. A. Ryan, and Steve A. Schneider, editors,Formal Aspects
in Security and Trust, volume 3866 ofLecture Notes in Computer
Science, pages 112–126. Springer, 2005.

[4] C. Clifton and G. Leavens. Spectators and assistants: Enabling
modular aspect-oriented reasoning, 2002.

[5] Daniel S. Dantas and David Walker. Harmless advice. InPOPL ’06:
Conference record of the 33rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 383–396, New York,
NY, USA, 2006. ACM Press.

[6] Rmi Douence, Pascal Fradet, and Mario Sdholt. Composition, Reuse
and Interaction Analysis of Stateful Aspects. InAspect-Oriented
Software Development (AOSD), pages 141–150. ACM, ACM Press,
2004.

[7] M Goldman and Shmuel Katz. Modular generic verification of LTL
properties for aspects. InFoundations of Aspect Languages Workshop
(FOAL06), 2006.

[8] Shmuel Katz. Aspect categories and classes of temporal properties.
In Awais Rashid and Mehmet Aksit, editors,T. Aspect-Oriented
Software Development I, volume 3880 ofLecture Notes in Computer
Science, pages 106–134. Springer, 2006.

[9] Thomas Kleymann. Hoare logic and auxiliary variables.Formal Asp.
Comput., 11(5):541–566, 1999.

[10] Shriram Krishnamurthi, Kathi Fisler, and Michael Greenberg.
Verifying aspect advice modularly. InSIGSOFT ’04/FSE-12:
Proceedings of the 12th ACM SIGSOFT twelfth international
symposium on Foundations of software engineering, pages 137–146,
New York, NY, USA, 2004. ACM Press.

[11] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde
Ruby, David R. Cok, Peter M̈uller, Joseph Kiniry, and Patrice Chalin.
JML Reference Manual. Department of Computer Science, Iowa State
University. Available fromhttp://www.jmlspecs.org, February
2007.

[12] Mariela Pavlova. Java bytecode verification and its applications.
Thése de doctorat, spécialit́e informatique, Université Nice Sophia
Antipolis, France, January 2007.

[13] Martin Rinard, Alexandru Salcianu, and Suhabe Bugrara. A classifi-
cation system and analysis for aspect-oriented programs. InSIGSOFT
’04/FSE-12: Proceedings of the 12th ACM SIGSOFT twelfth inter-
national symposium on Foundations of software engineering, pages
147–158, New York, NY, USA, 2004. ACM Press.

[14] David Walker, Steve Zdancewic, and Jay Ligatti. A theory of aspects.
In Colin Runciman and Olin Shivers, editors,ICFP, pages 127–139.
ACM, 2003.

[15] Jianjun Zhao and Martin C. Rinard. Pipa: A behavioral interface
specification language for aspectj. In Mauro Pezzè, editor,FASE,
volume 2621 ofLecture Notes in Computer Science, pages 150–165.
Springer, 2003.

10 2007/7/3

