Formal Certification of Code-Based Cryptographic Proofs

Gilles Barthé-2

Benjamin Grégoirk3

Santiago Zanella®

! Microsoft Research - INRIA Joint Centre, France

2 IMDEA Software, Madrid, Spain
Gilles.Barthe@imdea.org

Abstract

As cryptographic proofs have become essentially unveljab
cryptographers have argued in favor of developing tectesdhat
help tame the complexity of their proofs. Game-based tepgles
provide a popular approach in which proofs are structureseas
guences of games, and in which proof steps establish thaityali
of transitions between successive games. Code-baseddeebn
form an instance of this approach that takes a code-ceriic of
games, and that relies on programming language theory tifyjus
proof steps. While code-based techniques contribute todbze
the security statements precisely and to carry out proastesy
atically, typical proofs are so long and involved that fotmeri-
fication is necessary to achieve a high degree of confidenee. W
presentCertiCrypt, a framework that enables the machine-checked
construction and verification of code-based pro@fertiCrypt is
built upon the general-purpose proof assistant Coq, andsdoa
many areas, including probability, complexity, algebrad aeman-
tics of programming languageGertiCrypt provides certified tools
to reason about the equivalence of probabilistic prograncs,d-
ing a relational Hoare logic, a theory of observational eajagnce,
verified program transformations, and game-based tecbsisuch
as reasoning about failure events. The usefulneszaiCrypt is
demonstrated through classical examples, including af pufose-
mantic security ofOAEP (with a bound that improves upohl [9]),
and a proof of existential unforgeability 6DH signatures. Our
work provides a first yet significant step towards Halevi'sbam
tious programmel21] of providing tool support for cryptaghic
proofs.

1. Introduction

Provable security[134], whose origins can be traced backéo t
pioneering work of Goldwasser and Micdli[20], advocatesadim
ematical approach based on complexity theory in which tresgo
and requirements of cryptosystems are specified preciaely,
where security proofs are carried out rigorously and makaral
derlying assumptions explicit. In a typical provable séggetting,
one reasons about effective adversaries, modeled asaaytpiob-
abilistic polynomial-time Turing machines, and about thaiob-
ability of thwarting a security objective, e.g. secrecy;general,
provable security statements do not refer directly to thababil-
ity of the adversary breaking security, but to its advantager

a blind, uninformed adversary. In a similar fashion, security as-
sumptions about cryptographic primitives bound the prdivalof
polynomial algorithms to solve hard problems, e.g. comuudis-
crete logarithms. The security proof is performed by reiducby
showing that the existence of an effective adversary witargam
advantage in breaking security implies the existence offtat-e
tive algorithm contradicting the security assumptionsthéligh
the adoption of provable security has significantly enhdrumfi-
dence in security proofs, several published proofs have fiaend

3 INRIA Sophia Antipolis - Méditerranée, France
{Benjamin.Gregoire,Santiago.Zanella}@sophia.inria.fr

incorrect (cf. [31]), and the cryptographic community isneas-
ingly wary that the field may be approaching a crisis of ri@i1].
The game-playing techniqugl [9.121] 32] is a general method to
structure and unify cryptographic proofs, thus making tHess
error-prone. Its central idea is to view the interactionwsstn an
adversary and the cryptosystem as a game, and to studyaransf
mations that preserve security. In a typical game-baseaf pooe
considers transitions of the for@, A —"G’, A’, whereG andG’
are games4 and A’ are events, antl is a monotonic function such
that Prg[A] < h(Prg/[A’]). One can obtain an upper bound for
the probability of an eventlp in some initial game= by succes-
sively refiningGo, Ao into a game/event pait,,, A,

' '
Go, Ao =" G1, A1 — -+ =" Gn, An

and then bounding the probability of eves, in G.,.

The game-playing technique is widely applicable, and has be
extensively used. Code-based techniqliés [9] is an instainte
game-playing technique whose distinguishing feature isate
a code-centric view of games, security hypotheses and campu
tional assumptions, that are expressed using (probatilistper-
ative, polynomial-time) programs. Under this view, ganansfor-
mations become program transformations, and can be jaistifje
orously by semantic means; in particular, many transfaonatcan
be viewed as common program optimizations, and are justifjed
proving that the original and transformed programs are robse
tionally equivalent. Although code-based proofs are edsier-
ify, they go far beyond established theories of programedeince
and exhibit a surprisingly rich and broad set of reasoningcpr
ples that draws on program verification, algebraic reagprand
probability and complexity theory. Thus, despite the benedfief-
fect of their underlying framework, code-based proofs rienia:
herently complex. Whereas Bellare and Rogavidy [9] alreddy o
served that code-based proofs could be more easily ametmble
machine-checking, Halevi[21] argued that formal verifizatech-
nigues should be used to improve trust in cryptographicfgr@md
set up a programme for building a tool that could be used by the
cryptographic community to mechanize their proofs.

This article reports on a first yet significant step towards
Halevi's programme. We describ€ertiCrypt, a framework to
construct machine-checked code-based proofs in the Canf pro
assistant[35], supporting:

Faithful and rigorous encoding of gamels order to be readily
accessible to cryptographers, we have chosen a formaliim th
is commonly used to describe games. Concretely, the lowest
layer of CertiCrypt is the formalization of pWILE, an imper-
ative programming language with random assignments, -struc
tured datatypes, and procedure calls. We provide a deep and
dependently-typed embedding of the syntax; thanks to depen
dent types, the typability of pWiLE programs is obtained for
free. We also provide a small-step operational semanties us

2008/11/4



ing the distribution monad of Audebaud and Paulih [4]. The
semantics is instrumented to calculate the cost of running p
grams; this offers the means to define complexity classes, an
in particular to define formally the notion of effective (pa
bilistic polynomial-time) adversary. In addition, we alsmdel
nonstandard features, such as policies on variable accasde
procedure calls, and use them to formulate the notion of-well
formed adversary, which captures many assumptions left-inf
mal in cryptographic proofs.

Exact securityMany security proofs establish an asymptotic be-

havior for adversaries and show that the advantage of any ef-

fective adversary is negligible w.r.t. a security param@tdich
typically determines the length of keys or messages). Hewev
the cryptographic community is increasingly focused orcexa
security, a much more useful result since it gives hints as to

logic that forms the core of our framework; in Sectifths 5 @6
overview the formulation and automation of game transfdiona

in CertiCrypt; in Sectiorl¥ we report on two significant case stud-
ies we have formalized ifertiCrypt: existential unforgeability of
the FDH signature scheme, and semantic securitfD&fEP; we
finish with a discussion of related work and concluding rekaar

2. Basic examples

This section illustrates the principles G&rtiCrypt on two basic
examples of game-based proofs: semantic securitflGamal
encryption and the PRP/PRF switching lemma. The languagg us
to represent games is formally introduced in the next seciide
begin with some basic definitions.

The Random Oracle Model is a model of cryptography exten-
sively used in security proofs in which some cryptographinp

how to choose system parameters in practice to satisfy a secu tives, e.g. hash functions, are assumed to be indistinghbistirom

rity guarantee. The goal of exact security is to provide cetec

random functions (despite the fact that no real functioniogyie-

bounds both for the advantage of the adversary and for its ex- mentatruly random functiof.[14]). Such primitives are medeby

ecution time.CertiCrypt supports the former (but for the time
being, not the latteff)

Full and independently verifiable proofSertiCrypt adopts a for-
mal semanticist perspective and goes beyond Halevi's visio
in two respects. First, it provides a unified framework targar
out full proofs; all intermediate steps of reasoning canuse j
tified formally, including complex side conditions that fifis
the correctness of transformations (about probabiliiesups,
polynomials, etc). Second, one notable feature of Coq, faurs t
CertiCrypt, is to support independent verifiability of proofs,
which is an important motivation behind game-based proofs.
More concretely, every proof is represented by a proof abjec
that can be checked automatically by a (small and trustwprth
proof checking engine. In order to trust a cryptographimfiro
one only needs to check its statement, and not its details.

