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Abstract
As cryptographic proofs have become essentially unverifiable,
cryptographers have argued in favor of developing techniques that
help tame the complexity of their proofs. Game-based techniques
provide a popular approach in which proofs are structured asse-
quences of games, and in which proof steps establish the validity
of transitions between successive games. Code-based techniques
form an instance of this approach that takes a code-centric view of
games, and that relies on programming language theory to justify
proof steps. While code-based techniques contribute to formalize
the security statements precisely and to carry out proofs system-
atically, typical proofs are so long and involved that formal veri-
fication is necessary to achieve a high degree of confidence. We
presentCertiCrypt, a framework that enables the machine-checked
construction and verification of code-based proofs.CertiCrypt is
built upon the general-purpose proof assistant Coq, and draws on
many areas, including probability, complexity, algebra, and seman-
tics of programming languages.CertiCrypt provides certified tools
to reason about the equivalence of probabilistic programs,includ-
ing a relational Hoare logic, a theory of observational equivalence,
verified program transformations, and game-based techniques such
as reasoning about failure events. The usefulness ofCertiCrypt is
demonstrated through classical examples, including a proof of se-
mantic security ofOAEP (with a bound that improves upon [9]),
and a proof of existential unforgeability ofFDH signatures. Our
work provides a first yet significant step towards Halevi’s ambi-
tious programme [21] of providing tool support for cryptographic
proofs.

1. Introduction
Provable security [34], whose origins can be traced back to the
pioneering work of Goldwasser and Micali [20], advocates a math-
ematical approach based on complexity theory in which the goals
and requirements of cryptosystems are specified precisely,and
where security proofs are carried out rigorously and make all un-
derlying assumptions explicit. In a typical provable security setting,
one reasons about effective adversaries, modeled as arbitrary prob-
abilistic polynomial-time Turing machines, and about their prob-
ability of thwarting a security objective, e.g. secrecy; ingeneral,
provable security statements do not refer directly to the probabil-
ity of the adversary breaking security, but to its advantageover
a blind, uninformed adversary. In a similar fashion, security as-
sumptions about cryptographic primitives bound the probability of
polynomial algorithms to solve hard problems, e.g. computing dis-
crete logarithms. The security proof is performed by reduction by
showing that the existence of an effective adversary with a certain
advantage in breaking security implies the existence of an effec-
tive algorithm contradicting the security assumptions. Although
the adoption of provable security has significantly enhanced confi-
dence in security proofs, several published proofs have been found

incorrect (cf. [31]), and the cryptographic community is increas-
ingly wary that the field may be approaching a crisis of rigor [9, 21].

The game-playing technique [9, 21, 32] is a general method to
structure and unify cryptographic proofs, thus making themless
error-prone. Its central idea is to view the interaction between an
adversary and the cryptosystem as a game, and to study transfor-
mations that preserve security. In a typical game-based proof, one
considers transitions of the formG, A→h G′, A′, whereG andG′

are games,A andA′ are events, andh is a monotonic function such
that PrG[A] ≤ h(PrG′ [A′]). One can obtain an upper bound for
the probability of an eventA0 in some initial gameG0 by succes-
sively refiningG0, A0 into a game/event pairGn, An,

G0, A0 →
h1 G1, A1 → · · · →

hn Gn, An

and then bounding the probability of eventAn in Gn.
The game-playing technique is widely applicable, and has been

extensively used. Code-based techniques [9] is an instanceof the
game-playing technique whose distinguishing feature is totake
a code-centric view of games, security hypotheses and computa-
tional assumptions, that are expressed using (probabilistic, imper-
ative, polynomial-time) programs. Under this view, game transfor-
mations become program transformations, and can be justified rig-
orously by semantic means; in particular, many transformations can
be viewed as common program optimizations, and are justifiedby
proving that the original and transformed programs are observa-
tionally equivalent. Although code-based proofs are easier to ver-
ify, they go far beyond established theories of program equivalence
and exhibit a surprisingly rich and broad set of reasoning princi-
ples that draws on program verification, algebraic reasoning, and
probability and complexity theory. Thus, despite the beneficial ef-
fect of their underlying framework, code-based proofs remain in-
herently complex. Whereas Bellare and Rogaway [9] already ob-
served that code-based proofs could be more easily amenableto
machine-checking, Halevi [21] argued that formal verification tech-
niques should be used to improve trust in cryptographic proofs, and
set up a programme for building a tool that could be used by the
cryptographic community to mechanize their proofs.

This article reports on a first yet significant step towards
Halevi’s programme. We describeCertiCrypt, a framework to
construct machine-checked code-based proofs in the Coq proof
assistant [35], supporting:

Faithful and rigorous encoding of games. In order to be readily
accessible to cryptographers, we have chosen a formalism that
is commonly used to describe games. Concretely, the lowest
layer ofCertiCrypt is the formalization of pWHILE, an imper-
ative programming language with random assignments, struc-
tured datatypes, and procedure calls. We provide a deep and
dependently-typed embedding of the syntax; thanks to depen-
dent types, the typability of pWHILE programs is obtained for
free. We also provide a small-step operational semantics us-
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ing the distribution monad of Audebaud and Paulin [4]. The
semantics is instrumented to calculate the cost of running pro-
grams; this offers the means to define complexity classes, and
in particular to define formally the notion of effective (proba-
bilistic polynomial-time) adversary. In addition, we alsomodel
nonstandard features, such as policies on variable accesses and
procedure calls, and use them to formulate the notion of well-
formed adversary, which captures many assumptions left infor-
mal in cryptographic proofs.

Exact security. Many security proofs establish an asymptotic be-
havior for adversaries and show that the advantage of any ef-
fective adversary is negligible w.r.t. a security parameter (which
typically determines the length of keys or messages). However,
the cryptographic community is increasingly focused on exact
security, a much more useful result since it gives hints as to
how to choose system parameters in practice to satisfy a secu-
rity guarantee. The goal of exact security is to provide concrete
bounds both for the advantage of the adversary and for its ex-
ecution time.CertiCrypt supports the former (but for the time
being, not the latter)1.

Full and independently verifiable proofs. CertiCrypt adopts a for-
mal semanticist perspective and goes beyond Halevi’s vision
in two respects. First, it provides a unified framework to carry
out full proofs; all intermediate steps of reasoning can be jus-
tified formally, including complex side conditions that justify
the correctness of transformations (about probabilities,groups,
polynomials, etc). Second, one notable feature of Coq, and thus
CertiCrypt, is to support independent verifiability of proofs,
which is an important motivation behind game-based proofs.
More concretely, every proof is represented by a proof object,
that can be checked automatically by a (small and trustworthy)
proof checking engine. In order to trust a cryptographic proof,
one only needs to check its statement, and not its details.

Powerful and automated reasoning methods. CertiCrypt formal-
izes a Relational Hoare Logic and a theory of observational
equivalence, and uses them as stepping stones to support the
main tools of code-based reasoning through certified, reflec-
tive tactics. In particular,CertiCrypt shows that many trans-
formations used in code-based proofs, including common op-
timizations, are semantics-preserving. One of its specificcon-
tributions is to prove formally the correctness of a variantof
lazy sampling, which is used ubiquitously in cryptographic
proofs. In addition,CertiCrypt supports methods based on fail-
ure events (the so-called fundamental lemma of game-playing).

We have successfully conducted nontrivial case studies that vali-
date our design, show the feasibility of formally verifyingcryp-
tographic proofs, and conform the plausibility of Halevi’spro-
gramme.

Contents The purpose of this article is to provide an overview
of the CertiCrypt project, and to stir further interest in machine-
checked cryptographic proofs. Additional details on design choices,
on formalizing the semantics of probabilistic programs, and on case
studies, will be provided elsewhere2. In consequence, the paper is
organized as follows: we begin in Section 2 with two introductory
examples of game-based proofs, namely the semantic security of
ElGamal encryption, and the PRP/PRF switching lemma; in Sec-
tion 3 we introduce the language we use to represent games and
its semantics, and we discuss the notions of complexity and termi-
nation; in Section 4.1 we present a probabilistic relational Hoare

1 The limitation is reflected in the statements of our case studies.
2 For review purposes, the complete development is availablefrom
http://www-sop.inria.fr/everest/certicrypt-popl.tar.gz

logic that forms the core of our framework; in Sections 5 and 6we
overview the formulation and automation of game transformations
in CertiCrypt; in Section 7 we report on two significant case stud-
ies we have formalized inCertiCrypt: existential unforgeability of
the FDH signature scheme, and semantic security ofOAEP; we
finish with a discussion of related work and concluding remarks.

2. Basic examples
This section illustrates the principles ofCertiCrypt on two basic
examples of game-based proofs: semantic security ofElGamal
encryption and the PRP/PRF switching lemma. The language used
to represent games is formally introduced in the next section. We
begin with some basic definitions.

