DRAFT—Do not distribute

Modular Verification and Certificate Translation for Advice
Weaving

César Kunz
INRIA Sophia-Antipolis

Abstract come at the cost of an unclear interference between each compo-
nent.

Despite recent efforts to pinpoint the semantics of aspects, the
verification of aspect-oriented programs is not well developed. The
lack of verification methods for AOP is partly explained by the non-

odular nature of aspects [4]. Nevertheless, Dantas and Walker [5]
ave recently argued that many useful advices are harmless, in that
they may change the termination behavior but do not influence the
inal result of the mainline code.”

Aspect oriented programming (AOP) is a paradigm that offers a
significant degree of modularity, allowing developers to separate
cross-cutting aspects of a system from its main functionality.
While this kind of programming modularity is appropriate to
encapsulate concerns into single modules, namely aspects, progra
development may be highly error-prone due to the level of interfer- |,
ence between aspects and the original code. Indeed, in order to tak(?
advantages of AOP modularity avoiding the harm of uncontrolled - I . .
interference, verification techniques need to be developed. In this A first CO“"'PF‘“OF‘ of this work is the de_/elopment a sound
paper, we present a modular verification technique to certify that 2nd modular verification method for aspect-oriented programs. The
itgmethod is based on verification condition generators, which are
commonly used in program verification environments, and adopts

original specification. the following principles:

Furthermore we define a mechanism to transform certificates
for correctness of AOP programs into certificates for compiled e each function of the program is verified against its specification
weaved code, in the spirit of proof carrying code architectures. This i jsolation:
mechanism inherits the modularity of the verification technique

and allows to build a certificate for an augmented code from the ° each advice is verified against its corresponding specification;

certificates of its components. e proof obligations ensuring preservation of original specifica-
tions are extracted from specifications of functions and advices.
1. Introduction This is done following a rely-guarantee principle, in that the

.) .)) pre and postconditions of the original function are proved to
Aspect-oriented programming (AOP) is an emerging paradigm that e preserved (or refined) under the hypothesis that each ad-

offers programmers a new potential for the modularization of pro- e js guaranteed to follow its specification. Discharging these
grams, by aIIowmg deve_lopers_to |s_olate cross-cutting aspects of proof obligations automatically may be feasible, depending on
the software from its main functionality. the level of interference between advices and original program.

This paradigm is commonly implemented as an extension to an
already existing language. Consequently, an aspect-oriented pro- A second contribution is done in the context of a PCC frame-
gram typically comprises three parts: a baseline program that per-work. It consists of extending a compiler for a simple AOP lan-
forms the main functionality, a set of advices, i.e., computational guage to a standaRITL language with a certificate translator. This
units handling different aspects; and point-cuts descriptors that de-mechanism generates, from the proof of correctness for a source
termine how advices are combined with the underlying base pro- AOP program, a certificate that the code resulting from the com-
gram. pilation satisfies the intended specification. It illustrates the modu-

From an applicative perspective, aspect-orientation is transpar-larity of the approach, by reusing previously generated certificates
ent and AOP compilers target typical back-ends: indeed, it is the from original methods and introduced advices, which are merged
role of the compiler to integrate these concerns into a single ex- to form certificates for the augmented methods.
ecutable object, through a weaving mechanism that modifies the
code of each function depending on the advices that operate overRelated work
it. This transparency allows to develop the main functionality be-
ing unaware of the rest of the components, a key advantage of AOP.
However, whileobliviousnesss a very desirable property, it may

Non-interference and modularity: Non-interference of advices
with respect to the underlying program as well as with other ad-
vices and modularity of the verification is a main topic in several
publications [4, 5, 6, 7, 8, 10, 13, 14].

Dantas and Walker [5] define the notiontedrmless adviceA
harmless advice may interfere with the control flow (by prevent-
ing termination) and may also perform I/O, but it does not inter-
fere with the final result of the underlying code. This weak inter-
ference property permits to reason about the original program in-
dependently. They propose an information-flow type system over
])) a core AOP language [14] to check harmlessness with respect to
[copyright notice will appear here] the main program. This type system can be combined to form part

1 2007/7/3

of our hybrid logic to certify and check that an advice does not method calls with secondary effects. Each method is composed of
interfere with the original global state. The conditions they check an identifier, its formal parameters and the command representing
are coarser-grained that the properties that may be specified in ourthe function body.

framework, but it can be certainly be combined to our hybrid logic
to certify that an advice does not interfere with the original global

Programs Prog meth* ¢
State. _]) . Methods meth gargc
In[4], Clifton and Leavens define a notion of modular reasoning Commands ¢ vi=gle) | vi=e | ¢;

and show why modularity is not a general property in AspectJ and
how this can be improved. One additional benefit that is closely
related to modular reasoning separate compilationa technique integer expressions e
that allows to weave new aspects to an already compiled (or even boolean expressions b
already running) program. It mainly consists of a classification for
aspects aspectatoror assistantsthe former include aspects that -
only modify the state space they own and do not alter the control Figure 1. Syntax of Base Programs
flow. On the other handassistantscan interfere with the original
behavior of the program but only éxplicitly acceptedby the .
original program. In our work, we also rely on a declaration for Advices
the level of interference between each method and advice body, The syntax for base programs extended with aspects is presented
and verification for behavior preservation may be more flexible but in Fig. 2. In the figurea stands for any advice identifier in the
consequently not decidable. setA. A program extended with aspectsProg is composed of

Shmuel Katz et al. [8, 7] propose a classification of aspects as
spectativeregulativeor invasive depending on the level of inter-
ference with theinderlyingprogram. The main motivation for this As

) . . e . pects aspect

work is to simplify program verification by focusing on the proper- Advices advice
ties that may be affected by the introduction of an aspect. Program ;
properties are specified with temporal logic formulae, and each as- Advice commands ‘o
pect category is described, analyzing how already valid properties
are influenced. More concretely it model-checks a state machine
representation of the aspect merged with the representation of the pointcuts descriptors ptd
underlying program. Following the result of this analysis, a con-
crete static procedure to classify advices is proposed. This work re-
sembles our VCGen in the sense that favors modularity of the veri-
fication process and makes emphasis on the preservation of original
properties. However, the main difference when comparing it to our
work come from the weaknesses and strengths of model-checking
with respect to interactive verification.

JML-based verification: Pipa [15] is proposed as an extension a sequence of modular componenisyect™ in the figure) han-

to JML [11] for aspectJ [1], to support specification for aspects in- dling different concerns attached to a standard base program,
variants, pre- and post-conditions for advices and variable introduc- as defined above. Each aspect is implemented by combining of a
tions. The main motivation is to transfer the application of current set of advices, with its corresponding point-cut descriptors to spec-
tools for Java programs to the AspectJ language, by extending anify when an advice should be executed. Advices are computational
AspectJ to Java compiler with a simultaneous translation of a Pipa units declared similarly to functions, in that they are composed of
specification into a standard JML specification. The convenience an identifiera, a formal parametetirg and a command,, repre-

and key ideas of the approach are rigorously explained, some ex-senting its body. They are intended to be executed, as a result of
amples are given illustrating the transformation, but the discussion a process calledode weavingt specific execution pointgofnt-
remains informal. points, that can be specified with point-cut descriptors. Commonly,
point-cut descriptors are composed of properties that can be stati-