Powerful and automated reasoning metho@esrtiCrypt formal-
izes a Relational Hoare Logic and a theory of observational

equivalence, and uses them as stepping stones to support the

main tools of code-based reasoning through certified, reflec
tive tactics. In particularCertiCrypt shows that many trans-
formations used in code-based proofs, including common op-
timizations, are semantics-preserving. One of its specdit
tributions is to prove formally the correctness of a variaht
lazy sampling, which is used ubiquitously in cryptographic
proofs. In additionCertiCrypt supports methods based on fail-
ure events (the so-called fundamental lemma of game-ayin

We have successfully conducted nontrivial case studidsviia
date our design, show the feasibility of formally verifyilegyp-
tographic proofs, and conform the plausibility of Halevpso-
gramme.

Contents The purpose of this article is to provide an overview
of the CertiCrypt project, and to stir further interest in machine-
checked cryptographic proofs. Additional details on desigoices,

on formalizing the semantics of probabilistic programsl an case
studies, will be provided elsewhfrdn consequence, the paper is
organized as follows: we begin in Sectidn 2 with two introtng
examples of game-based proofs, namely the semantic seofirit
ElGamal encryption, and the PRP/PRF switching lemma; in Sec

tion[@ we introduce the language we use to represent games and ® Encryption:Enc(a, m)

its semantics, and we discuss the notions of complexity emndit
nation; in Sectioli 4]l we present a probabilistic relatidthaare

1The limitation is reflected in the statements of our caseissud

2For review purposes, the complete development is availdizen
http://www-sop.inria.fr/everest/certicrypt-popl.tar.gz

oracles that return random values in response to queriessdle
condition is that queries are answered consistently: ifesgaiue
is queried twice, the same response must be given. Our fammal
captures the notion of random oracle using stateful praesschinat
store queries and their results, e.g.
Oracle O(z) : if ¢ € dom(L) theny & {0,1}"; L « (z,y) = L;
return L[x]

An asymmetric encryption scheme is composed of three algo-
rithms: key generatioiKG(n), wheren is the security parameter;
encryptionEnc(pk, m) wherepk is a public key andn a plain-
text; and decryption—not relevant here. An asymmetric gotesn
scheme is said to be semantically secure (equivaleiiNy-CPA
secure) if it is infeasible to gain significant informatiohoait a
plaintext given only a corresponding ciphertext and thdipuey.

This is formally defined using the following game, whetend.A’
are allowed to share state via global variables and thusgerded
as a single adaptive adversary:

Game IND-CPA :

(sk, pk) — KG(m);

(mo,m1) — A(pk);

b & {0,1}; v <« Enc(pk,myp);

v — A'(pk,7)

The game first generates a new key pair and gives the public
key to the adversary, who returns two plaintexts, m; of his
choice. Then, the challenger tosses a fair doiand gives the
encryption ofm; back to the adversary, whose goal is to guess
which message has been encrypted. The scherélsCPA if

for every effective adversaryl, A, [Prinp.cea[b =b] — 1] is
negligible in the security parameter, i.e. the adversannoado
much better than a blind guess. Formally, a funciiolN — R is
negligible iff Vc. 3n.. Vn.n > ne = |v(n)] <n™°.

2.1 The ElGamal encryption scheme

ElGamal [18] is a widely used asymmetric encryption scheme,
and an emblematic example of game-based proofs, as it eathodi
many of the techniques described in Sectidns 4[and 5. Thed proo
follows [3Z]; all games are defined in FIg. 1.

Given a cyclic group of ordey, and a generatay, we defind]

def
T r s

d:Efy<i

« Key generationKG() Zg; return (z,g%)
Zg; return (g%, a¥ x m)

ElGamal is IND-CPA secure under the Decisional Diffie-Hellman
(DDH) assumption, which states that it is hard to distinguish be-

3The security parameter, implicit in this presentationedwines this cyclic
group by indexing a family of groups where tBdH problem is believed
intractable.

2008/11/4


http://www-sop.inria.fr/everest/certicrypt-popl.tar.gz

Game ElGamal :
(z, @) « KG();
(mo,m1) «— A(a);
b& {0,1}

@ (8,¢) — Enc(a, my);

inline 1 KG. b — A'(a, B,¢);
inline_1 Enc. d—b=1"b

ep. =
deadcode. —d
swap. Game ElGamaly :
eqobs_in. & Ly y & Lg;

(mo, m1) — A(g”);
b& {0,1};

¢ g™ X my;

b — A'(9%,9Y,0);

&)

Game ElGamals :
& Lg; y & Ly
(mo,m1) — A(g%);
z & ZLq; ¢ — g%
/ (AT Y .
b <_‘%‘(g 7g 7<)7 (4)

b & {0, 1}

d—b="¥ swap.
~ eqobs_hd 4.
—d eqobs_tl 2.

Game ElGamal; :

x & Ly y & Ly
(mo,m1) «— A(g");
b& {0,1}

z & Zg; ( — g% X myp;
v~ A(g*,9Y,Q);

apply mult_pad.

®)

inline_r B.

inline_r B. d—b=1¥ d—b=1"¥ ep
Zzédcode. ......... 2 A :d T deadcode.
eqobs_in. swag. .

Game DDHy : Adversary B(a, 3,7) : Game DDHj : €qobs-1in.

x & Lg; (mo,m1) «— A(a); z & Lg;

y & Zg; b& {0,1} y & Lg;

d — B(g*, g%, g"Y) V= Al(a, B,y x myp); z & Ly;

return b = b/ d — B(g*,9Y,9%)

[Lemma B_PPT :

PPT B.
Proof. PPT_tac. Qed.

Lemma B_wf : WFAdv B.
Proof. ... Qed.

Figure 1. Code-based proof dlGamal semantic security

tween triples of the fornig®, ¢¥, ¢*¥) and (¢%, ¢, g*) wherez,

y, z are uniformly sampled iZ4. In our setting,DDH is formu-
lated precisely by stating that for any polynomial-time amell-
formed adversarys, |Prppn, [d] — Propn, [d]| is negligible in the
security parameter. Figut® 1 presents a high level vieweopthof:

the square boxes represent games, whereas the rounded&oxes
resent proof sketches of the transitions between gamesadties
that appear in these boxes hopefully have self-explanatanyes,
but are explained in more detail in Sectigh 5. The roundeg gre
boxes represent proof sketches of side conditions thatgtes
that theDDH assumption is correctly applied. The proof proceeds
by constructing an adversaty againstDDH such that the distri-
bution ofb = ¥’ (i.e. d) after running théND-CPA gameE|Gamal

is exactly the same as the distribution dffter runningDDHj.
Furthermore we show that the probabilitydbeingtrue in DDH;

is % for the same adversarg. The proof is summarized by the
following equations:

[Preicama[b = 0] — 1| = [Preiamal [d] — 2 (1)
|Proow, [d] — 5 (2)
|ProoH, [d] — Preigamais [d]]  (3)
|Propw, [d] — Preicama, [d)]  (4)
[Proow, [d] — Proow, [d]|  (5)

Equation (1) is justified becau§#Gamal andElGamaly induce the
same distribution od (EIGamal ~; ElGamaly). To prove this, we
inline the calls toKG andEnc, and then perform expression prop-
agation and dead code eliminatiosp( deadcode). At this point
we are left with two almost equal games, except the sampling o
y is done later in one game than in the other. The tastigp is
used to hoist instructions whenever is possible in orderbtain

a common prefix, and allows us to hoist the sampling o6 the
right place. We conclude by applyirngjobs_in that decides ob-
servational equivalence of a program with itself. Equati(®) and
(5) are obtained similarly, while (3) holds becaasis independent

from the sampling ob in EIGamalz. Finally, to prove equation (4)
we begin by removing the common part of the two games with
the exception of the instruction <& Z, (eqobs_hd, eqobs_t1).
We then apply an algebraic property of cyclic groupslt_pad):
when multiplying a uniformly distributed element of the gpoby
another element, the result is uniformly distributed. Tdilews to
prove thatz & Zg; ¢ < g° x mp andz & Zg; ¢ « ¢® induce
the same distribution og.

The proof concludes by applying tHeDH assumption. We
prove that the adversai§ is strict probabilistic polynomial-time
and well-formed (under the assumption thaind A" are so). The
proof of the former condition is automated@ertiCrypt.