The Random Oracle Model is a model of cryptography exten-
sively used in security proofs in which some cryptographic primi-
tives, e.g. hash functions, are assumed to be indistinguishable from
random functions (despite the fact that no real function canimple-
ment a truly random function [14]). Such primitives are modeled by
oracles that return random values in response to queries. The sole
condition is that queries are answered consistently: if some value
is queried twice, the same response must be given. Our formalism
captures the notion of random oracle using stateful procedures that
store queries and their results, e.g.

OracleO(x) : if x 6∈ dom(L) then y $← {0, 1}η ; L← (x, y) :: L;
return L[x]

An asymmetric encryption scheme is composed of three algo-
rithms: key generationKG(η), whereη is the security parameter;
encryptionEnc(pk,m) wherepk is a public key andm a plain-
text; and decryption—not relevant here. An asymmetric encryption
scheme is said to be semantically secure (equivalently,IND-CPA
secure) if it is infeasible to gain significant information about a
plaintext given only a corresponding ciphertext and the public key.
This is formally defined using the following game, whereA andA′

are allowed to share state via global variables and thus are regarded
as a single adaptive adversary:

Game IND-CPA :
(sk, pk)← KG(η);
(m0, m1)← A(pk);
b $← {0, 1}; γ ← Enc(pk,mb);
b′ ← A′(pk, γ)

The game first generates a new key pair and gives the public
key to the adversary, who returns two plaintextsm0, m1 of his
choice. Then, the challenger tosses a fair coinb and gives the
encryption ofmb back to the adversary, whose goal is to guess
which message has been encrypted. The scheme isIND-CPA if
for every effective adversaryA,A′, |PrIND-CPA[b = b′] − 1

2
| is

negligible in the security parameter, i.e. the adversary cannot do
much better than a blind guess. Formally, a functionν : N → R is
negligible iff ∀ c. ∃ nc. ∀ n. n ≥ nc ⇒ |ν(n)| ≤ n−c.

2.1 The ElGamal encryption scheme

ElGamal [18] is a widely used asymmetric encryption scheme,
and an emblematic example of game-based proofs, as it embodies
many of the techniques described in Sections 4 and 5. The proof
follows [32]; all games are defined in Fig. 1.

Given a cyclic group of orderq, and a generatorg, we define:3

• Key generation:KG() def
= x $← Zq; return (x, gx)

• Encryption:Enc(α, m) def
= y $← Zq; return (gy, αy ×m)

ElGamal is IND-CPA secure under the Decisional Diffie-Hellman
(DDH) assumption, which states that it is hard to distinguish be-

3 The security parameter, implicit in this presentation, determines this cyclic
group by indexing a family of groups where theDDH problem is believed
intractable.
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≃d

≃d

Game ElGamal2 :
x $← Zq; y $← Zq ;
(m0, m1)← A(gx);
z $← Zq; ζ ← gz;
b′ ← A′(gx, gy , ζ);
b $← {0, 1};
d← b = b′

≃d

(4)

(5)

Game ElGamal :
(x, α)← KG();
(m0, m1)← A(α);
b $← {0, 1};
(β, ζ)← Enc(α, mb);
b′ ← A′(α, β, ζ);
d← b = b′

(1)

≃d

Game ElGamal0 :
x $← Zq; y $← Zq ;
(m0, m1)← A(gx);
b $← {0, 1};
ζ ← gxy ×mb;
b′ ← A′(gx, gy , ζ);
d← b = b′

(2)

Game ElGamal1 :
x $← Zq; y $← Zq ;
(m0, m1)← A(gx);
b $← {0, 1};
z $← Zq; ζ ← gz ×mb;
b′ ← A′(gx, gy , ζ);
d← b = b′

Lemma B PPT : PPT B.
Proof. PPT tac. Qed.

Lemma B wf : WFAdv B.
Proof. ... Qed.

Game DDH1 :
x $← Zq ;
y $← Zq ;
z $← Zq ;
d← B(gx, gy, gz)

inline l KG.
inline l Enc.
ep.
deadcode.
swap.
eqobs in.

inline r B.
ep.
deadcode.
eqobs in.

inline r B.
ep.
deadcode.
swap.
eqobs in.

swap.
eqobs hd 4.
eqobs tl 2.
apply mult pad.

Adversary B(α, β, γ) :
(m0, m1)← A(α);
b $← {0, 1};
b′ ← A′(α, β, γ ×mb);
return b = b′

Game DDH0 :
x $← Zq ;
y $← Zq;
d← B(gx, gy, gxy)

Figure 1. Code-based proof ofElGamal semantic security

tween triples of the form(gx, gy, gxy) and(gx, gy, gz) wherex,
y, z are uniformly sampled inZq. In our setting,DDH is formu-
lated precisely by stating that for any polynomial-time andwell-
formed adversaryB, |PrDDH0 [d] − PrDDH1 [d]| is negligible in the
security parameter. Figure 1 presents a high level view of the proof:
the square boxes represent games, whereas the rounded boxesrep-
resent proof sketches of the transitions between games; thetactics
that appear in these boxes hopefully have self-explanatorynames,
but are explained in more detail in Section 5. The rounded grey
boxes represent proof sketches of side conditions that guarantee
that theDDH assumption is correctly applied. The proof proceeds
by constructing an adversaryB againstDDH such that the distri-
bution ofb = b′ (i.e.d) after running theIND-CPA gameElGamal
is exactly the same as the distribution ofd after runningDDH0.
Furthermore we show that the probability ofd beingtrue in DDH1

is 1
2

for the same adversaryB. The proof is summarized by the
following equations:

|PrElGamal[b = b′]− 1
2
| = |PrElGamal0 [d]− 1

2
| (1)

= |PrDDH0 [d]− 1
2
| (2)

= |PrDDH0 [d]− PrElGamal2 [d]| (3)
= |PrDDH0 [d]− PrElGamal1 [d]| (4)
= |PrDDH0 [d]− PrDDH1 [d]| (5)

Equation (1) is justified becauseElGamal andElGamal0 induce the
same distribution ond (ElGamal ≃d ElGamal0). To prove this, we
inline the calls toKG andEnc, and then perform expression prop-
agation and dead code elimination (ep, deadcode). At this point
we are left with two almost equal games, except the sampling of
y is done later in one game than in the other. The tacticswap is
used to hoist instructions whenever is possible in order to obtain
a common prefix, and allows us to hoist the sampling ofy to the
right place. We conclude by applyingeqobs in that decides ob-
servational equivalence of a program with itself. Equations (2) and
(5) are obtained similarly, while (3) holds becauseb′ is independent

from the sampling ofb in ElGamal2. Finally, to prove equation (4)
we begin by removing the common part of the two games with
the exception of the instructionz $← Zq (eqobs hd, eqobs tl).
We then apply an algebraic property of cyclic groups (mult pad):
when multiplying a uniformly distributed element of the group by
another element, the result is uniformly distributed. Thisallows to
prove thatz $← Zq ; ζ ← gz ×mb andz $← Zq; ζ ← gz induce
the same distribution onζ.

The proof concludes by applying theDDH assumption. We
prove that the adversaryB is strict probabilistic polynomial-time
and well-formed (under the assumption thatA andA′ are so). The
proof of the former condition is automated inCertiCrypt.

2.2 The PRP/PRF switching lemma

In cryptographic proofs, particularly those dealing with blockci-
phers, it is often convenient to replace a pseudo-random permuta-
tion (PRP) by a pseudo-random function (PRF). The PRP/PRF
switching lemma establishes that such a replacement does not
change significantly the advantage of an effective adversary. In
a code-based setting, the Switching Lemma states that

|PrGPRP [d]− PrGPRF [d]| ≤
q(q − 1)

2η+1

where the gamesGPRP andGPRF give the adversary access to an
oracle that represents a random permutation and a random function
respectively, and whereq bounds the number of oracle queries
made byA.