PPO and certificate translation. Certificate translation for a sim-) . ; <
ple AOP language is based mainly on previous work on Preserva- cally checked together W'.th d_ynamlcally Qe0|dable condltlc_)ns. The
most common characterization of a point-cut is a function call,

tion of Proof Obligations (PPO). Barthe et al. [3] show that, givena . the fact that ticular function is invoked. In th tax it
specific VCGen, a sufficiently simple compiler generates, from an !-€:» th€ fact that a particuiar function 1S Invoked. 'n the syntax, 1
imperative source program, a stack based low-level piece of code,can e seen that point-cut descriptors may specify that an advice

whose proof obligations are syntactically equal to that of the source IS tat?(]e(éutecbefor? aflter %L?{lougd th? Ln\é;(f:atlon of fa partlcu(ljar
program. Similar results on a wider verification framework are de- Methods, respectively with the descriptobefore(g), after(g) an

tailed by Pavl 121, f ignificant subset of Java Bytecode. 2@round(g). In addition, it is also possible to require extra condi-
ailed by Paviova [12], for a significant subset of Java Bytecode tions (checkable at run-time) such as whether an arbitrary boolean

2. Setting expression_ is valid or whether the current ex_ecution occurs under

. the dynamic control flow of a call to a particular methgdThe
We start with the definition of the base program, and later extend latter is specified with aflow(g) descriptor and can be checked by
the syntax to introduce aspects. call stack inspection.

A base program is defined as a set of methods, together with For clarity, we initially focus on point-cut descriptors that allow
global variable declarations and a special main statement. The basais to infer statically the exact sequence of advices that execute for
syntax can be found in Fig. 1, whetestands for any element in a given join-point. That is, advices may be specified to be executed
the domain of program variablég, andg ranges over the set of when a particular method is invoked, and we will explain later how
predefined method namés. The domairC of statements is stan- we can extend our specification and verification techniques to deal
dard and includes loops and conditional statements, together withwith dynamic conditions.

return e | while bdo ¢ | skip
if b then c else ¢ | abort
nlv|eope]|...

true | false

erope| —b|bbopbd

Augmented Program AProg Prog aspect*

advice™®

ptd+ aarg cq

v:= proceed(e) | cqa; Ca
return e | while bdo ¢,
if b then ¢, else cq
v:=e | skip | abort
before(g) A ptd’
after(g) A ptd’
around(g) A ptd’

_ | if(b) | cflow(g)

ptd’ A ptd' | ptd’ v ptd’
—ptd’

ptd’

Figure 2. Syntax for Aspect Extension

2 2007/7/3

0

g 3 ’ /
<|Ie}]z’77> ,ﬂ <n,nl> <C7 (][ln — n]:’?[)> ~ <N i >

g
(w:=g(e), (o,n)) ~ (o ® [z — n],7) <n,n> fr <n’,n'>
whered, is the static weaving fog (ca, ([ina — n],n)) ~ <n/,7'> <n',n'> ﬁ <\’
Figure 3. Weaved Function Call Semantics ab®

<n,m> f <n’,n">
]
<n,nz> f <n’,n'> (ca, ([in — n],0')) ~ <n”, 0" >

An advice bodyc,, is a command similar to a function body, 0ga
extended with a new statemepitoceed. The argument passing <nn> o <ntn’>
and returning is explained in following sections, as well as the (ca, ([in = n],) = <n’,n'>
behavior of theproceed command. In addition, as can be seen avag
in Fig. 2, the expressiveness of an advice body is reduced by <mnz fo<nhn'>
disallowing calls to base code functions. wherec is body(g), ca is body(a), and=> is defined in Fig. 5.
2.1 Semantics Figure 4. Weaving Semantics

In this section we progressively define the semantics for an AOP
program as defined in the previous section, starting from a standard

semantics for base programs. (1, o, m)) 2 (o', n') (ea, (o' D) 2 S
We defin_e the semant@cs fo_r sim_ple imperative statements op- (crica, (o.n)) 2 S

erationally, i.e, as a relation- involving the statement and two o ,

execution states. To represent the execution state, we distinguish (e1, loyn)) = <n,n'>

local storesy : ¥ from global environments : H, which are both (crica, (o, m)) 2 <n,n'>

represented as mappings from program variabl@stmvalues 7). 0

As an extra condition, we require formal parameters to be consid- <n,n> 1 (n',n')

ered different from common program variables, as they may not
appear in the right hand side of an assignment and thus they can-
not be modified. Execution states can be classified as intermediate
(A)or final (AT") states, where intermediate stagesn) are com-
posed of a local and a global environmeat (= ¥ x H) and final
states<n, n> consist of a final environment and the return value
(AT = Z x H). The presence of a final state in the right hand side

of the relation indicates that a return command has already beenjs weavedbeforea methodg, execution is yield tg; immediately

execu_ted. aftera returns. In the case @roundadvices, aroceed statement
Afinal state expresses the fact thateurn statement has been sjgnals the permission to continue the execution.dfo define the

executed, and we require execution states to reduce always to finakemantics of commands that may containceed statements, we

states before returning from a function call. introduce a new set of rules for relatieh: © — (C x A’) — A

Advice Weaving. If we do not consider boolean conditions or (defined in Fig. 5.) Itis si_m_ilar tothe small-st_ep semantics for stan-
call stack inspection as point-cut descriptors, we are able to infer dard commands¢), but it is more general since takes as parame-
statically which advices are triggered to assist the executian of ter the sequence of advices (i to be triggered when proceed
and in which order. To represent the result of this inference we Statementis executed.
use the following notation: we denote the result of augmenting
any methodg with 6,4, which is composed of a single method 3. VCGen
g, or of an adviceax appendedefore after or around a smaller
augmented method; respectively denoted by > 0, 6, < a or
a < 0, (we denote® the set of augmented methods.) When
introducing a dynamic condition (such aflow) as a point-cut
descriptor, weaving is resolved by inserting at specific points a
piece of code that checks at run-time whether the condition is
satisfied or not. For simplicity, we initially restrict our weaving
semantics to be statically decidable and later show how the VCGen
may be extended to deal with this dynamic conditions.

A new rule for the function call replaces the standard one to rep-
resent the fact that a sequence of advices may be weaved around th hese later variables may inclutarred variablegv*) which ap-

original function. The new rule forFfunctloE calls (definedinFig. 3) a4y in the post-condition and in intermediate assertions and repre-
relies on a new relatiof): © — A" — A” which represents the gent the initial value of some global variahleWe do not need to
sequential execution of the components of an augmented methodyefer to starred version of formal parameters, since we are assum-
and is defined in Fig. 4. The relatigninvolves two final states and ing that they are different from program variables and thus they
a sequence of advicés reducing the latter by one in each reduc- may not be modified. A postcondition refers to global variables, a
tion step. The case for the trivial empty sequence simply executesspecial purposees represented the return value and the formal pa-
the original method;, while the cases fobeforeand after aug- rameter (denotedn, for methodg). Global variables may appear
mentation rely on a subset of the rules for The case foaround on the postcondition with a*) modifier if its value may change
advices is a bit more complicated since the execution of the advisedduring the execution of the function. Preconditions refers to the
function must be explicitly allowed to continue. When an advice corresponding formal parameter and any global variable.

(a:= proceed(e), (o, 1) % <o @ [z — n'],n'>

(returne, (o,n)) % <[e]5, n>

Figure 5. Around Advice Statements Semantics (Excerpt)

When verifying a base program extended with aspects, several ap-
proaches may be taken. In our case we prefer to keep the modularity
of the verification process by analyzing the validity of the specifi-
cation for each method or advice in isolation.
Both methods and advices have an associated specification com-

posed of a pre and post-condition, together witfraane condi-
tion. This specification states the expected functional behavior of
the corresponding command and is represented as an assertion in a
first order logic. In a general setting an assertion refers to variables
either global or local), as well as some special-purpose variables.