2.2 The PRP/PRF switching lemma

In cryptographic proofs, particularly those dealing witlodkci-
phers, it is often convenient to replace a pseudo-randomuygar

tion (PRP) by a pseudo-random function (PRF). The PRP/PRF
switching lemma establishes that such a replacement daes no
change significantly the advantage of an effective adwerdar

a code-based setting, the Switching Lemma states that

qlg—1
|PrGPRP [d] — Prapge [d” < (277+1 )

where the game&prr andGprr give the adversary access to an
oracle that represents a random permutation and a randartidian
respectively, and where bounds the number of oracle queries
made byA.

The proof is split in two parts: the first part formalizes the
intuition that the probability of the adversary outputtiaggiven
value is the same if a PRP is replaced by a PRF and no collisions
are observed; it uses the Fundamental Lemma of game-playing
(Lemmal2 in Sedl6). The second part provides an upper bound
to the probability of a collision; it uses lazy sampling (Lea(] in
Sec[&.D).

2008/11/4



Game GpRrp : Game G%agp : Game G%al‘-’{F : Game GpRrF : Game Gppyp
L—1];d<— A bad « false; bad « false; L—[];d— A Y —[];
L—[];d— A() L—[];d<— A while |Y| < g do
Oracle O(z) : Oracle O(x) : y& {0,1} Y —yuY
if ¢ ¢ dom(L) then Oracle O(z) : Oracle O(z) : ~y4| ifz & dom(L)then |~p| Y* —Y;
y & {0,1}7; —4| if x ¢ dom(L) then if ¢ dom(L) then y & {0,1}7; L—1[];d— A
while y € img(L) do y & {0,1}7; y & {0,1}7; L+« (z,y) = L
y & {0,1}" if y € img(L) then if y € img(L) then return L|x] Oracle O(z) :
L — (z,y) = L bad « true; bad « true if ¢ dom(L) then
return L[z] while y € img(L) do L« (z,y) = L By lazy sampling if 0 < |Y| then
y & {0,1}7 return Lz] y<—hd(Y); Y —tI(Y)
L — (z,y) =L elsey & {0,1}"7;
return L|x] |Prcfgﬁp [d] - Prcfgﬁp [d] < Prgtgﬁp [bad] L—(z,y)::L
By Fundamental Lemma return L[z]
Figure 2. Code-based proof of the PRP/PRF switching lemma
Figurel2 provides a high-level view of the proof. To apply the inductively by the clauses:
Fundam(?ntal Lemma, we introduce in thg gaﬁ»‘;e@ a variable T = Vg assignment
bad that is set tatrue whenever a collision is found; we reformu- :
: - 0 | V&D random sampling
late Gprp accordingly to be syntactically equal unbbd is set. . o
; J ) | if EthenCelseC conditional
Using deadcode to eliminate the variabléad, we show that the | while £ doC while loop
resulting game&®38 . andG%3, are just semantics preserving re-
. . | V<—PE,..., &) procedure call
formulations of the gameSrrr andGprp respectively. Then, we C o= nil nop
apply the Fundamental Lemma to conclude that the differémce | T, cC sequence

the probability ofd = true between the two games is at most the
probability ofbad being set tarue in gameG4 ..

We then prove that the probability 6hd being set totrue in
gameG®3. is upper bounded by the probability of an element ap-
pearing twice in the image df at the end offprr. The proof uses
the Relational Hoare Logic and Lemng& ;) of SectioZ1L with
the following postcondition: ibad is set inG%4y then some ele-
ment appears twice in the imagebin Gprr. Next, we introduce
a gameGorr Where the answer to the firgtqueries to the oracle
are sampled at the beginning of the game and stored in¥.ligt-
ing lazy sampling, we prove by induction grthat the gamé&'prr
is equivalent tdGygr W.r.t L. Finally, we bound the probability of
having a collision inL in Gpg. To that end, we prove that while
the length ofL is less than or equal i@, any collision inL is also
present int”™ (we useY ™ as aghostvariable to store the value of
Y after being initialized). We conclude by bounding the piuility

of sampling some value twice iti by qQ(Z;l).

3. Games as programs

The essence of code-based cryptographic proofs is to exjoras
unified semantic framework games, hypotheses, and re3iis.
semanticist perspective allows a precise specificatiohefriter-

Rather than adopting the above definition, we impose thafrpros

in pWHILE are typed. Thusg < e is well-formed only if the types
of x ande coincide, andf e then c; else ¢z is well-formed only

if e is a boolean expression. In practice, we assume that vasiabl
and values are typed, and define a dependently typed synpag-of
grams. An immediate benefit of using dependent types is figat t
type system of Coq ensures for free the well-typedness akexp
sions and commands. Although the formalization is cangfdé-
signed for being extensible w.r.t. user-defined types artatprs
(and we do exploit this in practice), it is sufficient for therpose

of this paper to consider an instance in which values areclang],
bitstrings, natural numbers, pairs, lists, and elementa gfoup.
Similarly, we instantiateD so that values can be uniformly sam-
pled from the set of booleans, natural intervals of the fgm],
and bitstrings of a certain length. It is important to notat tine for-
malization of expressions is not restricted to many-soaigébra:
we make a critical use of dependent types to record the lesfgth
bitstrings. This is used e.g. in the definition of tiND-CPA game
for OAEP in Sec[ZP to constrain the adversary to return two bit-
strings of equal length.

Definition 1 (Program) A program consists of acommand and an
environment, which maps a procedure identifier to its dextlan,
consisting of its formal parameters, its body, and a retuxpres-

action between the adversary and the challenger in a garde, an sjon (we use an explicitturn when writing games, though),

to readily answer questions as: Which oracles does the satyer
have access to? Can the adversary read/write this variaide?

decl & {params: list V; body:C; re: £} .

many queries the adversary can make to a given oracle? What isTne environment specifies the type of the parameters anétiner

the length of a bitstring returned by the adversary? Candkera
sary repeat a query? Furthermore, other notions such aalpligb
tic polynomial-time complexity or termination, fit natulain the
same framework and complete the specification of advessarid
games.

3.1 The pWHILE language

Games are formalized in pWLE, a probabilistic imperative lan-
guage with procedure calls. Given a 3&bf variable identifiers,
a setP of procedure identifiers, a sétof expressions, and a set
D of distribution expressionghe set of commands can be defined

expression, so that procedure calls are always well-typed.

In a typical formalization, the environment will map procees
to closed commands, to the exception of the adversariesevhos
code is unknown, and thus modeled by variables of p&his
is a standard trick to deal with uninterpreted functions idegp
embedding. In the remainder of this section we assume aroeravi
mentE implicitly given.

In the rest of this paper we lef range overC; x; overV; e;
over&; d; overD; andG; over programs. The operatgr denotes
the bitwise exclusive or on bitstrings of equal length, dnthe
concatenation of two bitstrings.

2008/11/4



3.2 Operational semantics

Programs in pWILE are given a small-step semantics using the
distribution monadV/ (X'), whose type constructor is defined as

M(X) € (X —[0,1]) —[0,1]
and whose operatorsit andbind are defined as

X — M(X) Xz N fz
iy MX) = (X — M(Y)) = M(Y)
= M. AMAf.u(Nz. Mz f)

unit
bind

The monadV/ (X) was proposed by Audebaud and Padlin [4] as a
variant of the expectation monad used by Ramsey and Pf2ggr [
and builds on earlier work by Kozeh [24]. The formalizatidritee
semantics heavily relies on Paulin’'s axiomatization in @bghe

[0, 1] real interval—for our purposes, it has been necessary to add
division to the library.

The semantics of commands and expressions are defined rel-

ative to a given memory, i.e. a mapping from variables to val-
ues. We letM denote the set of memories. Expressions are de-
terministic; their semantics is standard and given by atfanc
[-Jexpr, that evaluates an expression in a given memory and re-
turns a value. The semantics of distribution expressiorgvisn

by a function [-]aist.. FoOr a distribution expressiod of type

T, we have that[d]aistr : M — M(X), where X is the
interpretation of typeT'. For instance, in the previous section
we have used0,1}" to denote the uniform distribution on bit-
strings of Iengthn (the security parameter), formally, we have
[{0, 1}"Jasser & Am f. Yp.c 0.1yn 5 F(bs). Thanks to depen-
dent types, the semantics of expressions and distributipres-
sions is total. In the following, and whenever there is nofgsion,

we will drop the subscripts ifi]expr @and[-]aistr-

wheref fina : S — [0, 1] is the function that when applied to a state
(¢, m, F) givesf(m) if itis a final state and O otherwise. Since the
sequencd(c, m, [ ])]» flanal IS increasing and upper bounded by
1, this least upper bound always exists and corresponds ot
of the sequence.