The proof is split in two parts: the first part formalizes the
intuition that the probability of the adversary outputtinga given
value is the same if a PRP is replaced by a PRF and no collisions
are observed; it uses the Fundamental Lemma of game-playing
(Lemma 2 in Sec. 6). The second part provides an upper bound
to the probability of a collision; it uses lazy sampling (Lemma 1 in
Sec. 5.2).
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≃d
≃d ≃L

Game GY
PRF :

Y ← [ ];
while |Y | < q do

y $← {0, 1}η ; Y ← y :: Y
Y ∗ ← Y ;
L← [ ]; d← A()

OracleO(x) :
if x 6∈ dom(L) then
if 0 < |Y | then
y ← hd(Y ); Y ← tl(Y )

else y $← {0, 1}η ;
L← (x, y) :: L

return L[x]

Game Gbad
PRP :

bad← false;
L← [ ]; d← A()

OracleO(x) :
if x 6∈ dom(L) then

y $← {0, 1}η ;
if y ∈ img(L) then
bad← true;
while y ∈ img(L) do

y $← {0, 1}η

L← (x, y) :: L
return L[x]

Game GPRP :
L← [ ]; d← A()

OracleO(x) :
if x 6∈ dom(L) then

y $← {0, 1}η ;
while y ∈ img(L) do

y $← {0, 1}η

L← (x, y) :: L
return L[x]

Game Gbad
PRF :

bad← false;
L← [ ]; d← A()

OracleO(x) :
if x 6∈ dom(L) then

y $← {0, 1}η ;
if y ∈ img(L) then
bad← true

L← (x, y) :: L
return L[x]

Game GPRF :
L← [ ]; d← A()

OracleO(x) :
if x 6∈ dom(L) then

y $← {0, 1}η ;
L← (x, y) :: L

return L[x]

By lazy sampling

|PrGbad
PRP

[d]− PrGbad
PRF

[d]| ≤ PrGbad
PRF

[bad]

By Fundamental Lemma

Figure 2. Code-based proof of the PRP/PRF switching lemma

Figure 2 provides a high-level view of the proof. To apply the
Fundamental Lemma, we introduce in the gameGPRF a variable
bad that is set totrue whenever a collision is found; we reformu-
late GPRP accordingly to be syntactically equal untilbad is set.
Using deadcode to eliminate the variablebad, we show that the
resulting gamesGbad

PRF andGbad
PRP are just semantics preserving re-

formulations of the gamesGPRF andGPRP respectively. Then, we
apply the Fundamental Lemma to conclude that the differencein
the probability ofd = true between the two games is at most the
probability ofbad being set totrue in gameGbad

PRF.
We then prove that the probability ofbad being set totrue in

gameGbad
PRF is upper bounded by the probability of an element ap-

pearing twice in the image ofL at the end ofGPRF. The proof uses
the Relational Hoare Logic and Lemma(≤JK) of Section 4.1 with
the following postcondition: ifbad is set inGbad

PRF then some ele-
ment appears twice in the image ofL in GPRF. Next, we introduce
a gameGY

PRF where the answer to the firstq queries to the oracle
are sampled at the beginning of the game and stored in a listY . Us-
ing lazy sampling, we prove by induction onq that the gameGPRF

is equivalent toGY
PRF w.r.t L. Finally, we bound the probability of

having a collision inL in GY
PRF. To that end, we prove that while

the length ofL is less than or equal toq, any collision inL is also
present inY ∗ (we useY ∗ as aghostvariable to store the value of
Y after being initialized). We conclude by bounding the probability
of sampling some value twice inY by q(q−1)

2η+1 .

3. Games as programs
The essence of code-based cryptographic proofs is to express in an
unified semantic framework games, hypotheses, and results.This
semanticist perspective allows a precise specification of the inter-
action between the adversary and the challenger in a game, and
to readily answer questions as: Which oracles does the adversary
have access to? Can the adversary read/write this variable?How
many queries the adversary can make to a given oracle? What is
the length of a bitstring returned by the adversary? Can the adver-
sary repeat a query? Furthermore, other notions such as probabilis-
tic polynomial-time complexity or termination, fit naturally in the
same framework and complete the specification of adversaries and
games.

3.1 The pWHILE language

Games are formalized in pWHILE, a probabilistic imperative lan-
guage with procedure calls. Given a setV of variable identifiers,
a setP of procedure identifiers, a setE of expressions, and a set
D of distribution expressions, the set of commands can be defined

inductively by the clauses:

I ::= V ← E assignment
| V $← D random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call

C ::= nil nop
| I; C sequence

Rather than adopting the above definition, we impose that programs
in pWHILE are typed. Thus,x← e is well-formed only if the types
of x ande coincide, andif e then c1 else c2 is well-formed only
if e is a boolean expression. In practice, we assume that variables
and values are typed, and define a dependently typed syntax ofpro-
grams. An immediate benefit of using dependent types is that the
type system of Coq ensures for free the well-typedness of expres-
sions and commands. Although the formalization is carefully de-
signed for being extensible w.r.t. user-defined types and operators
(and we do exploit this in practice), it is sufficient for the purpose
of this paper to consider an instance in which values are booleans,
bitstrings, natural numbers, pairs, lists, and elements ofa group.
Similarly, we instantiateD so that values can be uniformly sam-
pled from the set of booleans, natural intervals of the form[0..n],
and bitstrings of a certain length. It is important to note that the for-
malization of expressions is not restricted to many-sortedalgebra:
we make a critical use of dependent types to record the lengthof
bitstrings. This is used e.g. in the definition of theIND-CPA game
for OAEP in Sec. 7.2 to constrain the adversary to return two bit-
strings of equal length.

Definition 1 (Program). A program consists of a command and an
environment, which maps a procedure identifier to its declaration,
consisting of its formal parameters, its body, and a return expres-
sion (we use an explicitreturn when writing games, though),

decl
def
= {params : list V; body : C; re : E} .

The environment specifies the type of the parameters and the return
expression, so that procedure calls are always well-typed.

In a typical formalization, the environment will map procedures
to closed commands, to the exception of the adversaries whose
code is unknown, and thus modeled by variables of typeC. This
is a standard trick to deal with uninterpreted functions in adeep
embedding. In the remainder of this section we assume an environ-
mentE implicitly given.

In the rest of this paper we letci range overC; xi overV; ei

overE ; di overD; andGi over programs. The operator⊕ denotes
the bitwise exclusive or on bitstrings of equal length, and‖ the
concatenation of two bitstrings.
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3.2 Operational semantics

Programs in pWHILE are given a small-step semantics using the
distribution monadM(X), whose type constructor is defined as

M(X) def
= (X → [0, 1])→ [0, 1]

and whose operatorsunit andbind are defined as

unit : X →M(X) def
= λx. λf. f x

bind : M(X)→ (X →M(Y ))→M(Y )
def
= λµ. λM. λf. µ(λ x. M x f)

The monadM(X) was proposed by Audebaud and Paulin [4] as a
variant of the expectation monad used by Ramsey and Pfeffer [29],
and builds on earlier work by Kozen [24]. The formalization of the
semantics heavily relies on Paulin’s axiomatization in Coqof the
[0, 1] real interval—for our purposes, it has been necessary to add
division to the library.

The semantics of commands and expressions are defined rel-
ative to a given memory, i.e. a mapping from variables to val-
ues. We letM denote the set of memories. Expressions are de-
terministic; their semantics is standard and given by a function
J·Kexpr, that evaluates an expression in a given memory and re-
turns a value. The semantics of distribution expressions isgiven
by a function J·Kdistr. For a distribution expressiond of type
T , we have thatJdKdistr : M → M(X), where X is the
interpretation of typeT . For instance, in the previous section
we have used{0, 1}η to denote the uniform distribution on bit-
strings of lengthη (the security parameter), formally, we have
J{0, 1}ηKdistr

def
= λm f.

P

bs∈{0,1}η
1
2η f(bs). Thanks to depen-

dent types, the semantics of expressions and distribution expres-
sions is total. In the following, and whenever there is no confusion,
we will drop the subscripts inJ·Kexpr andJ·Kdistr.

The semantics of commands relates a deterministic state to a
(sub-)probability distribution over deterministic states and uses a
frame stack to deal with procedure calls. Formally, a deterministic
state is a triple consisting of the current commandc : C, a memory
m : M, and a frame stackF : list frame. We letS denote the
set of deterministic states. One step executionJ·K1 : S → M(S)
is defined by the rules of Fig. 3. In the figure, we usea  b as
a notation forJaK1 = b and loc andglob to project memories on
local and global variables respectively.

We briefly comment on the transition rules for calling a proce-
dure (3rd rule) and returning from a call (2nd rule). Upon a call,
a new frame is appended to the stack, containing the destination
variable, the return expression of the called procedure, the contin-
uation to the call, and the local memory of the caller. The state re-
sulting from the call contains the body of the called procedure, the
global part of the memory, a local memory initialized to map the
formal parameters to the value of the actual parameters justbefore
the call, and the updated stack. When returning from a call with a
non-empty stack, the top frame is popped, the return expression is
evaluated and the resulting value is assigned to the destination vari-
able after previously restoring the local memory of the caller; the
continuation taken from the frame becomes the current command.
If the stack is empty when returning from a call, the execution of the
program terminates and the final state is embedded into the monad
using theunit operator.