3 2007/713

Ietn(f) =Py, Qs,y) in (P=0[%]) A Apocs PO (6,5) = w, (body(g), Q)
wp, (skip,) = (¢, 0) e (P
woy (z:=c.) = (¢[72].0) we {P1Q)
ng(01;027<)0) = Ihwe{P'}9{Q} P=P Q'=Q
oy 2 g2 zwlez,) Dhue (PYo{@)
let (1, S1)=wp(c1, p2) in ,
(1,51 U S2) T'k,gwritessY YNFV(p)=0
wp, (return e, p) = (p[%es], 0) b {otolo}
ng(if bthen c; else c2,p) = L) , ,
let (o1, S1)=wp(c1, @) in M e {PYe{Q} TPy {P}g{Q"}
let (o2, S2)=wp(cz, ¢) in D3 {P AP /
(b¢;1/\2ﬂbé<p22,51U52) mp P AP H{QAQ'}
wp, (while b {Inv} do ¢, ¢) = where V;.T'u(f) = (¢,) and
let (¢’, S)=wp(c, Inv) in for any functionf, T'3(f) = (P1 A P2, Q1 A Q2, W1 U Wa)
(Inv, {Inv=(b=¢' A=b=p)} US) where(Pr, Q1, W1) = T'H(f) and(Pz2, Q2, Wa) = T'2(f).
wp, (@i=f(€), ¢) =
(P [7ingIN Figure 7. Inference rules foFup

Yyt res- Qs [Fan 11V sl =] = "5 [V, 0)
Notice that the definition ofvp is implicitly parametric o

the pre-condition. The rules for the derivation of judgements over
Figure 6. Weakest Precondition Function standard methods can be found in Fig. 7.
When verifying mutually recursive functions, special care must
be taken when defining a rule that removes elements from the con-
The frame conditions specify the set of global variables that text. To this end, we introduce a notation for expressing the quan-

may be modified by the body of the method or advidé, stands tification of a judgment over a context. Tk/lat is, we dendte I
for the set of variables modifiable by methgdand we denote the fact that for every methofl such thatl”(f) = (P, Q,y) we

.9 writes W, the fact: can deriveI'-{P}f{Q} and T'k, f writes y.
Vo3, -(body(g), (0, 1)) ~ <n,n'> Anw £ nv=v € W, T UT kT
I,.T

IMP

3.1 \Verifying the Base Program . . .
ing g The interpretation of the stateme, . { P, }¢{Q,} is that for

Verifying a particular method involves proving that its body sat- any values:, n’ and environments, 5’ such that] P, [":a]]n and
isfies its pre- and post-condition (possibly with a set of auxiliary g

o n’ 17, %
invariants) and independently proving the frame conditions. The <™ 71> T <n’,n'>, we have thafQy[" fres|[n'[y* — n y]. To
latter may be certified by several means, for instance by dataflow 9V& an intuition, we will later require that the result of weaving
analyses, non-interference typing systems [5] or even Hoare-logics.adv'ces to the execution of the functign simulates the original

We say that this certification is hybrid since proof validation can be (Simple imperative) behavior gi. .
performed by independent and possibly different analyses. We generalize the previous statement by adding a context as

To verify that a given statementsatisfies a specification, we ~ hypothesis, such thal’ |5, {P,}¢{Q,} generalizes the previ-
define the predicate transformep, which takes a functiog with ous interpretation by taking as assumption that for every spec-
body statement, a predicatep, and a context’. When verifying ification I'(f) = (Py,Qs,Wy) we have I'i5,,.{Pr}f{Qs}

a command:, since it may include function invocations, a context and I'[=,f writes W;. Soundness of the VCGen implies that
T'is used to specify a pre-condition, a post-condition and the frame | Fiue{Fs}9{Qy} wheneverl'r, . { P, }g{Q}-

condition for any method that may be called &yFor notational ~ Example: To illustrate the approach with a running example we
conveniencel is represented as a map from function identifiers consider a extended program syntax. Suppose we have a program
to tuples of the forn(P, Q, W) where P and@ stand for the pre Pr, from which we isolate a methoth = slowRetrieve that

and post-condition, antl” for the set of global variables that may returns the value stored in a slow access memory. This behavior
be modified. In addition, a single variable may stand for the set is represented by taking as parameter the intégliressi and

of modified variables. Therefore, we may write instdad’) = by accessing a global array variallem with this index. We also
(P, @, y) and the single substitutigf/,| denotes the simultaneous suppose thar contains a methoshain that represents any method
substitution of every modified variable by a fresh variable. that may invoke functiomn.

We do not need to specify which approach is taken to certify the ~ We extend the original program with the introduction of the
frame conditions as long as our VCGen remains hybrid along the Standard functiong; = initializeCache, f; = updateCache
whole compilation process. Instead, we suppose we have a method"d fs = isAvailable. We add also two global array variables

e . . available andcache, and suppose they are accessible only by
to g_e_nerate a derlvatlon_ for the judgment-, g writes Wy, _that these functions. At the moment, we have not introduced any advice,
certifies that the execution of may only modify the variables

) . ; Ve we are simply providing some basic functionality that will prove
in Wy. Under this assumption, we focus on the derivation of the sefyl when introducing new advices. We continue by specifying

judgment 't { P}g{Q}. the methodn defined in the previous section with pre and post-
We start by defining a predicate transformeas in Fig. 6, that conditions

takes a statemenmt a post-conditiony and a contexi” specifying Pp,=0<i<N

the behavior of any function that may be called byThe func- Qm = res = men|[i]

tion wp returns the weakest precondition and a set of verification and by declaring thatn does not modify any global variable
conditions that ensure the validity of the post-condition taken as (W,, =). To emphasize the modularity of the approach we
parameter. To give an intuition, we say that a base code function will deliberately leave its implementation and verification im-
g is certified to follow its specification if thep function returns a plicit. Instead, simply suppose that we can derive the judgments
setS of valid proof obligations and a proposition that is implied by . { P }{Qm} and { P }m{Qm } by { P}main{Q}, where

4 2007/7/3

(P, Q) is an arbitrary specification. The intention is to prove that Value v:=proceed(i);

main preserves its original specificatid®, Q) after extending the updateCache (i, v);
programPr with the introduction of new aspects. return v
To specify methodg, f> and f3, we let¢ stand for the con- }
sistency of thecache variable with respect to thevailability
array: The specification for this advice, is
. ¢ = Vz.(available[z]ﬁcache[.z] = mexfl[z]) . . Po,=0<i<NAG

To specify these new methods we define their respective pre/post- P —p,

conditions: O,
Ep = true Qay =Qm A0
p)f;l =0<i<NA® Notice that, since is intended to be executed only aroundwe
Q7, = cache = cache*[i — V] A ¢ can safely define theroceed specification(P;, , Q5,) equal to
P, =0<i< N the specification forn.
Qf, = res < availableli] We can now prove the correctnesswfin isolation, by deriving

Since these functions and the verification of their specification are "aov{(Pa1; Pa,) }a1{(Qa,, Qa,)}. To this end, it is sufficient to
standard we omit the actual implementation and the verification ShOW: @s a premise, that the proposition

steps. Pr, AVy. Yres] =
In addition, since we suppose thahin does not modify neither T b::Q(Q{SaLé:[S:}l/ 1A ¢
mem Nor the new variablesvailable andcache, we can derive in N res
two steps b= Py A Vres.(Qm = Pp, A
{Pm A d)}m{Q’m A ¢} hMP{P A ¢}ma|n{Q A ¢} vcache’ (Qf2 [CaChe/cache} [CaChe/cache*] =

cache’

3.2 Verifying Advices in isolation (@m A S)= eaene)))
Verifying the specification of an advice body is similar to base
program statements, since they share most of their commands and o
both are specified similarly. 3.3 Verifying the weaved code

For the sake of modularity, we extend the specification and VC- To verify a methodg included in an augmented program, we
Gen for around advices. This extension consists of a new specifi- need to compute previously the sequence of advices that is ex-
cation for the behavior expected when calling a proceed statement.ecuted around ité(;). We proceed by deriving an appropriate

is implied by P, .