We have shown that the semantics is discrete, which we use to
apply a variant of Fubini’s theorem for proving the rules@®@mp]
and [R-Trans] in the next section.

Computing probabilities The advantage of using this monadic
semantics is that, if we use an arbitrary function as a coatin
tion to the denotation of a program, what we get (for free) as a
result is its expected value w.r.t. the distribution of fimaém-
ories. In particular, we can compute the probability of aergv

A in the distribution obtained after executing a commanih

an initial memorym by measuring its characteristic functidn:
Pre.m[A] € [¢] m 14. For instance, one can verify that the de-
notation ofz & [0..1]; y & [0..1] in the memorym is

Af-3(f(m{0,0/z,y}) + f(m{0,1/2,y})
+f(m{1,0/z,y}) + f(m{1, 1/, y}))

and conclude that the probability of the event y after executing
the command above .

3.3 Probabilistic polynomial-time programs

In general, cryptographic proofs reason about effectiversdries,
which can only use a polynomially bounded number of resaurce
The complexity notion that captures this intuition, and ethis
pervasive in cryptographic proofs, is that sifrict probabilistic
polynomial-timecomplexity. Concretely, a program is said to be
strict probabilistic polynomial-time (PPT) whenever thexists
a polynomial bound (on some security parametgion the cost

The semantics of commands relates a deterministic state to aof each possible execution, regardless of the outcome aits

(sub-)probability distribution over deterministic stat@nd uses a
frame stack to deal with procedure calls. Formally, a deitgstic
state is a triple consisting of the current command’, a memory
m : M, and a frame stack’ : list frame. We letS denote the
set of deterministic states. One step execufigh : S — M(S)
is defined by the rules of Fi@l 3. In the figure, we use~ b as
a notation for[a]' = b andloc andglob to project memories on
local and global variables respectively.

We briefly comment on the transition rules for calling a proce
dure (3rd rule) and returning from a call (2nd rule). Upon &, ca
a new frame is appended to the stack, containing the destinat
variable, the return expression of the called procedueectintin-
uation to the call, and the local memory of the caller. Théeste-
sulting from the call contains the body of the called procedthe
global part of the memory, a local memory initialized to mbp t
formal parameters to the value of the actual parameterd@ioete
the call, and the updated stack. When returning from a caH wi
non-empty stack, the top frame is popped, the return express
evaluated and the resulting value is assigned to the déetinari-
able after previously restoring the local memory of thearalthe
continuation taken from the frame becomes the current cardma
If the stack is empty when returning from a call, the exeautibthe
program terminates and the final state is embedded into thedno
using theunit operator.

Using the monadic constructions, one can define-atep exe-
cution function[[-]»:

[STo [5]

Finally, the denotation of a commandn an initial memorym is
defined to be the (limit) distribution of reachable final meies:

[e] m s M(M) © Af. sup {[(c,m, ()] Flans | n € N}

def

unit S n+1 dZEf bind HSH7L [[]]1

tosses. Otherwise said, a probabilistic program is PPT exen
the same program, seen as a non-deterministic progranmintses
and the cost of each possible run is bounded by a polynomial.

Termination and efficiency are orthogonal. Consider, for in
stance, the following two programs:

b « true;whilebdo b & {0,1}
b & {0, 1};if bthen while true do nil

The former terminates with probability 1 (it terminates hiiit n
iterations with probabilityl — 27™), but may take an arbitrarily
large number of iterations to terminate. The latter tertgisavith
probability%, but when it does, it takes only a constant time. We
deal with termination and efficiency separately.

Definition 2 (Termination) The probability that a prograna ter-
minates starting from an initial memomy is [c] m L. We say
that a programc is absolutely terminating, and notelibssless(c),
iff it terminates with probability 1 in any initial memory.

To deal with efficiency, we non-intrusively instrument the s
mantics of our language to compute the cost of running a pro-
gram. The instrumented semantics ranges aMgtM x N) in-
stead of simplyM (M). We recall that our semantics is implicitly
parametrized by a security parameteon which we base our no-
tion of complexity.

Definition 3 (Polynomially bounded distribution)\We say that a
distribution . : M(M x N) is (p, q)-bounded, where and
g are polynomials, and note ibounded(p, ¢, 1), whenever for
every(m,n) occurring with non-zero probability im, the size of
every value in the memory is bounded by(n) andn < q(n).
This notion is formally defined by means of #hege predicate
introduced in Sedl4.

2008/11/4



(nil,m,[]) ~ unit (nil;m,[])
(nilym, (z,e,¢,1) = F') ~» unit (¢, (I, m.glob){[e] m/z}, F)
(x — p(e); e,m, F) ~» unit (E(p).body, (0{[e] m/E(p).params}, m.glob), (x, E(p).re, ¢, m.loc) :: F)
(if e then ¢y else c2; ¢,m, F) ~> unit (c1; ¢,m, F) if [e] m = true
(if e then ¢y else c2; ¢,m, F) ~> unit (c2; ¢,m, F) if [e] m = false
(whileedoc; ¢/,m,F) ~ unit (c, whileedoc; ¢/, m, F) if [e] m = true
(whileedoc; ¢/,m,F) ~ unit(c,m,F) if [e] m = false
(x —e; ¢,;m, F) ~ unit (¢, m{[e] m/z}, F)
(x & d; ¢,m,F) ~ bind ([d] m)(Av. unit (¢, n{v/z}, F))
Figure 3. Probabilistic semantics of pWLE programs
Definition 4 (St_rict proba_b_iligtic polynomial_-time program)A _ il I'teO
program ¢ is strict probabilistic polynomial-time, and we note it TFnil: T il :
PPT(c), iff it terminates absolutely, and there exist polynomial I't4; ¢:0
transformersF, G such that for everyp, ¢)-bounded distribution Writable(z) fv(e) C 1 Writable(z) fv(d) C 1
u, the distribution(bind 1 [c]) is (F(p), ¢ + G(p))-bounded. Itz —eITU{x} Itz & d:TU{z}
fvie)CI Ike¢:0; i=1,2 fvie)CI Ike:l

We can recover some intuition by takipg= unit (m, 0) in the
above definition. In this case, we may paraphrase the condiis
follows: if the size of values imn is bounded by some polynomial
p, and an execution of the programsim terminates with non-zero
probability in memorym/’, then the size of values in’ is bounded
by the polynomialF'(p), and the cost of the execution is bounded
by the polynomialG(p). Itis in this latter polynomial that bounds
the cost of executing the program that we are ultimately ésted.
The increased complexity in the definition is required farying
compositionality results (e.g. the sequential compasitd two
PPT programs results in a PPT program).

Although our formalizations for termination and efficiermeyy
on semantic definitions, it is not necessary for users tooreds
rectly about the semantics of a program to prove it meetsethos
definitions. CertiCrypt implements a certified algorithm showing
that every program without loops and recursive calls isléssH
CertiCrypt also provides another algorithm that, together with the
first, establishes that a program is PPT provided that, iaddiy,
the program does not contain expressions that might geneait
ues of superpolynomial size or take a superpolynomial tirherw
evaluated in a polynomially bounded memory.

3.4 Adversaries

In order to reason formally about security, we make explititch
variables and procedures are accessible to adversariepraride

a simple analysis to check whether an adversary respegislity.
Given a set of procedure identifie® (the procedures that may
be called by the adversary), and sets of global varialegthose
that can be read and written by the adversary) @Gnd(those that
the adversary can only read), we say that an adverdaig/well-
formed in an environmenk if the judgment-.,¢+ .4 can be derived
using the rules in Fid4. These rules guarantee that eaahdim
variable is written by the adversary, the adversary hasitje to
do so; and that each time a variable is read by the adversasy, i
either a global variable i¥ 4 U G, or a local variable previously
initialized. A well-formed adversary is free to call orag|dut any
other procedure it calls must be a well-formed adversagffits

41t is of course a weak result in terms of termination of pralistic
programs, but nevertheless sufficient as regards crypibgrapplications.
Extending our formalization to a certified termination as& for loops is
interesting, but orthogonal to our main goals, and left aufe work.