Using the monadic constructions, one can define ann-step exe-
cution functionJ·Kn:

JSK0
def
= unit S JSKn+1

def
= bind JSKn J·K1

Finally, the denotation of a commandc in an initial memorym is
defined to be the (limit) distribution of reachable final memories:

JcK m : M(M) def
= λf. sup {J(c, m, [ ])Kn f |final | n ∈ N}

wheref |final :S → [0, 1] is the function that when applied to a state
(c, m, F ) givesf(m) if it is a final state and 0 otherwise. Since the
sequenceJ(c, m, [ ])Kn f |final is increasing and upper bounded by
1, this least upper bound always exists and corresponds to the limit
of the sequence.

We have shown that the semantics is discrete, which we use to
apply a variant of Fubini’s theorem for proving the rules [R-Comp]
and [R-Trans] in the next section.

Computing probabilities The advantage of using this monadic
semantics is that, if we use an arbitrary function as a continua-
tion to the denotation of a program, what we get (for free) as a
result is its expected value w.r.t. the distribution of finalmem-
ories. In particular, we can compute the probability of an event
A in the distribution obtained after executing a commandc in
an initial memorym by measuring its characteristic function1A:
Prc,m[A] def

= JcK m 1A. For instance, one can verify that the de-
notation ofx $← [0..1]; y $← [0..1] in the memorym is

λf. 1
4
(f(m{0, 0/x, y}) + f(m{0, 1/x, y})

+f(m{1, 0/x, y}) + f(m{1, 1/x, y}))

and conclude that the probability of the eventx ≤ y after executing
the command above is3

4
.

3.3 Probabilistic polynomial-time programs

In general, cryptographic proofs reason about effective adversaries,
which can only use a polynomially bounded number of resources.
The complexity notion that captures this intuition, and which is
pervasive in cryptographic proofs, is that ofstrict probabilistic
polynomial-timecomplexity. Concretely, a program is said to be
strict probabilistic polynomial-time (PPT) whenever there exists
a polynomial bound (on some security parameterη) on the cost
of each possible execution, regardless of the outcome of itscoin
tosses. Otherwise said, a probabilistic program is PPT whenever
the same program, seen as a non-deterministic program, terminates
and the cost of each possible run is bounded by a polynomial.

Termination and efficiency are orthogonal. Consider, for in-
stance, the following two programs:

b← true;while b do b $← {0, 1}

b $← {0, 1}; if b then while true do nil

The former terminates with probability 1 (it terminates within n
iterations with probability1 − 2−n), but may take an arbitrarily
large number of iterations to terminate. The latter terminates with
probability 1

2
, but when it does, it takes only a constant time. We

deal with termination and efficiency separately.

Definition 2 (Termination). The probability that a programc ter-
minates starting from an initial memorym is JcK m 1true. We say
that a programc is absolutely terminating, and note itLossless(c),
iff it terminates with probability 1 in any initial memory.

To deal with efficiency, we non-intrusively instrument the se-
mantics of our language to compute the cost of running a pro-
gram. The instrumented semantics ranges overM(M × N) in-
stead of simplyM(M). We recall that our semantics is implicitly
parametrized by a security parameterη, on which we base our no-
tion of complexity.

Definition 3 (Polynomially bounded distribution). We say that a
distribution µ : M(M × N) is (p, q)-bounded, wherep and
q are polynomials, and note itbounded(p, q, µ), whenever for
every(m, n) occurring with non-zero probability inµ, the size of
every value in the memorym is bounded byp(η) and n ≤ q(η).
This notion is formally defined by means of therange predicate
introduced in Sec. 4.
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(nil, m, [ ])  unit (nil, m, [ ])

(nil, m, (x, e, c, l) :: F )  unit (c, (l, m.glob){JeK m/x}, F )

(x← p(~e); c, m, F )  unit (E(p).body, (∅{J~eK m/E(p).params}, m.glob), (x, E(p).re, c, m.loc) :: F )

(if e then c1 else c2; c, m, F )  unit (c1; c, m, F ) if JeK m = true

(if e then c1 else c2; c, m, F )  unit (c2; c, m, F ) if JeK m = false

(while e do c; c′, m, F )  unit (c; while e do c; c′, m, F ) if JeK m = true

(while e do c; c′, m, F )  unit (c′, m, F ) if JeK m = false

(x← e; c, m, F )  unit (c, m{JeK m/x}, F )

(x $← d; c, m, F )  bind (JdK m)(λv. unit (c, m{v/x}, F ))

Figure 3. Probabilistic semantics of pWHILE programs

Definition 4 (Strict probabilistic polynomial-time program). A
program c is strict probabilistic polynomial-time, and we note it
PPT(c), iff it terminates absolutely, and there exist polynomial
transformersF, G such that for every(p, q)-bounded distribution
µ, the distribution(bind µ JcK) is (F (p), q + G(p))-bounded.

We can recover some intuition by takingµ = unit (m, 0) in the
above definition. In this case, we may paraphrase the condition as
follows: if the size of values inm is bounded by some polynomial
p, and an execution of the program inm terminates with non-zero
probability in memorym′, then the size of values inm′ is bounded
by the polynomialF (p), and the cost of the execution is bounded
by the polynomialG(p). It is in this latter polynomial that bounds
the cost of executing the program that we are ultimately interested.
The increased complexity in the definition is required for proving
compositionality results (e.g. the sequential composition of two
PPT programs results in a PPT program).

Although our formalizations for termination and efficiencyrely
on semantic definitions, it is not necessary for users to reason di-
rectly about the semantics of a program to prove it meets those
definitions.CertiCrypt implements a certified algorithm showing
that every program without loops and recursive calls is lossless.4

CertiCrypt also provides another algorithm that, together with the
first, establishes that a program is PPT provided that, additionally,
the program does not contain expressions that might generate val-
ues of superpolynomial size or take a superpolynomial time when
evaluated in a polynomially bounded memory.

3.4 Adversaries

In order to reason formally about security, we make explicitwhich
variables and procedures are accessible to adversaries, and provide
a simple analysis to check whether an adversary respects itspolicy.
Given a set of procedure identifiersO (the procedures that may
be called by the adversary), and sets of global variablesGA (those
that can be read and written by the adversary) andGro (those that
the adversary can only read), we say that an adversaryA is well-
formed in an environmentE if the judgment⊢wf A can be derived
using the rules in Fig. 4. These rules guarantee that each time a
variable is written by the adversary, the adversary has the right to
do so; and that each time a variable is read by the adversary, it is
either a global variable inGA ∪ Gro or a local variable previously
initialized. A well-formed adversary is free to call oracles, but any
other procedure it calls must be a well-formed adversary itself.

4 It is of course a weak result in terms of termination of probabilistic
programs, but nevertheless sufficient as regards cryptographic applications.
Extending our formalization to a certified termination analysis for loops is
interesting, but orthogonal to our main goals, and left for future work.

I ⊢ nil :I
I ⊢ i :I ′ I ′ ⊢ c :O

I ⊢ i; c :O
Writable(x) fv(e) ⊆ I

I ⊢ x← e :I ∪ {x}
Writable(x) fv(d) ⊆ I

I ⊢ x $← d :I ∪ {x}
fv(e) ⊆ I I ⊢ ci :Oi i = 1, 2

I ⊢ if e then c1 else c2 :O1∩O2

fv(e) ⊆ I I ⊢ c :I

I ⊢ while e do c :I
fv(~e) ⊆ I Writable(x) o ∈ O

I ⊢ x← o(~e) :I ∪ {x}
fv(~e) ⊆ I Writable(x) A 6∈ O ⊢wf A

I ⊢ x← A(~e) :I ∪ {x}
GA ∪ Gro ∪AE .params ⊢ AE .body :O fv(AE .re) ⊆ O

⊢wf A
Writable(x) def

= Local(x) ∨ x ∈ GA AE
def
= E(A).

Figure 4. Static analysis for well-formedness of adversaries

Additional constraints may be imposed on adversaries. For ex-
ample, exact security proofs usually impose an upper bound to the
number of calls adversaries can make to a given oracle, whereas
for some properties such asIND-CCA2 there are some restrictions
on the parameters with which the oracles may be called. Likewise,
some proofs impose extra conditions such as forbidding repeated
or malformed queries. These kinds of properties can be formalized
using lists that records the parameters of the calls to oracles, and
verifying as postcondition that the calls were legitimate.