We generalize the specification by introducing a nemogeed) judgment T, T, 1, . {P}6,{Q}. To understand the meaning of
specification?, andQ,, for eacharoundadvicea, and new vari- ~ this judgment we first define ag=, . { P}0{Q} the fact that for
ablesin/, andres,, that correspond respectively to the input and 0

output value for the execution triggered pyoceed. The assertion ~ any 7, 77:,”/ andn’ if <n,n> f <n’,n'> and[P[/iu]]n then
Q. refers to the variablesn,, andres,, as well as any global vari- [Q[7i][" /fres]Inly™ +— ny]. By the judgmentl’, I's |=,. { P}6{Q}
ables (possible starred) and,,. Similarly, P, include conditions we mean =,,.{ P}6{Q} under the hypothesis that for arfyand
overin/, as well asin, and any global variable. In addition, anor- a such thal’(f) = (Py,Qy) andl’a = (P., Qa), we have respec-
mal postconditionQ, for an around advice may refer also to the tively that |=,.{P} f{Q,} and =, {Pa}a{Qa}-

variableres,,. We require that a specification fproceed declares The derivation of this judgment is defined inductively on the
the set of variables that are allowed to changg). construction o) and relies strongly on the interference conditions.
The predicate transformevp is extended foproceed state- Since this frame conditions are defined only for methods and ad-
ments: vices, we should extend this definition to nested térithis defini-
wp,, (z:= proceed(e), ¢) = tion does not represent any difficulty, its is straightforward and safe
(Pal %] to extend the judgment for frame conditions to augmented methods
AVyf,res'-Qg[ein;][yl/y}[y/ym] :>¢[res'/x][yl/y][eing]’ S) (T, Tak,04 writes W) by takingW as the union of the variables

. e modifiable by all the components 6f.
wherey represents any variable that may be modified by the nested ™ "yyje startyby defining F;he rule tghat relates executions on the

methods invoked byroceed, and P, andQ;, is the augmented simple imperative language to executions augmented with advices.
specification. This rule serves as a basis for the construction of the tarnut
By using thiswp function we can prove that an advice satisfies in addition requires that the original specification of the invoked
its specification by deriving a judgmerit,t,, {P.}a{Q.} for functions are preserved. We say that an specificdtionQ,, W)
beforeandafter advices, andl', ., { (Pa, P.) Ya{(Q., Q.)} for is a refinement of P;, Q,, W') if P, = P, andQ, = Q;, and
aroundadvices. the setl?’ containsW (modulo introduced variables). This latter
condition reflects the fact that we only care about the variables that
Example: We extend then the base program with a set of advices belonged to the original program. Furthermore, a confferdfines
that improves the store access time by profiting from the introduced a context™, if for any g in the domain of", T'(g) is a refinement for
variables and functions. We start by introducing an around advice I’ (g). The intention of the rule is to propagate a derivation on the
a1 = fastRetrieve. This new advice will replace the functional- ~ simple imperative side relying on functionality preservation after
ity of methodm by receiving as parameter the store addteanad weaving the advices as declared.
returning thecachedvalue if available or, otherwise, by permitting .
the original functionmn to continue: v {P}9{Q} T refines I
e, T }_AOP{P}g{Q}

around slowRetrieve(Address i) fastRetrieve {

b:= isAvailable(i); This rule resembles a standard rule for weakening the judgment
if b by strengthening the hypothesis but it is explicitly stated here to

return cachel[i] emphasize the fact that we are requiring functional preservation
else when moving to an aspect oriented context.

5 2007/713

~ The next rule helps remove hypothesis from the context, and is . n|w constant variable
intended to deal with mutually recursive functions: instr nop | assert ¢

Faovla TeUTlg,Talygpl'e |z:=e|x:=cope assignment

T | jmpl | jmpif ecmpe, 1 jump .
©"hort © | x:=invoke g e | return e invocation and return

3.3.1 Around advices.

In this case we need to consider two alternatives, depending on
how much the around advice interferes with the control flow of the
rest of the system. lfroceed is never executed by, that implies (itis important to mention that if is a variable, then’ must always

also that no subsequent advice is executed, and consequently, anje 3 fresh variable. That means that even whes y we require
specification refinement until this point is lost. That means, that thatw’ # y') '

even if we can ensure a stronger postconditiorgféinanks to the

already weaved advices,> ¢ may not propagate this augmented Example: The judgment F,..{P., a1 xm{Q.,}, derived
specification ifproceed is not always executed. A similar reason previously, requires a pre-condition that is stronger than the origi-
Genneconto) flow proSeinGdvias ae those whse- overy path "2 One €n) (recall thatP, is defined ast, A.) For this reason,

in its control flow contains exactly ongroceed statement. It may we initially proposed to extend the spemfpaﬂomfmaw by deriv-
be argued that this condition is too strong, since we are relying N9 {Pm A @}m{Qm A ¢} Fye{ P A ¢}main{Q A ¢}. To prove
on syntactic properties. An alternative approach may be designing Preservation of the specification ferain we need to weaken the
a special purpose VCGen that ensures tharéceed statement precondition by introducing heforeadvice to ensure the validity
is executed exactly once. However, since this technique implies of ¢. We do not need to fully specify the implementation of this
defining a new set of loop invariants, and generating and merging anew advicea, that will simply call the functioninitializeCache.
new certificate, we prefer instead a static checking approach. Undenwe will instead suppose that it is verified in isolation to satisfy
the hypothesis thai is a control flow preservingadvice we can the judgment -, {true}as{¢} and that it does not modify any

apply the following rule: variable that may occur iP. Under this assumptions, we can

Figure 8. INSTRUCTION SET

ok {(Pa, P2)}a{Qh, Qa} I, Tabaop{Po}0{Qo} apply the derivation rule fobefore advices with the premises
P= Py AV (PL[*/:] = Po[ofin, | [*/:]) Wa C W, P=true A (¢=P A ¢) andQ A ¢ A ¢=>Q to get the judgment
Qo ing [sl [V 1= Qi A V' (Qu[Hana][] = Q1) (P A $ym{Qun N 6} Fop{ Phaz > main{Q}.
I Tabpop{P}a > 0{Q} 3.3.3 After advices.

wherez’ represents the global variables potentially modified:by ~ The case for weaving an after advice is symmetric to the previous
andW, specifies the variables that are allowed to be modified by one. Under the same hypothesis over y and z we have the
the execution triggered by theoceed statement.) following rule:

In case that it cannot be checked whether the control flow is pre- Tabyo {Pa}a{Qa) T, T b {Po }0{Qo}

served, we use this rule instead:) .) /
al? fw[“wr] A Pafes] = QY fw])[Y %
Lboyl(Pe, Fa)}al(@a @)} | T Tabuor 1P519(Q0) a1 (@1l P D
Py = Pp[Mafing] Qo[ofing][fes] =>Qy Wo C W, T {P}an{Q}
I Tabpop{Pata > 0{Qa} e

It can be argued that the rule above restricts the completeness andt. Target Setting
modularity of the approach. However we believe that is inherent 1o |, s section our target PCC architecture is defined. That is, we
advices with such level of interference. If an around advice replaces yresent an appropriate lower level language, without aspects, to-
the original functionality of a base function (re-implementation), gether with a logical framework to verify input/output specifica-
then it would be expected to be specified at least as the original j;ns for procedures. We also define a compiler from our simple

function (a_nd in addition the functionality of subsequent advices pop language to the lower level language. In the followings sec-
is lost). This former fact may prevent to reuse the advice around tions we study the relation of the verification conditions on the

functions with different behavior. source side with the verification conditions on the target side.
Example: To derive k.. {Fa, }ai b m{Qa, } we proceed by The target language is a non-structured RTL language, with
applying the rule for noncontrol-flow preservingaround ad- ~ function calls. The syntax is defined in Fig. 8. For simplicity,
vices. This requires the previous derivation of the judgments Variables are defined in the same $eas before, and functions
Fropr{ P }m{Qm} and b {(Fa;, P(il)}al{(Qill ,Qa,)} as have a single formal parameter.

premises. The first judgment is clearly derivable since the con-

;)) L 4.1 Compiler
text is empty. It remains to discharge two proof obligations, but o)
according to the rule applied they are trivial by definitionzef, , A definition of the compiler for standard commands can be found
Q.- in Fig. 9. It relies on a compiler for expressions and conditional
jumps, respectively denotéd andC, in the figure. The compiler
3.3.2 Before advices. is standard with the exception of the function call statement. In this

In the following rule,w stand for global variables modified by the ~C@S€. instead of invoking a proceduethe invocation refers to
body of the advicey stands for the variables modified by the nested & Procedurefy, representing the result of augmentiggyith its
constructiory andz for any global variable modified either lyor corresponding advices.

6 that appears on the new postconditi@n Compiler for advice commands: The compiler function for ad-
vice commands is similar t6. but it takes an extra parameter that
Pabou{fa}a{Qa} T Tabop {5 }0{Q0} represents the code that has to be executed wieneeed state-
Q"] A Qa[™%hes] = QU /D[u] [7-+] ment is executed.
Pl = Pa A (Qal”) [“fwr] = Pol"Fing 1 [* fw]) C. (1, x:= proceed(e), f) let (I’,ins)=CY(l, e) in

T, T.bop{Plat 0{Q} (' +1,ins :: [z:=invoke f y])

6 2007/713

Ce(l,skip) = (I + 1, [l : nop]) Let (ins, ') = Cc(l,body(g)), (Pf, Qf) = T'(f) and

Cc(l,z:=e) = CX(l,€) (¢, 8") = wpjps (suce(l), @) In
Ce(l,cr5e2) = let(ly,ins1)=Ce(l, c1) in wpie(l: L, @) = (¢, 0) ((ins[l] is undefined)
let (I2,insz)=Cc(l1, c2) in WP (L2 nop,) = (¢’,8")
(12, insy = ins3) woine(L: assert 1, 9) = (1, (Y= ¢/} U S")
Cc(l,if bthen cq else cg) = wpins (12 z :=e,¢) = (¢'[%],S")
let (I1,ins1)=Cc(I 4+ 1,¢1) in_ wpins (L2 @ :=e1 op ea, p) = (p'[1 °P ©%,], S")
let (12, ins2)=Ce(11 + 1,c2) in | Woe (1 Jmp 1'p) = wps (I 0)
let (Iy,insp)=Cp(l2 + 1,1+ 1,11 +1,b) in wpins (1 : jmpif e1 emp ez, U, @) =
(Lpy [l : jmpl2 + 1] srinsy =2 [1g :.jmp Ip) ::.insz let (¢, 8")=wp; (',) i
[l jmp lp] i insy) (e1 cmpea= " N —e1 cmpea=¢’,S"US")
Cc(l,whilg bdoc) = ' wWpins (1 - z:=invoke f e, @) =
let (I, insc)=Cc (1 +2,¢) in (Pg[%in) A Vres, v . Q¢ [FinllY fyl[Yy+ 1= ' [F2][¥ /4], S7)

let (lb, insb)=Cb(lc +1,1+2,14+1, b) in

o (1 ret = 9
(L, [L:jmple] = L+ 1:jmply] it insc WPins (L return e,) = (7],

i: [l - assert] :: insp) (Py= [Yy+]) A\ PO
Celba:=h(e)) = let(t',ins)=Ci(],e) in (1',ins) = Ce(l, body()) (6,9) = wpips(1, Q)
(I + 1,ins :: [/, z:=invoke fp,, y])
Cc(l,returne) = let(l',ins)=C{(l,€) in P {Pe}g{Qg}
(I +1,ins = [l : return y]) DU by, T
Figure 9. Compiler for standard commands [I

Figure 11. Target VCGen
Cw(g) = let(_,ins) = Cc(1,body(g))in

Culan 0) Lg Tét'?ﬂinsa):ca@ body(a), fs) in similar work on preservation of proof obligations [3, 12], and then,
letc = {z:=a(in); z:=fy(x); return z} auxiliary lemmas about not modifiable variables are stated. Finally
let (-, ins)=Cc(1,c) in a certificate translation is defined fdefore after and around
[fapo + ins| weaving of advices.

Cw(0<a) = let(.,insq)=Cs(1,body(a), fo)in

lete = {x:=fp(in); 2:=a(z); return z} Lemma 1. Supposefy, points to the compilation of methag

let (_,ins)=Cc(1, ¢) in (i.e., no advices have been weavedjjoLet Cc(l,c) = (I’,ins)

[foqa > ins] and letins’ be a sequence of instructions containiing, i.e. ins

Cw(ap8) = let(, insq)=Ca(1, body(a), fo) in is equal to the infixns'[l, ..., I"). If (¢',S") = wp,,o (I, ¢) and
[fapao — insa] (¢",9") = wp(c, ¢') thenwp,.» (I, ¢) = (¢", 5" U S’).