I+ if e then c; else c2:01NO2 I+ whileedoc: I
fv(€) C I Writable(z) o€ O
Itz —o(&):1U{z}
fv(€) CI Writable(z) A€ O Fu A

Itax— A@):TU{z}

GaUGro UAg.params - Ag.body:O fv(Ag.re)

Fwt A
Writable(z) £ Local(z) Vz € Ga  Ar &' B(A).

co

Figure 4. Static analysis for well-formedness of adversaries

Additional constraints may be imposed on adversaries. ¥or e
ample, exact security proofs usually impose an upper bouitiokt
number of calls adversaries can make to a given oracle, abere
for some properties such #8D-CCA2 there are some restrictions
on the parameters with which the oracles may be called. Ligew
some proofs impose extra conditions such as forbiddingatepe
or malformed queries. These kinds of properties can be fizreth
using lists that records the parameters of the calls to esaend
verifying as postcondition that the calls were legitimate.

4. Relational Hoare Logic

Shoup [[32] classifies proof steps into three categoriessiians
based on indistinguishability—which typically involve @ping a
security hypothesis, e.g. tfiEDH assumption—; transitions based
on failure events—which typically amount to bound the pimligy

of bad, as in the Switching Lemma—; and bridging steps—which
correspond to replacing or reorganizing code in a way thabts
observable by adversaries. In some circumstances, a hgidgin-
sition fromG; to G2 may replace a program fragmefty another
fragmentP’ observationally equivalent t&. In general, however,
P and P’ are only observationally equivalent in the context where
the replacement is done. Such transitions are supportedghra
relational Hoare logic, that generalizes observationaivetence
through preconditions and postconditions which we use &wad:
terize the context where the replacement is valid. Besides)se
relational Hoare logic to establish (in)equalities betapeobabili-
ties of two events, as shown by the lemniag;) and(<p;) below,
and to establish program invariants, e.g. in the proof ofSéch-

ing Lemma in Sed2]2.

2008/11/4



4.1 Probabilistic Relational Hoare Logic (pRHL)

Our logic pRHL elaborates on and extends to probabilista- pr
grams Benton’s Relational Hoare Loglc [10]. Benton’s logges
judgments of the formt- G1 ~ G2 : ¥ = @, and relates the eval-
uation of a progranG; to the evaluation of a prograf¥s w.r.t.

a precondition¥ and a postconditio®, both defined as relations
on deterministic states. Such a judgment states that forretig
memoriesn; andms. satisfying the preconditiom; ¥ meo, if the
evaluations of7; in m; andG» in m2 terminate with final mem-
oriesm’ andmj respectively, themn} ® m5 holds. In a proba-
bilistic setting, the evaluation of a program w.r.t. anialitnemory
yields a (sub-)distribution. In order to give a meaning te #bove
judgment, one therefore needs to lift relations over meesoirito
relations over distributiorWe follow early work on probabilistic
bisimulations[[ZB]. The lifting to distributions of a unapyedicate
P and of a binary relatio® are respectively defined as

range P 326: Vi.Va.Pa= fa=0)=puf=0

pr~e pz Z 3pemi(p) = pa A me(p) = p2 Arange @ p
where the projections qf are defined as
m1(p) & bind Az y. unitz) () & bind u (Az y. unity)

Definition 5 (pRHL judgments) ProgramsG; and G5 are equiv-
alent w.r.t. preconditionV and postconditiorb iff

EGi~Go: U= %

VYmimoe.mi ¥ ms = [[G1]] mi ~oe [[Gzﬂ ma

Our approach slightly departs from Benton’s: rather thdimele
ing the rules for pRHL and proving them sound w.r.t. the megni
of judgments, we place ourselves in a semantic setting andede
the rules as lemmas. This allows to easily extend the sysjete-b
riving extra rules, or even to resort to the semantic definitf the
system turns out to be insufficient.

Figure[® gathers some representative derived rules. Taolepr
readability, in the figure and in the remainder of the paper we
let e(i) denoteAm, mo. [e] m; = true, wheree is a boolean
expression. As pRHL allows for arbitrary relations, we fyegse
higher-order logic; in particulaRER andSYM are predicates over
relations that stand fgrartial equivalence relatiomndsymmetric
relationrespectively. There are two points worth noting. First, mos
rules admit, in addition to their symmetrical version of fHgone-
sided (left and right) variants, e.g. for assignments

mi ® ma & (mi{fer]mi/z1}) ® mo
FEi,z1 +—e1~ Eo,nil: & = &

Second, some rules of pRHL do not appear in RHL, or generalize
existing rules. The rule [R-Case] allows to do a case aratysthe
evaluation of an arbitrary relation in the initial memorigegether
with simple rules in the spirit of

EEi,c1~Eyc:¥Ae(l)=2
F Ep,ifethencielsecy ~ Ea,c: U Ae(l) = ®
it subsumes [R-Cond] and allows to prove judgments that evoul

and we make an extensive use of the rule [R-Comp] that génesal
the rule [R-Tr] to composition of relatiols

FGi~G: V=9 EFEG~G:9" ="
EGi~Ge: VoV = & o0d”
The benefits of the rule [R-Comp], as opposed to [R-Tr], due-l

trated by considering “independent” preconditions andquwi-
tions of the form

U E ey YiaATay ¢ LAy PraAPyy

In order to apply the rule [R-Tr] t6+; andG2, we are essentially
forced to havel'; = ¥, and®; = ®,, and furthermore we must
also choose the same pre and postcondition for the inteateedi
gameG. This constraint makes the rule [R-Tr] impractical, we use
instead the rule [R-Comp] to introduce intermediate garhasdo
not satisfy the same specification@s or G-.

The rule [R-Rand] is also (obviously) not present in RHL. Let
L. %" (\v.if z = v then 1 else 0), and define the support of a
distribution,supp([d] m), by the clause

v € supp([d] m) & [d] m 1, # 0

Finally, let[d:] m1 =, [d2] m: iff there exists a seX and a bijec-
tiong : X — X such thasupp([di1] m1) = supp([dz] m2) = X

and[di] m1 I, = [dz2] m2 Iy 4 for all a in X. To apply rule
[R-Rand], it is necessary to exhibit a functighsuch that for all
memoriesm, and ma, [di]] m1 =f my m, [d2] m2. Thus, if
di = d2 = [0..n] for some constant, and we takef to be the
identity function, the premise simplifies to the expected,

def [0..n]. (mi{v/x1}) @ (Mm2{v/z2})

mi ¥Yme = Vv e
Section[5.B shows that the generality of the rule is requfoed
applications such as optimistic sampling.

It is often fruitful to understand pRHL judgments in terms
of the inability of the postcondition to separate between ttho
commands of the judgment. Define two functighsnd g to be
equivalent w.r.t. a predicate iff

[R-Comp

f=ag % v my ma. my ® me = flim1) = g(me)
The definition of pRHL judgments entails

):G1NG2:\I/:>(I:'

f=ayg
ma \I/m2

= [Gi]lma [ =[Gz m2g  (=qq)

By instantiatingf andg to 1, one can observe that observational
equivalence enjoys some form of termination sensitivity

(|=G1~G2:\I’:><I>)/\m1\l’m2:>[[G1ﬂm11:[[G2ﬂm2ﬂ

This interpretation of pRHL judgments is strongly connddtethe
relation between relational logics and information floWI8]. We

extensively usé=pj), and its varian{<p;) below, to fall back from
the world of pRHL into the world of probabilities, in whichagrity

statements are expressed,;

otherwise not be derivable, such as the equivalence between F Gi1~G2: ¥ = @

(if e then ¢1 else ¢2) and (if —e then ¢z else ¢1). We also use
[R-Case] to prove the correctness of dataflow analyses xipiie
the information provided by entering branches.