4. Relational Hoare Logic
Shoup [32] classifies proof steps into three categories: transitions
based on indistinguishability—which typically involve applying a
security hypothesis, e.g. theDDH assumption—; transitions based
on failure events—which typically amount to bound the probability
of bad, as in the Switching Lemma—; and bridging steps—which
correspond to replacing or reorganizing code in a way that isnot
observable by adversaries. In some circumstances, a bridging tran-
sition fromG1 toG2 may replace a program fragmentP by another
fragmentP ′ observationally equivalent toP . In general, however,
P andP ′ are only observationally equivalent in the context where
the replacement is done. Such transitions are supported through a
relational Hoare logic, that generalizes observational equivalence
through preconditions and postconditions which we use to charac-
terize the context where the replacement is valid. Besides,we use
relational Hoare logic to establish (in)equalities between probabili-
ties of two events, as shown by the lemmas(=JK) and(≤JK) below,
and to establish program invariants, e.g. in the proof of theSwitch-
ing Lemma in Sec. 2.2.
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4.1 Probabilistic Relational Hoare Logic (pRHL)

Our logic pRHL elaborates on and extends to probabilistic pro-
grams Benton’s Relational Hoare Logic [10]. Benton’s logicuses
judgments of the form⊢ G1 ∼ G2 : Ψ⇒ Φ, and relates the eval-
uation of a programG1 to the evaluation of a programG2 w.r.t.
a preconditionΨ and a postconditionΦ, both defined as relations
on deterministic states. Such a judgment states that for anyinitial
memoriesm1 andm2 satisfying the preconditionm1 Ψ m2, if the
evaluations ofG1 in m1 andG2 in m2 terminate with final mem-
oriesm′

1 andm′
2 respectively, thenm′

1 Φ m′
2 holds. In a proba-

bilistic setting, the evaluation of a program w.r.t. an initial memory
yields a (sub-)distribution. In order to give a meaning to the above
judgment, one therefore needs to lift relations over memories into
relations over distributions.5 We follow early work on probabilistic
bisimulations [23]. The lifting to distributions of a unarypredicate
P and of a binary relationΦ are respectively defined as

range P µ def
= ∀f. (∀a. P a⇒ f a = 0)⇒ µ f = 0

µ1 ∼Φ µ2
def
= ∃µ. π1(µ) = µ1 ∧ π2(µ) = µ2 ∧ range Φ µ

where the projections ofµ are defined as

π1(µ) def
= bind µ (λx y. unit x) π2(µ) def

= bind µ (λx y. unit y)

Definition 5 (pRHL judgments). ProgramsG1 andG2 are equiv-
alent w.r.t. preconditionΨ and postconditionΦ iff

� G1 ∼ G2 : Ψ⇒ Φ
def
=

∀m1 m2. m1 Ψ m2 ⇒ JG1K m1 ∼Φ JG2K m2

Our approach slightly departs from Benton’s: rather than defin-
ing the rules for pRHL and proving them sound w.r.t. the meaning
of judgments, we place ourselves in a semantic setting and derive
the rules as lemmas. This allows to easily extend the system by de-
riving extra rules, or even to resort to the semantic definition if the
system turns out to be insufficient.

Figure 5 gathers some representative derived rules. To improve
readability, in the figure and in the remainder of the paper we
let e〈i〉 denoteλm1 m2. JeK mi = true, wheree is a boolean
expression. As pRHL allows for arbitrary relations, we freely use
higher-order logic; in particular,PER andSYM are predicates over
relations that stand forpartial equivalence relationandsymmetric
relation respectively. There are two points worth noting. First, most
rules admit, in addition to their symmetrical version of Fig. 5, one-
sided (left and right) variants, e.g. for assignments

m1 Φ′ m2
def
= (m1{Je1Km1/x1}) Φ m2

� E1, x1 ← e1 ∼ E2, nil : Φ′ ⇒ Φ

Second, some rules of pRHL do not appear in RHL, or generalize
existing rules. The rule [R-Case] allows to do a case analysis on the
evaluation of an arbitrary relation in the initial memories. Together
with simple rules in the spirit of

� E1, c1 ∼ E2, c : Ψ ∧ e〈1〉 ⇒ Φ

� E1, if e then c1 else c2 ∼ E2, c : Ψ ∧ e〈1〉 ⇒ Φ

it subsumes [R-Cond] and allows to prove judgments that would
otherwise not be derivable, such as the equivalence between
(if e then c1 else c2) and (if ¬e then c2 else c1). We also use
[R-Case] to prove the correctness of dataflow analyses that exploit
the information provided by entering branches.

In addition, we often use the rule [R-Inv] that generalizes the
rule [R-Sym] to inverse of relations

� G1 ∼ G2 : Ψ⇒ Φ

� G2 ∼ G1 : Ψ−1 ⇒ Φ−1 [R-Inv]

5 An alternative would be to develop a logic in whichΨ andΦ are relations
over distributions of states. However, it is not clear whether such a logic
would allow a similar level of proof automation. This is leftfor future work.

and we make an extensive use of the rule [R-Comp] that generalizes
the rule [R-Tr] to composition of relations6

� G1 ∼ G : Ψ′ ⇒ Φ′
� G ∼ G2 : Ψ′′ ⇒ Φ′′

� G1 ∼ G2 : Ψ′ ◦Ψ′′ ⇒ Φ′ ◦Φ′′ [R-Comp]

The benefits of the rule [R-Comp], as opposed to [R-Tr], are illus-
trated by considering “independent” preconditions and postcondi-
tions of the form

Ψ def
= λx y .Ψ1 x ∧Ψ2 y Φ def

= λx y .Φ1 x ∧ Φ2 y

In order to apply the rule [R-Tr] toG1 andG2, we are essentially
forced to haveΨ1 = Ψ2 andΦ1 = Φ2, and furthermore we must
also choose the same pre and postcondition for the intermediate
gameG. This constraint makes the rule [R-Tr] impractical, we use
instead the rule [R-Comp] to introduce intermediate games that do
not satisfy the same specification asG1 or G2.

The rule [R-Rand] is also (obviously) not present in RHL. Let
Ix

def
= (λv.if x = v then 1 else 0), and define the support of a

distribution,supp(JdK m), by the clause

v ∈ supp(JdK m)⇔ JdK m Iv 6= 0

Finally, letJd1K m1 =g Jd2K m2 iff there exists a setX and a bijec-
tion g : X → X such thatsupp(Jd1K m1) = supp(Jd2K m2) = X
and Jd1K m1 Ia = Jd2K m2 I(g a) for all a in X. To apply rule
[R-Rand], it is necessary to exhibit a functionf such that for all
memoriesm1 and m2, Jd1K m1 =f m1 m2 Jd2K m2. Thus, if
d1 = d2 = [0..n] for some constantn, and we takef to be the
identity function, the premise simplifies to the expected,

m1 Ψ m2
def
= ∀ v ∈ [0..n]. (m1{v/x1}) Φ (m2{v/x2})

Section 5.3 shows that the generality of the rule is requiredfor
applications such as optimistic sampling.

It is often fruitful to understand pRHL judgments in terms
of the inability of the postcondition to separate between the two
commands of the judgment. Define two functionsf and g to be
equivalent w.r.t. a predicateΦ iff

f =Φ g def
= ∀m1 m2. m1 Φ m2 ⇒ f(m1) = g(m2)

The definition of pRHL judgments entails

� G1 ∼ G2 : Ψ⇒ Φ
f =Φ g

m1 Ψ m2

9

=

;

⇒ JG1K m1 f = JG2K m2 g (=JK)

By instantiatingf andg to 1, one can observe that observational
equivalence enjoys some form of termination sensitivity

(� G1 ∼ G2 : Ψ⇒ Φ)∧m1 Ψ m2 ⇒ JG1K m1 1 = JG2K m2 1
This interpretation of pRHL judgments is strongly connected to the
relation between relational logics and information flow [3,10]. We
extensively use(=JK), and its variant(≤JK) below, to fall back from
the world of pRHL into the world of probabilities, in which security
statements are expressed;

� G1 ∼ G2 : Ψ⇒ Φ
f ≤Φ g

m1 Ψ m2

9

=

;

⇒ JG1K m1 f ≤ JG2K m2 g (≤JK)

wheref ≤Φ g def
= ∀m1 m2. m1 Φ m2 ⇒ f(m1) ≤ g(m2).