Figure 10. Compiler for methods We are abusing notation, when we s@y S) = (¢',S") we

mean¢ = ¢’ and that for any propositio® in S there is an
equivalent propositio®’ in S’ and vice-versa.
Compiler for methods: When compiling the whole program,
sinceRTL function calls contains only literal function identifiers, L) , ,
we must infer statically how advices are weaved. Therefore, for M e {PYe{Q} TP {P}g{Q"}
any methody we suppose we have already computed the represen- 3w {P AP }g{QAQ'}
E;E?hnccc))fnzhe weavind,, to assign a static function identifier for where for any functiorf, T%(f) = (Py A Py, @1 A Qa, Wi UW?)
ponent d,. here(P W) =T d(P, W) =12
For instance, i) = a > 6’ we let fy points to the compilation of where(P1, Q1, W) = T (f) and (Ps, @2, W2) = ().
6 = a0, that calls firstz and then the functiorfy that points to is redundant, in the sense that the same result can be obtained by
the compilation of the remaining components. The definition of a applying thewp function with a suitable context and a different
compiler fot methods is given in Fig. 10. In addition, when compil- specification.
ing standard commands, the result of compiling a call to method
is a call to functionfs, , which is in charge of calling the resulting ~ Proof. The proof is by simple structural induction on a com-

Lemma 2. The rule

weaved code. mandc. It can be proved that for any assertignif we com-
. . pu':e (¢11 Sl) = Wp(C, ®, Fl)' (¢27 SQ) = Wp(C, », F2) and
4.2 Verification over the target language (¢1,53) = wp(c, o, %) thengy A ¢o implies ¢s, and S5 can

Verification of RTL programs can be defined in terms of a weak- be proved fromS; and S,. Furthermore, it can be proved that if
est precondition functiowp, as long as the sequence of instruc- ¢ does not contain function invocations then proof obligations are
O

tions under consideration igell-annotated?2, 3, 12]. Intuitively, indeed equivalent.

a sequence of instructions vgell-annotatedf there are not non- _) .
annotated cycles in the control-flow (for computabilitysaf func- Lemma 3. Suppose we have an assertigrand c is the function
tion.) The definition of a VCGen for programs at tRR&L level can body for functionf. Suppose also that does not contaimes nor
be found in Fig. 11. a variable that may be modified by Under the hypothesis that

the frame condition is verified, we can generate a certificate for

Ty bue{o} f{¢} where for any function literad, I'y (g) = (¢, ¢).

5. Certificate Translation (Consequently, one of the derivation rules ffaup is redundant.)

In this section we study the relation of the verification conditions

in the high-level side with its RTL counterpart, showing that the Proof. Since the possible approaches to verify which variables are
simple compiler defined in previous section is amenable to be modified by a statement may differ on simplicity and completeness,

extended with a certificate translator. The first result is taken from we consider two cases. Lebe the body of functiorf:

7 2007/7/3

A simple to verify approach is to require that only variables (¢7,S1) = wp(succ(l), #1). In the other hand if we compute
declared as modifiable appear in the right hand side of an wp;,(l,¢2,I'2) we get(¢s, S2) whereg is equal to the propo-
assignment (or a function call). Under this strong hypothesis, sition p;[w/in] A Vres, z/.Qﬁ[win][Z’/Z][Z/z*} = ¢/2/[Z’/2Hresz] and

is straightforward to generate a certificate for the validitypof
along the whole program To this end, it is sufficient to show
that for every statemeaat if we replace every assertion erti.e
invariants and postcondition) with (the resulting command
namedc’), and computé®’, S) = wp(c’, ¢), theng = ¢’ and

S contains proof obligations of the forgh=- x with x = ¢.
However, if the condition of non-interference for a variable,

(¢5,S2) = wp(succ(l), #2). Then, by inductive hypothesis, we
have thatS, is provable fromS; and that¢? is stronger that.
This latter condition, together Witﬁgl andQ§ being respectively
stronger thanP; andQ;, and that modified variables represented
by y includes the ones representeddyyve have that), is weaker
thang;. O

x for instance, is guaranteed by proving that the statement Lemma 5 (translation for before weaving certificates). It is

x = Z, is valid at both the pre and postcondition, then it may
be the case that is modified and restored later. Formally that
means that for any variablenot modifiable by the statement
(¢,5) = wp(c,y = Zy,I'y=z,) (Where the contextt',— z, is
such that for any, I'y=z,(9) = (y = Zy,y = Z,)) is such
as¢ is implied byy = Z, and.S contains only valid proposi-
tions. However, we cannot assume anything about verification
conditions inS, since it contains proofs for intermediate loop
invariants that not necessarily imply= Z,,.
We proceed instead by renamingo remove every modifiable
variable: ¢[%,]. We know from the previous case that we can
prove that this assertion is preserved alenderiving the judg-
ment Tz, l—,MP_{qS[_Z/T}}f{qﬁ[Z/x]}. We can then merge this re-
sult with the derivation ol ,—z k.. {x = Z} f{z = Z} to get

O

Ihye{e} {0}

The following result follows from Lemmas 1, 2 and 3.

Corollary 1 (standard PPO). Supposef is a function in an
advice-free program and we have a certificate o, { P} f{Q},
then we can generate a certificate for—, { P} f{Q}.

Corollary 2 (beforeand after advice code PPO).Suppose: is an
afteror beforeadvice (it does not contaiproceed statements) and
we have a certificate fof', -, { P. fa{Q. }, then we can generate
a certificate for 'y .y { Pa fa{Qa }-

Suppose that for a given methagd we have computed the
weaving representatiofy,. We can show that for every auxiliary
function representing a sub-terméyf, we can generate a certificate
that it satisfies the specification inferred by using the rules for

the weaving representations. Since we have defined the body of

each auxiliary function by compiling a particular statement we can

concentrate on a high level version and rely on the PPO for standard

statements.

Lemma 4 (embedding a simple imperative program in an as-
pect oriented context). A certificate forI'e U s b { P} F{Q}
can be generated from the derivation b6, I's . { P} f{Q}.

Proof. To derive T'e, b, .{P}f{Q} we need the premise
'k, {P}f{Q} and thatl'e is arefinementor I" (that implies
that W, N Orig C W, where Orig is the set of original pro-
gram variables). By Corollary 1 we know that we can certify
I {P}f{Q}. To transform this certificate in a certificate for
Feo b {P}f{Q}, we can show thatp,, is a monotone function
on the context. That means thawif is stronger tham, andl's is
arefinement of'; then if we computéey, S1) = wp; (I, $1,T'1)
and (¢5, S2) = wp,s(l, ¢2,T2), then ¢} is stronger thanpy
and S, contains weaker proof obligations thafy. This prop-
erty is standard and can be proved by induction!ofthe in-
duction principle comes fronins being the result of compiling
a commande.) We show only the function call case. Suppose
ins[l] = z:=invoke g w and let(P,}, Q) and(P;,Q2) stand re-
spectively forT'y (f) andTz(f). Thenwp, (I, #1,T1) = ($1, S1),
with ¢} = PJ["in] A Vees,yr Q3" aal [*][+] = &1 [*1,][=] and

possible to generate, from a derivation Bf I'y -, . { P}a > 6{Q},
a certificate for’ U T, b { P} fare {Q}-

Proof. If we have derived the judgment, I'st, . { P}a > 0{Q},
then we have as hypothesis:

1. Tab {Pata{Qa},
2. T, Tabop {Po}6{Q0},

3 (Qol" Y] A Qal™hes] = QU AN ful 7--1,
4. P["sa] = (Pa A Qal"][1= Po[hag][u])-

From Tk, {Pa}a{Q.} and Corollary 2 we can certify
the judgment 'k {Pa}a{Q.} and by inductive hypothesis
rurls, '_RTL{P9}f9{Q9}'

To complete the proof we need to specify that preserves
Q. modulo modified variables. To this end, we rely on the in-
troduction of logical variables in the specification of a program.
Thus now a pre- and post-condition may refer to a logic vari-
able Z, and I"+, {P(Z)}g{Q(Z)} is interpreted as for any
constantvalue v, the judgmentI” . {P(v)}¢{Q(v)} is valid.
Now, let Q/, stand forQu [%es|[Zv*/y= 1124, [Z /i, |. Sinceq,,
contains only global variables not modified By (and iny), we
can easily generate a certificate for the extended specification
U, I_RTL{P@ A Q;}Q{QG A Q;}

Now we modify the predicate transformesp for the case of
function invocation, so we can profit from the existence of logical
variables:

wp(z:=invoke g v, ¢) =
(Plthay /21N , ,
Vy', res. Py [Ying IIY | [y = 11/ 2] = V][V 1], S)

where e’ is any appropriate expression (with the same type as
Z). This makes the VCGen not decidable, unless we insert some
annotations around the function call. (Notice that, for soundness,
substitutions must be performed in the given order).