In addition, we often use the rule [R-Inv] that generalizes t
rule [R-Sym] to inverse of relations

EG1~ Ge :7\11’ = (13'71 [R-an]
FGo~G1: ¥ =@

5 An alternative would be to develop a logic in whighand® are relations
over distributions of states. However, it is not clear wketbuch a logic
would allow a similar level of proof automation. This is |&ft future work.

f<ay = [Gi] ma f < [G2] mayg

ma \I/m2

<m)

wheref <¢ g ® Y my ma. my ® me = f(m1) < g(ma).

We conclude with an example that nicely illustrates some
of the intricacies of pRHL. Let = b & {0,1} and define
mi1 ® mao def mi1 b = ma b. ThenkE ¢ ~ ¢ : true = ®. In-
deed, takeu such thafu 1,y = 1/2if z =y andu L1z = 0

6The machine-checked rule requires tldatis decidable, and useSet
valued existential qfuantificatioﬁget in the composition for preconditions,
ie.x (¥ol’) de Jsety- 2V y Ay ¥z,

z =

2008/11/4



)=E17cl NE27CQZ(I>:>(I:',

FEi,ci~Esych:d = o

F Ey,nil ~ By, nil : ® = & [R-Skip

#El,:cl «— €e1 NEQ,:EQ — €2 :

def
m1\11m2 :e

E Ei,c1;5¢) ~ Ea,ca;¢h : & = &

(Amy ma. (ma{[ex]ma/a1})  (ma{[ealma/w2})) = @ [R-ASS

[R-Seq

[di]mi = my my [de]ma AV v € supp([di]ma). (mi{v/z1}) @ (ma2{f m1 m2v/z2})

#El,:cl S dy NE27CE2 &

[R-Rand

do: VUV =&

VYmi ma. ma \I/m2:>[[61}]m1:[[62}]m2 ’:E1701~E27022\I’/\€1<1>:>(I:’ ’:E17C/1NE27C/2:\I//\—|61<1>:>(I>RC
-Con
E E1,if e1 thency else ¢y ~ Ea,if eathencoelse ¢y : ¥ = & [ d
VYmi ma. m1 ® ma = [ei] m1 = [ex] me E Ei,c1 ~ Ez,c2: @ Aer(l) = @ R-WHI
E E1,while e1 do ¢1 ~ Fa,whileea doca : & = & A —eq(1) [R- ]
':leGzi\I’/iq)l Vmi ma. m1 W me = my v’ ms  VYmi ma. mq @’ mo = M1 qu2[R-SUq
':G1NG2:\I’:>(I:'
EGLi~G2: ¥ =d SYM(T) SYM(P EGi~G:¥V=® EG~G2:¥V=® PER(V) PER(®
1~ G (V) ( )[R-Syn1 1 2 () ( )[R-Tr]

’:GQNG1:\IIZ>(P

’:G1NG22\1/2>(I>

':G1NG2:\I’/\\IIIZ>(I> ':G1NG2:\I’/\—|\IIII>(I:’

):G1NG2:\I’:>(I:'

[R-Casé¢

Figure 5. Selection of derived rules of pRHL

otherwise. One can check thatensuregc] m ~q¢ [c] m’ for all
m andm’. This example shows why the lifting of a binary relation
involves an existential quantification, and why it is not gibke to
always instantiate: as the product distribution in the definition of

To support automationCertiCrypt implements a calculus
of variable dependencies and provides two tactggbsin and
eqobsOut, that given a commandand a seO (respectivelyl) of
output (input) variables compute a detO) of input (output) vari-

~g (one cannot establish the above judgment using the productables such that E1,c ~5 Es, c. CertiCrypt also provides tactics

distribution). Perhaps more surprisingly,c ~ ¢ : true = —-®

also holds. Indeed, take such thaty 1., .,y = 1/2if = # y

and ¢ 1., = 0 otherwise. One can check that ensures
[c] m ~-a [c] m' for all m andm’. Thus, the “obvious” rule

’:G1NG22\1/2>(I> ':G1NG22\112>(I>/
):G1NG2:\I/:>(I:'/\¢'/

is unsound. While this example may seem unintuitive or even
inconsistent if one reasons in terms of deterministic staits
intuitive significance in a probabilistic setting is thatither of

the relations® and —® are enough to tell apart the two final
distributions.

4.2 Observational equivalence

Observational equivalence is derived as an instance dfioetd
Hoare judgments in which pre and postconditions are résttio
relations based on equality over a subset of variables.nGiveet
X of variables, we define-x as

mi =x Mmsa d:EfVCCGX.mlcc:mzx

Then, observational equivalence@f andG; w.r.t. an input sef
and an output se? is defined as

F G ~p Go FGi~Go:

All derived rules for pRHL can be specialized to the case seob
vational equivalence. For example, we have

I / I /
|=E17cl ~o E2702 |=E17cl ~o EQ,CQ
E E1,if e1 then ¢ else ¢} ~5 Es,if ea then s else ¢}

def

=71 = =0

)=el ZI €2

whereE e; ~! e, iff for every memoriesn; andma, mi =; mo
implies [[eﬂ] mi = [[62]] mao.

for two variants of observational equivalence that are lyidsed
in game-based proofs, namely

Fo G1 ~5 G EGi~Ga:

Foo G1~5 Go © EG ~Gs

These tactics use a (sound but incomplete) weakest pramondi
calculus for relational judgments.

def :I/\LP:>:O/\<P

=AU ==AP

5. Proof methods for bridging steps

CertiCrypt provides a powerful set of tactics and algebraic equiv-
alences to automate bridging steps. Most tactics rely omgher
mentation of a certified optimizer for pMWLE, with the exception

of lazy samplingwhich has an ad hoc implementation. Algebraic
equivalences are provided as lemmas that follow from algebr
properties of the interpretation of language constructs.

5.1 Certified program transformations

CertiCrypt provides automated support for transformations that
consist in applying compiler optimizations. More precgjsél sup-
ports transformations based on dependencies and datafkiy an
ses; we briefly discuss them below. AdditionalGgrtiCrypt pro-
vides support for inlining procedure calls and performiagister
allocation (not discussed here).

Transformations based on dependencie3 he functionseqobsln
andeqobsOut presented in SeEl 4, provide the foundations to sup-
port transformations such as dead code elimination, code®mo
and common context elimination.

First, CertiCrypt features a functiomontext that strips off two
commands: and¢’ their maximal common context relative to sets
I andO of input and output variables. The correctness®ftext

2008/11/4



is expressed by the following rule

!
context(I,ci,c2,0) = (I',c},ch,0')  E B, ¢\ ~5, Ea,ch

= E1701 ﬁg) EQ,CQ
Using the same ide&ertiCrypt provides algorithms for removing
only a common prefixggobs_hd) or suffix (eqobs_t1).
SecondCertiCrypt provides a tactic that given two commands
repeatedly tries to hoist their common instructions to bt

maximal common preffk which can then be eliminated using the
previous rule. Its correctness is based on the rule

FE e~ Ec FEc~3 Ec Modify(E,c,0)
O1ﬂ02:® IlﬂOQZ(D I N Oy
FEFEc;co~FEcpc:===

where Modify(FE, ¢, X) is a semantic predicate expressing that
only variables inX are modified by the commandn the environ-
mentE. This is formally expressed Bym. range (Am’. m =\ x

m") ([E, ¢] m) which ensures that the final memories are equal to
the initial ones except maybe on variableskin The tacticswap is
based on the rule above and on an algorithm that over-appatas

the set of modified variables (by computing those that may ite w
ten, without taking into account self-assignments).