We conclude with an example that nicely illustrates some
of the intricacies of pRHL. Letc = b $← {0, 1} and define
m1 Φ m2

def
= m1 b = m2 b. Then� c ∼ c : true ⇒ Φ. In-

deed, takeµ such thatµ 1〈x,y〉 = 1/2 if x = y andµ 1〈x,y〉 = 0

6 The machine-checked rule requires thatΦ is decidable, and usesSet-
valued existential quantification∃Set in the composition for preconditions,
i.e.x (Ψ ◦Ψ′) z

def
= ∃Sety. x Ψ y ∧ y Ψ′z.
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� E1, nil ∼ E2, nil : Φ⇒ Φ [R-Skip]
� E1, c1 ∼ E2, c2 : Φ⇒ Φ′

� E1, c
′
1 ∼ E2, c

′
2 : Φ′ ⇒ Φ′′

� E1, c1; c
′
1 ∼ E2, c2; c

′
2 : Φ⇒ Φ′′ [R-Seq]

� E1, x1 ← e1 ∼ E2, x2 ← e2 : (λ m1 m2. (m1{Je1Km1/x1}) Φ (m2{Je2Km2/x2}))⇒ Φ [R-Ass]

m1 Ψ m2
def
= Jd1Km1 =f m1 m2 Jd2Km2 ∧ ∀ v ∈ supp(Jd1Km1). (m1{v/x1}) Φ (m2{f m1 m2 v/x2})

� E1, x1
$← d1 ∼ E2, x2

$← d2 : Ψ⇒ Φ
[R-Rand]

∀m1 m2. m1 Ψ m2 ⇒ Je1K m1 = Je2K m2 � E1, c1 ∼ E2, c2 : Ψ ∧ e1〈1〉 ⇒ Φ � E1, c
′
1 ∼ E2, c

′
2 : Ψ ∧ ¬e1〈1〉 ⇒ Φ

� E1, if e1 then c1 else c′1 ∼ E2, if e2 then c2 else c′2 : Ψ⇒ Φ
[R-Cond]

∀m1 m2. m1 Φ m2 ⇒ Je1K m1 = Je2K m2 � E1, c1 ∼ E2, c2 : Φ ∧ e1〈1〉 ⇒ Φ

� E1, while e1 do c1 ∼ E2, while e2 do c2 : Φ⇒ Φ ∧ ¬e1〈1〉
[R-Whl]

� G1 ∼ G2 : Ψ′ ⇒ Φ′ ∀m1 m2. m1 Ψ m2 ⇒ m1 Ψ′ m2 ∀m1 m2. m1 Φ′ m2 ⇒ m1 Φ m2

� G1 ∼ G2 : Ψ⇒ Φ
[R-Sub]

� G1 ∼ G2 : Ψ⇒ Φ SYM(Ψ) SYM(Φ)

� G2 ∼ G1 : Ψ⇒ Φ
[R-Sym]

� G1 ∼ G : Ψ⇒ Φ � G ∼ G2 : Ψ⇒ Φ PER(Ψ) PER(Φ)

� G1 ∼ G2 : Ψ⇒ Φ
[R-Tr]

� G1 ∼ G2 : Ψ ∧Ψ′ ⇒ Φ � G1 ∼ G2 : Ψ ∧ ¬ Ψ′ ⇒ Φ

� G1 ∼ G2 : Ψ⇒ Φ
[R-Case]

Figure 5. Selection of derived rules of pRHL

otherwise. One can check thatµ ensuresJcK m ∼Φ JcK m′ for all
m andm′. This example shows why the lifting of a binary relation
involves an existential quantification, and why it is not possible to
always instantiateµ as the product distribution in the definition of
∼Φ (one cannot establish the above judgment using the product
distribution). Perhaps more surprisingly,� c ∼ c : true ⇒ ¬Φ
also holds. Indeed, takeµ such thatµ 1〈x,y〉 = 1/2 if x 6= y
and µ 1〈x,y〉 = 0 otherwise. One can check thatµ ensures
JcK m ∼¬Φ JcK m′ for all m andm′. Thus, the “obvious” rule

� G1 ∼ G2 : Ψ⇒ Φ � G1 ∼ G2 : Ψ⇒ Φ′

� G1 ∼ G2 : Ψ⇒ Φ ∧ Φ′

is unsound. While this example may seem unintuitive or even
inconsistent if one reasons in terms of deterministic states, its
intuitive significance in a probabilistic setting is that neither of
the relationsΦ and ¬Φ are enough to tell apart the two final
distributions.

4.2 Observational equivalence

Observational equivalence is derived as an instance of relational
Hoare judgments in which pre and postconditions are restricted to
relations based on equality over a subset of variables. Given a set
X of variables, we define=X as

m1 =X m2
def
= ∀ x ∈ X. m1 x = m2 x

Then, observational equivalence ofG1 andG2 w.r.t. an input setI
and an output setO is defined as

� G1 ≃
I
O G2

def
= � G1 ∼ G2 : =I ⇒ =O

All derived rules for pRHL can be specialized to the case of obser-
vational equivalence. For example, we have

� e1 ≃
I e2 � E1, c1 ≃

I
O E2, c2 � E1, c

′
1 ≃

I
O E2, c

′
2

� E1, if e1 then c1 else c′1 ≃
I
O E2, if e2 then c2 else c′2

where� e1 ≃
I e2 iff for every memoriesm1 andm2, m1 =I m2

impliesJe1K m1 = Je2K m2.

To support automation,CertiCrypt implements a calculus
of variable dependencies and provides two tactics,eqobsIn and
eqobsOut, that given a commandc and a setO (respectivelyI) of
output (input) variables compute a setI (O) of input (output) vari-
ables such that� E1, c ≃

I
O E2, c. CertiCrypt also provides tactics

for two variants of observational equivalence that are widely used
in game-based proofs, namely

�ϕ G1 ≃
I
O G2

def
= � G1 ∼ G2 : =I ∧ ϕ⇒ =O ∧ ϕ

�Ψ,Φ G1 ≃
I
O G2

def
= � G1 ∼ G2 : =I ∧ Ψ⇒ =O ∧ Φ

These tactics use a (sound but incomplete) weakest precondition
calculus for relational judgments.

5. Proof methods for bridging steps
CertiCrypt provides a powerful set of tactics and algebraic equiv-
alences to automate bridging steps. Most tactics rely on an imple-
mentation of a certified optimizer for pWHILE, with the exception
of lazy samplingwhich has an ad hoc implementation. Algebraic
equivalences are provided as lemmas that follow from algebraic
properties of the interpretation of language constructs.

5.1 Certified program transformations

CertiCrypt provides automated support for transformations that
consist in applying compiler optimizations. More precisely, it sup-
ports transformations based on dependencies and dataflow analy-
ses; we briefly discuss them below. Additionally,CertiCrypt pro-
vides support for inlining procedure calls and performing register
allocation (not discussed here).

Transformations based on dependenciesThe functionseqobsIn
andeqobsOut presented in Sec. 4, provide the foundations to sup-
port transformations such as dead code elimination, code motion,
and common context elimination.

First,CertiCrypt features a functioncontext that strips off two
commandsc andc′ their maximal common context relative to sets
I andO of input and output variables. The correctness ofcontext
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is expressed by the following rule

context(I, c1, c2, O) = (I ′, c′1, c
′
2, O

′) � E1, c
′
1 ≃

I′

O′ E2, c
′
2

� E1, c1 ≃
I
O E2, c2

Using the same idea,CertiCrypt provides algorithms for removing
only a common prefix (eqobs hd) or suffix (eqobs tl).

Second,CertiCrypt provides a tactic that given two commands
repeatedly tries to hoist their common instructions to obtain a
maximal common prefix7, which can then be eliminated using the
previous rule. Its correctness is based on the rule

� E, c1 ≃
I1
O1

E, c1 � E, c2 ≃
I2
O2

E, c2 Modify(E, ci, Oi)

O1 ∩ O2 = ∅ I1 ∩O2 = ∅ I2 ∩O1 = ∅

� E, c1; c2 ∼ E, c2; c1 : =⇒ =

where Modify(E, c, X) is a semantic predicate expressing that
only variables inX are modified by the commandc in the environ-
mentE. This is formally expressed by∀m. range (λm′. m =V\X

m′) (JE, cK m) which ensures that the final memories are equal to
the initial ones except maybe on variables inX. The tacticswap is
based on the rule above and on an algorithm that over-approximates
the set of modified variables (by computing those that may be writ-
ten, without taking into account self-assignments).

Third,CertiCrypt allows performing dead code elimination rel-
ative to a setO of output variables (deadcode). The algorithm be-
haves more like an aggressive slicing algorithm, i.e. it removes por-
tions of code that do not affect variables inO, and performs at the
same time branch prediction (replacingif true then c1 else c2 by
c1), branch coalescing (replacingif e then c else c by c), and self-
assignment elimination. Its correctness relies on the rule

Modify(E1, c, X) Lossless(E1, c) fv(ϕ) ∩X = ∅

� E1, c ∼ E2, nil : ϕ⇒ ϕ

Optimizations based on dataflow analysesCertiCrypt has built-
in, generic, support for such optimizations: given an abstract do-
mainD (a semi-lattice) for the analysis, transfer functions for as-
signment and branching instructions, and an operator transforming
expressions in the language into their optimized versions (using the
result of the analysis),CertiCrypt automatically constructs the cer-
tified optimization functionoptim : C → D → C×D. When given
a commandc and an elementδ ∈ D, this function transformsc into
its optimized versionc′ assuming the validity ofδ. In addition, it
returns an abstract postconditionδ′ ∈ D which is valid after ex-
ecutingc (or c′). We use these abstract postconditions to state the
correctness of the optimization, and to apply the optimization re-
cursively.