The weaving functiory,.e is compiled exactly from the code

z:=a(in);
z:=fo(x);
returnz

When computing the weakest precondition for the compilation of
the first statement above we get:

Pa["ing] A Vres, w' (Qa[Tina |[* ful[r] = (@) [Tl [“ /)
whereyp is the weakest precondition for the rest of the body.gf
(after simplifications):

= PolTing) A Qalhes] o

Vres'.(Qg[" fres) [7ing] [y/u][u/u*} A Qalres] = Q[fres][Y /y])
If we compose it with the rest of the proof obligation, that is, the
proposition

P = (Pa["ing A

Vres, W' (Qa[ana [V /] [Vt | = (@) [V] [f0])) [72+]

wherez are the global variables possibly modified bothadogndo,
we can see that it is sufficient to require the premises

2007/7/3

* Qo)) A Qal™Yhes] = QLN] [7-+]
® P%ha) = Pa A (Qa[][] = Pol Fang][) =

Lemma 6 (translation for after weaving certificates).
A certificate for I' U T'a b { P} foaa {Q} can be derived from a
certificate of I', I'a b, . { P}0 < a{Q}.

Proof. The proof for the case of advices weavater a function
call is symmetrical to the previous case. O

Lemma 7 (translation for around weaving certificates).
A certificate for I' U T, b { P} fasae {@} can be derived from a
certificate of I, I'a b, o, { P}a <1 0{Q}

Proof. Suppose we have derived the judgméitta 1 6{Q} by
using the rule

Fabpov{Pata{Qa} , Il FAo/p{P«‘)}e/{QG}
| P Pa AV (P[] = PolRoha)
Qo[ofing | [res] (¥ Jy+] = QA V2 (Qa[in,][*x] = Q[/z])
Wy C W,
I'\Ta '_AOP{P}a > 0{Q}
thena is acontrol-flow preservin@dvice. By definition is such
that for any program point, either it is located before or after
a proceed statement. That implies, on the RTL side, that the
result of compilinga is a sequence of instructions such as every
instruction occurs either before or after (in the control flow graph)
an invocation tofy, and no invocation tgy can reach an invocation
to fg.
From I',Tat,.{ Py }0{Qs} and by inductive hypothesis we

have a certificate fol” U T’y k. {Po } fo{Qo}.

We proceed by extending the original compiler:

e replacing any intermediate assertignthat occurs before a
proceed statement with A Va'.(P.[* /] = Po[™/ing][/2]),

¢ replacing any intermediate assertigrthat occurs after a pro-
ceed statement with A Va'.(Qa[%a, |[* /2] = Q[*/]) and

we can prove inductively that for any subcommandof a, if
(I',ins) = Cy(l,ca, fo) andins’ is the modified (as explained)
variant forins, and we le{¢, S) and(¢’, S") stand respectively for
wp(ca, 1) andwp,,. (1,7") thenS” can be discharged froi$i, and
¢ is implied byg AVa'.(PL[*/x] = Po [/,][*/:]) (if 1 is located
before an invocation tg) or ¢ A V' .(Qu[Win,][] = Q[*/a]),

and we have to prove that this together with the proposition
Va' (PL[" /o] = Po[™in, |[*/]) implies the corresponding as-

SertionP [y A Vres, y' (Qo[%iag [V /y1[Yy+] = &' [V,][]
for the modified statement. It is clear by definition t#{%n, |

is implied by P, (%o,] A Va'.(PL[7/u] = Po[ia,] [*/]), thus
we can focus on provin@g [%in | [“/y] [%+ 1= &' [* /][] tak-

NG Q [Fias [) [V 1= SV o] [*/uw] [hs,] @S ypoOthesis. The
former assertion can be proved by taking first the stronger (by
Inductive Hypothesis) formula

Qolfmo B 1= o
(6 A Ve (QalFana] [*e] = QL)] o]

which in turn may be split to:

Qo (%o) [V (Yt 1= 1) [5s]

and

Qa1) = o
(V2" (QalVin][* /] = QI D) [o] [Tos] -
The former can be discharged since we have a proof for
Qo[%ing | sl [V /] = Q. and we already have as hy-
pothesis thatdl, (Yo, 1[/u][%y+/] = G Ju)[*/u][sns,] (notice
thatin/, may not occur inp.)
The latter is a rewriting for one of the premises of the applied

rule: Qo[ving |[hes] = V&' (Qa [iy |[*/e] = Q[/:]). O

To derive I' U Ty, { P}a <1 6{Q} we must prove that every

proof obligation inS is valid and thatP implies ¢[%.~], where

(¢,S) = wp;(1,false) and (ins,) = Ci(ca,1, fo). By hy-

pothesis, sincel’, k-, { P. }a{Q.} has been derived, we have as
premises that’ contains only valid proof obligations and, im-
plies ¢'[%z+], where(¢’, S’) = wp, (ca, false). By previous sub-
lemma we know tha$ is provable fromS’ and thatp is equivalent

t0 ¢' A V' .(PL[%e+] = Pp[*hn,][%+]). Therefore by using the
premiseP = Py AV’ .(PL[%x+] = Po[™in,][7+]) of the rule for
aroundadvices applied, we get a proof for the remaining verifica-
tion conditionP = ¢[7x+]. O

6. Extensions for dynamic point-cuts descriptors

Extension for Conditional point-cut descriptors

We can extend the language for point-cut descriptors with a boolean
conditiond that is checked at runtime to decide whether an advice is
Proof. To prove this sub-lemma we can rely on the equivalence of gxecuted or not. Usually when compiling AOP, since this condition

verification conditions between simple commands (that does not 1S not statically decidable, this residue is ignored at first, and a
contain aproceed) and itsRTL compilation result. In addition, piece of code that checks for this is attached to the weaved code,

: ; Ty i’ and therefor@ must be statically over-approximated. We simulate
im/c'(aQWF?knc]\?i;k}at ng[zh/eﬁ '(P‘;[_/‘"] :zjfelgl 1"9]_[éT]) n;)r_ this approach by attaching a corresponding boolean condition to
' (Qaling|[* /2] = Q[F /z]) contain modifiable variables, its is

ubn ubn ubn
clear thatwp,,, = wp,,, and then the conclusion holds for this ~ the constructors fof: “>", * <" and <"
cases. Therefore, the only cases remaining are-¢hern (since
the post-condition is changed) apfloceed statements.

otherwise.