Third, CertiCrypt allows performing dead code elimination rel-
ative to a seO of output variablesdeadcode). The algorithm be-
haves more like an aggressive slicing algorithm, i.e. itoe@s por-
tions of code that do not affect variables@n and performs at the
same time branch prediction (replaciifgtrue then c; else c2 by
c1), branch coalescing (replacitige then c else ¢ by ¢), and self-
assignment elimination. Its correctness relies on the rule

Modify(E1, ¢, X) fvie)NX =10
FEi,c~Eznil:p=¢p

Lossless(E1, ¢)

Optimizations based on dataflow analyse€ertiCrypt has built-
in, generic, support for such optimizations: given an arstdo-
main D (a semi-lattice) for the analysis, transfer functions fer a
signment and branching instructions, and an operatorfoanig
expressions in the language into their optimized versioss( the
result of the analysis) ertiCrypt automatically constructs the cer-
tified optimization functioroptim : C — D — C x D. When given
acommand and an element € D, this function transformsginto
its optimized versiorr’ assuming the validity of. In addition, it
returns an abstract postconditiéh € D which is valid after ex-
ecutingc (or ¢’). We use these abstract postconditions to state the
correctness of the optimization, and to apply the optinzate-
cursively.

The correctness obptim is proved using a mixture of the
techniques of[[10] and [11,_26]: we express the validity cf th
information contained in the analysis domain using a pegdic
Valid(§, m) that states the agreement between the compile time
abstract values in and the runtime memormy.. Then, correctness
is expressed in terms of a pRHL judgment (universally gtigati
overc andf):

let (¢, 6"):=optim(c,8)inE E,c~ E,c : x5 = =4

wherem x<s ma def m1 = ma A Valid

useful rule is derived using [R-Comp]

(6, m1). The following

VYmi1 ma. m1 ¥ mo = VaIid((S,ml)
optim(c1,9) = (c1,8") E Ei,¢i ~ Ea,co:
|:E1,c1 NEQ,CQ V=P

v =

P
[R-Opt]

70One could also provide a complementary tactic that hoisistintions to
obtain a maximal common suffix.

Our case studies extensively use instantiations of [R-Otkpres-
sion propagationep). In contrast, we found that common subex-
pression elimination is seldom used.

5.2 Lazy sampling

It is sometimes convenient to defer random choices in gamiis u
they are actually needed, or conversely, to make randonceais
early as possible. The lazy sampling technique, allows laydbe
random sampling of a value until the point in the program \gtier
is first used. Conversely, eager sampling allows to chooaadom
value, which would be otherwise sampled later, at the béginof

a game. These techniques are presenteld in [9], where therauth
discuss some of its subtleties. In this section we presephias
oriented criterion for the correctness of lazy or eager $eugphat
can be applied provided the sampling is adequately guakdied:

by contextwe mean a program context with multiple holes that may
appear either in the main program or any of the procedurdsein t
environment.

Lemma 1 (Lazy/eager sampling)Let C[-] be a contexte; and
c2 commandsg a boolean expressiow, a distribution expression,
andz a variable, such tha€[-] does not modifyv(e) U fv(d) and
does not use. Assume

1l.Ez& dyjci;ifethenz & d~ 2z & djer:
2.Eca~er: (=NA—e(l)) = (= Ae(l))

(= Ae() =

Letc = if e then z & d;c; else co and ¢’ = if e then ¢ else cs.
Then Clc;if ethenz & d ~ z & d; C[c] : (= Ne(l)) = =

Intuitively, in the above lemma indicates whethee has not
been used in the game since it was last sampled. If it has eot be
used, then itis perfectly fine to resample it. The first twodtheses
ensure that has exactly this meaning; must set it tofalse if it
has used the value samplec:irandc, must not reset if it is false.

The first hypothesis is the one that allows to swapvith z & d,
provided the value of is not used irc;. Note that, for clarity, we
have omitted environments in the above lemma, and so thedeco
hypothesis is not as trivial as it may seem because both greyr
may have different environments.

Suppose we want to eagerly sample the answer that a random
oracle

Oi()

% if 2 ¢ dom(L) theny & d; L — (z,y) :: L;

return L[z]

gives to a particular query’, i.e. we want to transforr®, into
def

Oe(x) = if ¢ dom(L) then
if 2 =2’ theny «— 3/ else y & d;
L~ (z,y)= L
return L[z]
Define®;(z) %' if 2/ ¢ dom(L) theny’ & d; Oc(z) else O\(x),

OL(z) L'if ' ¢ dom(L) then O.(z) else O)(z), both return-
ing L[z]. OraclesO, and O, result semantically equivalent 1]
and O, respectively. LemmEBl 1 can be applied taking= =’ ¢
dom(L), z = ¢/, ander = Oq(x),c2 = Oi(x) to safely replace
oracleO; by oracleQ. in the environment of a program, sampling
y at the beginning. Whenever a bound for the number of queies t
a random oracle is known in advance, the above trick can be ite
atively applied to completely remove randomness from tlaeler
code, as it is done in the proof of the Switching Lemma in B&%. 2

5.3 Algebraic equivalences

Bridging steps frequently use algebraic properties of lagg op-
erators. The proof of semantic security BifGamal uses the fact
that in a cyclic multiplicative group, multiplication by anifiormly

2008/11/4



sampled element acts as a one-time pad:
Fo & Zga—g" Xy & Lya—g?
In the proof of security oDAEP we use optimistic sampling:

=)
“H{zy,z}

and incremental sampling modulo a permutatfon
Eas {0,177y 8 0,1} 2 — f(z|y) ~py 2 & {0, 1*

We show the usefulness of [R-Rand] by sketching the proof of
optimistic sampling, as promised in Sect[dn 4. For readspive
lete|; denotefe] m;. Define

Foa{0,1}y—ad2 y&{0,1}5z —y@z

def def
v = 2‘122‘2 P = CCH:CC‘Q/\y‘l:y‘Q/\ZH:Z‘Q

Let @’ d:Ef (I:'{CCH (&) Z\l/y\hym (&) 2‘2/‘1"2} Then, by [R'ASS] we
have
Fy—az@®z~r—ydz:d =0

Now take f m1 m2 v & v @ 25, and apply [R-Rand] and [R-
Sub] to obtaink z & {0,1}* ~ y & {0,1}F : ¥ = &',
Note that the precondition we obtain after applying [R-Raisd
equivalent tol becausef is a bijection on{0, 1}*, and because
Vo, ®'{v/x1,v ® 2)2/y)2} is equivalent taz; = z}, by algebraic
properties of theb operator. We conclude by applying [R-Seq].

6. Proof methods for failure events

A technique used very often to relate two games is based oh wha
cryptographers cafhilure eventsThis technique relies onfanda-
mental lemmahat allows to bound the difference in the probability
of a given event in two games: one identifies a failure evedt an
argues that both games behave identically until this eveotirs.
One can then bound the difference in probability of anotlvene

by the probability of occurrence of the failure event in eithame.

Lemma 2 (Fundamental lemma)Let G; and G- be two games4
an event defined ofi';, B an event defined o> and F' an event
defined in both games. If

PI‘G] [A A —|F] = PrG2 [B A —‘F] , and
Prg, [F] < Prg, [F]

then|Prg, [A] — Prg,[B]| < Pre,[F|H

In code-based proofs, the failure condition is generalljidated
by setting a global flag variable (usually callead) to true. This
specialization allows to define a syntactic criterion focidang
whether two games behave equivalently up to the raise othed
condition: we say that two gamé&s; andG» are equal up to bad
and note iuptobad(G1, G2) whenever they are syntactically equal
up to every point where thiead flag is set totrue and they do not
reset thebad flag tofalse afterward. For instance, gamé&3, and
G245 in Fig.[d satisfy this condition. We have used this syntactic
criterion to implement a specialization of the fundamefeaima
for game-based proofs.

Lemma 3 (Syntactic criterion for fundamental lemma)

VY G1 Go A. LJp'CObad(Gl7 Gz) =
Pre, [A A —bad] = Pre,[A A —bad]

The first hypothesis in Lemmid 2 may be proved automatically
by using this syntactic criterion. To prove the second higpsis
it suffices to show that gamé'y is absolutely terminating, for

8The second hypothesis is usually omitted in the literaturden the as-
sumption that both games are absolutely terminating. Ihdhse, either
G'1 or G2 will do on the right-hand side.

10

Game EUgpy : Oracle H(m) : Oracle Sign(m) :

L—[; S]] if m & dom(L) then S—m:S

(m,z) «— A(); r & {01} r— H(m);

d — H(m) L+~ (m,r) =L return f=1(r)
return L[z]

Figure 6. Initial game in the proof oFDH unforgeability

which we already have implemented a semi-decision proeedur
(see Sed313).