The correctness ofoptim is proved using a mixture of the
techniques of [10] and [11, 26]: we express the validity of the
information contained in the analysis domain using a predicate
Valid(δ, m) that states the agreement between the compile time
abstract values inδ and the runtime memorym. Then, correctness
is expressed in terms of a pRHL judgment (universally quantified
overc andδ):

let (c′, δ′) :=optim(c, δ) in � E, c ∼ E, c′ : ≍δ ⇒ ≍δ′

wherem1 ≍δ m2
def
= m1 = m2 ∧ Valid(δ, m1). The following

useful rule is derived using [R-Comp]

∀m1 m2. m1 Ψ m2 ⇒ Valid(δ, m1)
optim(c1, δ) = (c′1, δ

′) � E1, c
′
1 ∼ E2, c2 : Ψ⇒ Φ

� E1, c1 ∼ E2, c2 : Ψ⇒ Φ
[R-Opt]

7 One could also provide a complementary tactic that hoists instructions to
obtain a maximal common suffix.

Our case studies extensively use instantiations of [R-Opt]to expres-
sion propagation (ep). In contrast, we found that common subex-
pression elimination is seldom used.

5.2 Lazy sampling

It is sometimes convenient to defer random choices in games until
they are actually needed, or conversely, to make random choices as
early as possible. The lazy sampling technique, allows to delay the
random sampling of a value until the point in the program where it
is first used. Conversely, eager sampling allows to choose a random
value, which would be otherwise sampled later, at the beginning of
a game. These techniques are presented in [9], where the authors
discuss some of its subtleties. In this section we present a syntax-
oriented criterion for the correctness of lazy or eager sampling that
can be applied provided the sampling is adequately guarded.Here
by contextwe mean a program context with multiple holes that may
appear either in the main program or any of the procedures in the
environment.

Lemma 1 (Lazy/eager sampling). Let C[·] be a context,c1 and
c2 commands,e a boolean expression,d a distribution expression,
andz a variable, such thatC[·] does not modifyfv(e) ∪ fv(d) and
does not usez. Assume

1. � z $← d; c1; if e then z $← d ∼ z $← d; c1 : (= ∧ e〈1〉)⇒ =
2. � c2 ∼ c2 : (= ∧ ¬e〈1〉)⇒ (= ∧¬e〈1〉)

Let c = if e then z $← d; c1 else c2 andc′ = if e then c1 else c2.
Then,� C[c]; if e then z $← d ∼ z $← d; C[c′] : (= ∧ e〈1〉)⇒ =

Intuitively, in the above lemmae indicates whetherz has not
been used in the game since it was last sampled. If it has not been
used, then it is perfectly fine to resample it. The first two hypotheses
ensure thate has exactly this meaning,c1 must set it tofalse if it
has used the value sampled inz, andc2 must not resete if it is false.
The first hypothesis is the one that allows to swapc1 with z $← d,
provided the value ofz is not used inc1. Note that, for clarity, we
have omitted environments in the above lemma, and so the second
hypothesis is not as trivial as it may seem because both programs
may have different environments.

Suppose we want to eagerly sample the answer that a random
oracle

Ol(x) def
= if x /∈ dom(L) then y $← d; L← (x, y) :: L;

return L[x]

gives to a particular queryx′, i.e. we want to transformOl into

Oe(x) def
= if x /∈ dom(L) then

if x = x′ then y ← y′ else y $← d;
L← (x, y) :: L

return L[x]

DefineO′
l(x) def

= if x′ /∈ dom(L) then y′ $← d;Oe(x) elseOl(x),
O′

e(x) def
= if x′ /∈ dom(L) then Oe(x) else Ol(x), both return-

ing L[x]. OraclesOl andOe result semantically equivalent toO′
l

andO′
e, respectively. Lemma 1 can be applied takinge = x′ /∈

dom(L), z = y′, andc1 = Oe(x), c2 = Ol(x) to safely replace
oracleOl by oracleOe in the environment of a program, sampling
y′ at the beginning. Whenever a bound for the number of queries to
a random oracle is known in advance, the above trick can be iter-
atively applied to completely remove randomness from the oracle
code, as it is done in the proof of the Switching Lemma in Sec. 2.2.

5.3 Algebraic equivalences

Bridging steps frequently use algebraic properties of language op-
erators. The proof of semantic security ofElGamal uses the fact
that in a cyclic multiplicative group, multiplication by a uniformly
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sampled element acts as a one-time pad:

� x $← Zq; α← gx × β ≃{α} y $← Zq; α← gy

In the proof of security ofOAEP we use optimistic sampling:

� x $← {0, 1}k; y ← x⊕ z ≃{z}

{x,y,z}
y $← {0, 1}k; x← y ⊕ z

and incremental sampling modulo a permutationf :

� x $← {0, 1}k−ρ; y $← {0, 1}ρ; z ← f(x‖y) ≃{z} z $← {0, 1}k

We show the usefulness of [R-Rand] by sketching the proof of
optimistic sampling, as promised in Section 4. For readability, we
let e|i denoteJeK mi. Define

Ψ def
= z|1 = z|2 Φ def

= x|1 = x|2 ∧ y|1 = y|2 ∧ z|1 = z|2

Let Φ′ def
= Φ{x|1 ⊕ z|1/y|1, y|2 ⊕ z|2/x|2}. Then, by [R-Ass] we

have

� y ← x⊕ z ∼ x← y ⊕ z : Φ′ ⇒ Φ

Now takef m1 m2 v def
= v ⊕ z|2, and apply [R-Rand] and [R-

Sub] to obtain� x $← {0, 1}k ∼ y $← {0, 1}k : Ψ ⇒ Φ′.
Note that the precondition we obtain after applying [R-Rand] is
equivalent toΨ becausef is a bijection on{0, 1}k, and because
∀v. Φ′{v/x|1, v ⊕ z|2/y|2} is equivalent toz|1 = z|2 by algebraic
properties of the⊕ operator. We conclude by applying [R-Seq].

6. Proof methods for failure events
A technique used very often to relate two games is based on what
cryptographers callfailure events. This technique relies on afunda-
mental lemmathat allows to bound the difference in the probability
of a given event in two games: one identifies a failure event and
argues that both games behave identically until this event occurs.
One can then bound the difference in probability of another event
by the probability of occurrence of the failure event in either game.

Lemma 2 (Fundamental lemma). LetG1 andG2 be two games,A
an event defined onG1, B an event defined onG2 andF an event
defined in both games. If

PrG1 [A ∧ ¬F ] = PrG2 [B ∧ ¬F ] , and
PrG1 [F ] ≤ PrG2 [F ]

then|PrG1 [A]− PrG2 [B]| ≤ PrG2 [F ].8

In code-based proofs, the failure condition is generally indicated
by setting a global flag variable (usually calledbad) to true. This
specialization allows to define a syntactic criterion for deciding
whether two games behave equivalently up to the raise of the failure
condition: we say that two gamesG1 andG2 are equal up to bad
and note ituptobad(G1, G2) whenever they are syntactically equal
up to every point where thebad flag is set totrue and they do not
reset thebad flag tofalse afterward. For instance, gamesGbad

PRP and
Gbad

PRF in Fig. 2 satisfy this condition. We have used this syntactic
criterion to implement a specialization of the fundamentallemma
for game-based proofs.

Lemma 3 (Syntactic criterion for fundamental lemma).

∀ G1 G2 A. uptobad(G1, G2) ⇒
PrG1 [A ∧ ¬bad] = PrG2 [A ∧ ¬bad]

The first hypothesis in Lemma 2 may be proved automatically
by using this syntactic criterion. To prove the second hypothesis
it suffices to show that gameG2 is absolutely terminating, for

8 The second hypothesis is usually omitted in the literature under the as-
sumption that both games are absolutely terminating. In that case, either
G1 or G2 will do on the right-hand side.

Oracle Sign(m) :
S ← m :: S
r ← H(m);
return f−1(r)

Oracle H(m) :
if m 6∈ dom(L) then

r $← {0, 1}k ;
L← (m, r) :: L

return L[x]

Game EUFDH :
L← [ ]; S ← [ ];
(m, x)← A();
d← H(m)

Figure 6. Initial game in the proof ofFDH unforgeability

which we already have implemented a semi-decision procedure
(see Sec. 3.3).

7. Case studies
The purpose of this section is to announce the successful comple-
tion of two experiments that validate the design and usability of
CertiCrypt. A detailed presentation of these works will be given
elsewhere.

7.1 Existential unforgeability of FDH

The Full Domain Hash (FDH) scheme is a hash-and-sign signature
scheme based on the RSA family of trapdoor permutations, and
in which the message is hashed onto the full domain of the RSA
function. However, the same construction—and the reduction that
proves its security—remains valid for any family of trapdoor per-
mutations. We have proved thatFDH is existentially unforgeable
under adaptive chosen-message attacks [8] in the random oracle
model. The proof is about 2,700 lines long.