T, Tabyop{P Ab}a> 0{Q} T, Tab,oo{P A-0}0{Q}

Il FAOP{P}a g 0{Q}
[Tabpop{P AD} <1a{Q} T, Tabyop{P A -0}0{Q}

® Casec, =returne.
Statement occurs obviously after proceed statement. Since
wp(e,) = (Qal%es),0) andwp(c,) = (Q[%s],0) we
can see thap(c, ¥)[Vin,] A V2" (QalTin, |[* /2] = Q[/2])
implieswp(c, ¥)

e casec, = w:= proceed(e). We focus on the assertion re-
turned bywp, since this statement does not generate proof obli-
gations. In one side we have

P} in,] Ares’ sy (Ql i, 1 Al Y] = S fu) [o) i,)

I, Tabop{P}0 4 a{Q}
I, Tabpop P Abta < 0{Q} I, Dabpop{P A =b}0{Q}

T, Tabop{P}a 5 0{Q}

Example: Recall the previous example, we have shown that
To,Tabyop{Pm}taz > (a1 x1m){Qq, } is a valid judgment. Since

9 2007/713

P,,, represents the boolean condition< i < N we can intro-
duce an advice triggereldeforeas > (a1 > m) (but under the
conditionb = —(0 < i < N)) to enforce the precondition. The
implementation of this advice will take any possible measure to
deal with the initial states that does not satisfy the precondition
P,,,. For simplicity, we considerer the body of this new advige

to be anabort statement, and its specificatidh,, = true and
Qa5 = Pn. It can be easily shown that the advice satisfies its spec-
ification. Using the rule for before advices we can derive the judg-
ment T'e, Ta oo { —Pm }as > az > (a1 1 m){Qa, }, and together
with the judgmentle, I'a oo { P }a2 > (a1 <1 m){Qq, } we can
apply one of the conditional rules to derive the more refined judg-

ment T'e, sk {true}as B as > (a1 i m){Qa, }, which states
that original functionality is indeed preserved.

Extending the definition for the semantics relatipto consider
this case is straightforward. Compiling the augmented construction

a@& is similar toar>6, but with the call to functiom executed under

a conditional statement that checks for the conditiomherefore,
under this simple definition, it is not difficult to see the the rules
given above permits to translate the certificate of an augmented
method to a certificate for its correspondiR@ L representation.

Extension for cflow point-cut descriptors

We may also define a set of rules to deal wiffow point-cut
descriptors. As can be seen in the following set of rules, since a
priory we cannot associate eacfiow declaration to a condition
specifiable in our logic, we are not able to analyze them statically.
When defining the semantics of this weaving with residue, we may
(and certainly have to) extend execution states to include a call
stack, so that we can decide whethetflww condition is valid.
However, specifying and reasoning about a call stack will generate
huge and discouraging proof obligations.

T, Tabyop{Pta>6{Q} T, Tabypo{P}6{Q}

cflow

T, Tabyop{Pla > 0{Q}
I, Tabop{P}0<a{Q} T, Tabyop{ P}{Q}

cflow

T, Tabpop{P}0 < a{Q}
[, Tabpyop{Pla = 0{Q} I, Tabyop {P}0{Q}

cflow

T, Tabyop{P}a > 6{Q}

The simplicity of this rules comes with the cost of incomplete-
ness, but that is not surprising considering the harmfulness of a
cflow declaration.

However, it can be dealt easily and modularly with non-
interfering advices. To illustrate this, if is an around advice
that does not modify any variable (butdentrol-flow preserving
with a trivial specification, we can derivE, I’y . { P}a < 0{Q}
from T',T. .. {P}0{Q}. And then, by applying one of the rules

cflow

above, we gefl’, I', k. { P}a <1 0{Q}.

7. Conclusion

We have shown that it is possible to extend a Hoare-like verification
environment to verify that the result of weaving an advice to a
standard method preserves the originally intended functionality.
We have done this, by showing also that the whole process can
be conducted modularly by relying on an earlier verification of the
method and advice in isolation.

Assuming that the verification process outputs a representation
of the proof (aka. certificate), we have complemented the previous
result by extending a simple compiler with a certificate translator.
More precisely, we showed that for a given simple compiler, we

can define a mechanism that builds a certificate of correctness for

the result of augmenting a standard method with advices from

10

the certificates of its components. This modularity condition is
desirable in any PCC environment, since it allows to reuse already
generated code certificates.

Merging the original certificate with proofs of equivalence of
verification conditions may imply a significant growth on the final
proof representation. For this reason, one possible direction for fur-
ther research is defining a more appropriate VCGen or supporting
verification with deduction modulo equivalence.

References

[1] Aspectd Team. The AspectJ programming guide. Version 1.5.3.
Available fromhttp://eclipse.org/aspectj, 2006.

[2] Gilles Barthe, Benjamin G&goire, &sar Kunz, and Tamara Rezk.
Certificate translation for optimizing compilers. In Kwangkeun Yi,
editor, SAS volume 4134 ofLecture Notes in Computer Science
pages 301-317. Springer, 2006.

Gilles Barthe, Tamara Rezk, and Ando Saabas. Proof obligations
preserving compilation. In Theodosis Dimitrakos, Fabio Martinelli,
Peter Y. A. Ryan, and Steve A. Schneider, editbtgmal Aspects

in Security and Trustvolume 3866 ofLecture Notes in Computer
Sciencepages 112-126. Springer, 2005.

3

—_

[4

[l

C. Clifton and G. Leavens. Spectators and assistants: Enabling
modular aspect-oriented reasoning, 2002.

Daniel S. Dantas and David Walker. Harmless advice?@PL '06:
Conference record of the 33rd ACM SIGPLAN-SIGACT symposium
on Principles of programming languaggsages 383-396, New York,
NY, USA, 2006. ACM Press.

Rmi Douence, Pascal Fradet, and Mario Sdholt. Composition, Reuse
and Interaction Analysis of Stateful Aspects. Aspect-Oriented
Software Development (AOSpages 141-150. ACM, ACM Press,
2004.

M Goldman and Shmuel Katz. Modular generic verification of LTL
properties for aspects. Foundations of Aspect Languages Workshop
(FOALO6) 2006.

Shmuel Katz. Aspect categories and classes of temporal properties.
In Awais Rashid and Mehmet Aksit, editor, Aspect-Oriented
Software DevelopmentVolume 3880 of_ecture Notes in Computer
Sciencepages 106-134. Springer, 2006.

5

—

6

—

(7]

[8

—_

[9] Thomas Kleymann. Hoare logic and auxiliary variablestmal Asp.
Comput, 11(5):541-566, 1999.

[10] Shriram Krishnamurthi, Kathi Fisler, and Michael Greenberg.
Verifying aspect advice modularly. I8IGSOFT '04/FSE-12:
Proceedings of the 12th ACM SIGSOFT twelfth international
symposium on Foundations of software engineenpages 137-146,
New York, NY, USA, 2004. ACM Press.

[11] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde
Ruby, David R. Cok, Peter Mler, Joseph Kiniry, and Patrice Chalin.
JML Reference Manual. Department of Computer Science, lowa State
University. Available fromhttp://www. jmlspecs.org, February
2007.

Mariela Pavlova. Java bytecode verification and its applications.
Thése de doctorat, épialitt informatique, Universi Nice Sophia
Antipolis, France, January 2007.

(12]

[13] Martin Rinard, Alexandru Salcianu, and Suhabe Bugrara. A classifi-
cation system and analysis for aspect-oriented progran®d8OFT
'04/FSE-12: Proceedings of the 12th ACM SIGSOFT twelfth inter-
national symposium on Foundations of software engineepages

147-158, New York, NY, USA, 2004. ACM Press.

David Walker, Steve Zdancewic, and Jay Ligatti. A theory of aspects.
In Colin Runciman and Olin Shivers, editot€FP, pages 127-139.
ACM, 2003.

[15] Jianjun Zhao and Martin C. Rinard. Pipa: A behavioral interface
specification language for aspectj. In Mauro Rezzditor,FASE
volume 2621 ol ecture Notes in Computer Scienpages 150-165.
Springer, 2003.

(14]

2007/7/3