In the following we will consider a generic family of trapdoor
permutationsf (and their inversesf−1) indexed by the security
parameter, and an ideal hash functionH : {0, 1}∗ → {0, 1}k,
which we model as a random oracle. The initial game of the proof
is shown in Fig. 6.

Definition 6 (Trapdoor permutation security). We say that a trap-
door permutation isǫ′-secure if an effective inverter, when given
a challengey uniformly drawn from{0, 1}k succeeds in finding
f−1(y) with probability at mostǫ′(k), i.e. if for any well-formed
and PPT adversaryB we havePrGf

ˆ

x = f−1(y)
˜

≤ ǫ′(k), where
Game Gf : y $← {0, 1}k; x← B(y).

Theorem 1(FDH exact security). Assume the underlying trapdoor
permutation isǫ′-secure. Then, any effective forger that makes at
mostqhash andqsign queries to the hash and signing oracles respec-
tively, succeeds in forging a signature for a new message—different
from the ones asked to the signing oracle—with probability at most

ǫ(k) = (qhash(k) + qsign(k) + 1) ǫ′(k)

i.e. for any well-formed and PPT adversariesA,A′ we have
PrEUFDH

[d = f(x)] ≤ (qhash(k) + qsign(k) + 1) ǫ′(k).

Our next objective is to formalize Coron’s proof [16], whichim-
proves the conventional bound ofFDH given above by eliminating
the dependency onqhash.

7.2 Semantic security of OAEP

OAEP is a padding scheme that is widely used in conjunction with
an encryption scheme such as RSA in order to add randomness
into plaintexts to achieve a high level of security. The history of
OAEP perfectly illustrates the difficulty in achieving a correct
proof. Indeed, it was initially believed thatOAEP wasIND-CCA2
secure [7], but it was later discovered it was onlyIND-CCA1
secure [31], a weaker security notion (where the adversary does not
have access to the decryption oracle after receiving the challenge).
It is possible to recoverIND-CCA2 security by choosing a suitable
encryption scheme, as it is the case for RSA-OAEP [19]. Here
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we focus on the game-based proof of [9] which showsIND-CPA
security ofOAEP in the random oracle model.

The definition ofOAEP is parametrized by a trapdoor one-
way permutationf : {0, 1}k → {0, 1}k, and two hash functions
G : {0, 1}ρ → {0, 1}k−ρ andH : {0, 1}k−ρ → {0, 1}ρ. OAEP
adds randomness into the plaintextm and uses the functionsG and
H to mask it before applyingf to the result, as formalized by the
straightforward code for encryption:

R $← {0, 1}ρ;
S ← G(R)⊕m;
T ← H(S)⊕R;
y ← f(S‖T );
return y

We have proved thatOAEP is IND-CPA secure. The overall proof
is about 3,000 lines of Coq.

Theorem 2(OAEP semantic security). For well-formed, PPT ad-
versariesA andA′ making together at mostqG queries toG,

|PrIND-CPAOAEP

ˆ

b = b′
˜

−
1

2
| ≤ PrGf

ˆ

x = f−1(y)
˜

+
qG

2ρ

wherePrGf

ˆ

x = f−1(y)
˜

is the probability of an adversary in-
vertingf on a random element of its codomain, as in Definition 6.

Our sequence of games differs from [9]: in their initial transi-
tions, Bellare and Rogaway use the fundamental lemma, whereas
we use lazy sampling. As a result, our bound forOAEP is tighter
than the bound published in [9], which also involves the number
qH of calls toH :

|PrIND-CPAOAEP

ˆ

b = b′
˜

−
1

2
| ≤ PrGf

ˆ

x = f−1(y)
˜

+
2qG

2ρ
+

qH

2k−ρ

We consider that our proof ofOAEP is highly emblematic, because
of its complexity and its history. In retrospect, the bound we prove,
which is independent ofqH , shows that formalizing proofs some-
times leads to improvement over previous results (to the best of
our knowledge). However, cryptographers are really interested in
a proof of IND-CCA2, and thus our next objective is to machine-
check the results of [19].

8. Related work
Cryptographic protocol verification is an established areaof formal
methods, and a wealth of automated and deductive methods have
been developed to the purpose of verifying that protocols provide
the expected level of security [27]. Traditionally, protocols have
been verified in a symbolic model, for which effective decision
procedures exist under suitable hypotheses. Although the symbolic
model assumes perfect cryptography, soundness results such as [1]
relate the symbolic model with the computational model, provided
the cryptographic primitives are secure. It is possible to combine
symbolic methods and soundness proofs to achieve guarantees in
the computational model, as done e.g. in [5, 33]. One drawback of
this approach is that the security proof relies on intricatesoundness
proofs. Besides, it is not clear whether computational soundness
results will always exist to allow factoring verification through
symbolic methods. Consequently, some authors attempt to provide
guarantees directly at the computational level [12, 25, 30].

In contrast, the formal verification of cryptographic functional-
ities is an emerging trend. An early work of Barthe, Cederquist and
Tarento [6] proves the security ofElGamal in Coq, but the proof
relies on the generic model, a very specialized and idealized model
that elides many of the issues that are relevant for cryptography.
Corin and den Hartog [15] also proveElGamal semantic security,
using a probabilistic (non-relational) Hoare logic. However, their
formalism is not sufficiently powerful to express preciselythe se-

curity goals: notions such as negligible advantage or effective ad-
versary are not modeled.

Blanchet and Pointcheval [13] were among the first to use ver-
ification tools to carry out game-based proofs of cryptographic
schemes. They usedCryptoVerif for proving exact security of the
FDH signature scheme, for the conventional bound given in Sec-
tion 7.1. More recently, Courant et al [17] have developed a form
of strongest postcondition calculus that can establish automatically
asymptotic security (IND-CPA and IND-CCA2) of schemes that
use one-way functions and random oracles. They show soundness
and provide a prototype implementation that covers many examples
of the literature, including OAEP+. We believe the two approaches
are complementary to ours: compilingCryptoVerif sequences of
games and embedding the type system of [17] inCertiCrypt, are
interesting research directions.

In parallel, several authors have initiated formalizations of
game-based proofs in proof assistants, and shown the security of
basic examples. Nowak [28] gives a game-based proof ofElGa-
mal semantic security in Coq. Nowak uses a shallow embedding to
model games; as a result, its framework ignores complexity issues,
and it is difficult to provide support for proof automation: because
there is no special syntax for writing games, mechanizing syntactic
transformations becomes very difficult. Affeldtet al [2] formal-
ize a game-based proof of the switching lemma in Coq. However,
their formalization is tailored towards the particular example they
consider, which substantially simplifies their task and hinders gen-
erality. They deal with a weak (non-adaptive) adversary model and
ignore complexity. All in all, both works appear like preliminary
experiments that are not likely to scale.

Leaving the realm of cryptography,CertiCrypt relies on diverse
mathematical concepts and theories that have been modeled for
their own sake. It is not possible to report on these developments
here, so we limit ourselves to singling out Paulin’s formalization of
probabilities, which we use extensively in our work, and thework
of Hurd et al. [22], who developed a mechanized theory in the HOL
theorem prover for reasoning about pGCL programs, a probabilistic
extension of Dijkstra’s guarded command language.

9. Conclusion
Summary and perspectivesCertiCrypt is a fully formalized
framework that supports machine-checked game-based proofs;
we have validated its design through formalizing standard cryp-
tographic proofs. Our work shows that machine-checked proofs of
cryptographic schemes is not only plausible but indeed feasible.
However, constructing machine-checked proofs requires a high-
level of expertise in formal proofs and remains time consuming
despite the high level of automation provided byCertiCrypt. Thus,
CertiCrypt only provides a first step towards the completion of
Halevi’s programme, in spite of the amount of work invested so far
(the project was initiated in June 2006.

A medium-term objective would be to develop a minimalist
interface that eases the writing of games and provides a fixedset
of mechanisms (tactics, proof-by-pointing) to prove some basic
transitions, leaving the side conditions as hypotheses in the proof.
We believe that such an interface would help cryptographersensure
that there are no obvious flaws in their definitions and proofs. In
fact, it is our experience that the type system and the automated
tactics provide valuable information to debug games and proofs.

Future work Numerous research directions remain to be ex-
plored. Our first objective is to strengthen our results forOAEP
andFDH. Another objective is to formalize the correctness of the
symbolic model and of automated methods for proving computa-
tional soundness, i.e. formalize results from [1, 17, 25]. We intend
to focus first on [17], as its formalization may be useful to increase
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automation inCertiCrypt. It would also be beneficial to formal-
ize cryptographic meta-results such as the equivalence between
IND-CPA andIND-CCA2 under plaintext awareness. It would also
be worthwhile to explore applications ofCertiCrypt outside cryp-
tography, in particular to randomized algorithms and complexity.
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