7. Case studies

The purpose of this section is to announce the successfybleem
tion of two experiments that validate the design and udslf
CertiCrypt. A detailed presentation of these works will be given
elsewhere.

7.1 Existential unforgeability of FDH

The Full Domain HashRDH) scheme is a hash-and-sign signature
scheme based on the RSA family of trapdoor permutations, and
in which the message is hashed onto the full domain of the RSA
function. However, the same construction—and the redndtiat
proves its security—remains valid for any family of trapdper-
mutations. We have proved thBDH is existentially unforgeable
under adaptive chosen-message attacks [8] in the randodieora
model. The proof is about 2,700 lines long.

In the following we will consider a generic family of trapdoo
permutationsf (and their inverseg ') indexed by the security
parameter, and an ideal hash functieh: {0,1}* — {0,1}*,
which we model as a random oracle. The initial game of thefproo
is shown in Fig[b.

Definition 6 (Trapdoor permutation security)Me say that a trap-
door permutation is’-secure if an effective inverter, when given
a challengey uniformly drawn from{0, 1}* succeeds in finding
£ (y) with probability at most’'(k), i.e. if for any well-formed
and PPT adversang we havePrq, [z = f~'(y)] < € (k), where
Game Gy : y & {0,1}"; 2 — B(y).

Theorem 1(FDH exact security) Assume the underlying trapdoor
permutation ise’-secure. Then, any effective forger that makes at
MOStgn.sh andgsign queries to the hash and signing oracles respec-
tively, succeeds in forging a signature for a new messagteret
from the ones asked to the signing oracle—with probabilitpast

€(k) = (gnash (k) + geign (k) + 1) € (k)

i.e. for any well-formed and PPT adversarie$, A" we have
1:):[‘EUFDH [d = f($)] S (qhash(k) + Qsign (k) + 1) 6’(’6).

Our next objective is to formalize Coron’s probf{16], whiich-
proves the conventional bound BDH given above by eliminating
the dependency Odhash-

7.2 Semantic security of OAEP

OAEP is a padding scheme that is widely used in conjunction with
an encryption scheme such as RSA in order to add randomness
into plaintexts to achieve a high level of security. The dvigtof
OAEP perfectly illustrates the difficulty in achieving a correct
proof. Indeed, it was initially believed th&@AEP wasIND-CCA2
secure [[¥], but it was later discovered it was omlyD-CCA1
securell3Il], a weaker security notion (where the adversaeyg dot

have access to the decryption oracle after receiving thiecige).

It is possible to recovdND-CCA2 security by choosing a suitable
encryption scheme, as it is the case for RSAEP [19]. Here

2008/11/4



we focus on the game-based proof [df [9] which shdWB-CPA
security ofOAEP in the random oracle model.

The definition of OAEP is parametrized by a trapdoor one-
way permutationf : {0,1}* — {0,1}*, and two hash functions
G :{0,1}* — {0,1}* ? andH : {0,1}*=* — {0,1}". OAEP
adds randomness into the plaintextand uses the functiors and
H to mask it before applying to the result, as formalized by the
straightforward code for encryption:

R & {0,1}%

S — G(R)®m;
T« H(S)® R;
y — f(SIT);
return y

We have proved thaAEP is IND-CPA secure. The overall proof
is about 3,000 lines of Coq.

Theorem 2(OAEP semantic security) For well-formed, PPT ad-
versaries4 and.A’ making together at mosgt: queries toG,

qG
T
wherePrq, [z = f~'(y)] is the probability of an adversary in-
verting f on a random element of its codomain, as in Definifibn 6.

' 1 _
[Prino.craouer [b = ] = 5| < Pra, [z = /7 (v)]

Our sequence of games differs froph [9]: in their initial san
tions, Bellare and Rogaway use the fundamental lemma, &bkere
we use lazy sampling. As a result, our bound ®XEP is tighter
than the bound published ihl[9], which also involves the nemb
qu of callstoH:

1 _ 2
|PrinD-cPagaer [b = b'] —§| < Prg,[z=f 1(2!)]"‘%‘1‘2%1
We consider that our proof @AEP is highly emblematic, because
of its complexity and its history. In retrospect, the boure prove,
which is independent aofr, shows that formalizing proofs some-
times leads to improvement over previous results (to the dies
our knowledge). However, cryptographers are really irgiee: in
a proof ofIND-CCA2, and thus our next objective is to machine-
check the results of[19].

8. Related work
Cryptographic protocol verification is an established afdarmal

curity goals: notions such as negligible advantage or tfle@d-
versary are not modeled.

Blanchet and Pointcheval [13] were among the first to use ver-
ification tools to carry out game-based proofs of cryptobmap
schemes. They usedtryptoVerif for proving exact security of the
FDH signature scheme, for the conventional bound given i+ Se
tion[Z1. More recently, Courant et &]17] have developedranf
of strongest postcondition calculus that can establishraatically
asymptotic securityIND-CPA and IND-CCA2) of schemes that
use one-way functions and random oracles. They show sossdne
and provide a prototype implementation that covers manmeies
of the literature, including OAEP+. We believe the two amtres
are complementary to ours: compilifigyyptoVerif sequences of
games and embedding the type systeniof [17TéntiCrypt, are
interesting research directions.

In parallel, several authors have initiated formalizasioof
game-based proofs in proof assistants, and shown the seotiri
basic examples. Nowak [28] gives a game-based prodilGé-
mal semantic security in Cog. Nowak uses a shallow embedding to
model games; as a result, its framework ignores complesdyes,
and it is difficult to provide support for proof automatioredause
there is no special syntax for writing games, mechanizimgasytic
transformations becomes very difficult. Affeldt al [2] formal-
ize a game-based proof of the switching lemma in Coqg. However
their formalization is tailored towards the particular exde they
consider, which substantially simplifies their task andleits gen-
erality. They deal with a weak (non-adaptive) adversary ehadd
ignore complexity. All in all, both works appear like prelimary
experiments that are not likely to scale.

Leaving the realm of cryptograph§ertiCrypt relies on diverse
mathematical concepts and theories that have been modmled f
their own sake. It is not possible to report on these devedopm
here, so we limit ourselves to singling out Paulin’s formation of
probabilities, which we use extensively in our work, and wWurk
of Hurd et al. [22], who developed a mechanized theory in thé.H
theorem prover for reasoning about pGCL programs, a prbbidi
extension of Dijkstra’s guarded command language.

9. Conclusion

Summary and perspectivesCertiCrypt is a fully formalized
framework that supports machine-checked game-based sproof
we have validated its design through formalizing standayg-c

methods, and a wealth of automated and deductive methoes hav ographic proofs. Our work shows that machine-checkedfprob

been developed to the purpose of verifying that protocalwige
the expected level of security 127]. Traditionally, pradte have
been verified in a symbolic model, for which effective demisi
procedures exist under suitable hypotheses. Althoughythéalic
model assumes perfect cryptography, soundness resuftasii]
relate the symbolic model with the computational modelyjoted
the cryptographic primitives are secure. It is possibledmisine
symbolic methods and soundness proofs to achieve guasaintee
the computational model, as done e.glin 15, 33]. One drakbhc
this approach is that the security proof relies on intricagndness
proofs. Besides, it is not clear whether computational doaes
results will always exist to allow factoring verificationrttugh
symbolic methods. Consequently, some authors attempbtader
guarantees directly at the computational lelzel [12[25, 30]

In contrast, the formal verification of cryptographic funaial-
ities is an emerging trend. An early work of Barthe, Cedesjaind
Tarento [6] proves the security &Gamal in Coq, but the proof
relies on the generic model, a very specialized and idehlizedel
that elides many of the issues that are relevant for crypfugr.
Corin and den Hartod [15] also pro#Gamal semantic security,
using a probabilistic (non-relational) Hoare logic. Howewtheir
formalism is not sufficiently powerful to express precistig se-

11

cryptographic schemes is not only plausible but indeedilféas
However, constructing machine-checked proofs requireggh- h
level of expertise in formal proofs and remains time consigmi
despite the high level of automation provided®ttiCrypt. Thus,
CertiCrypt only provides a first step towards the completion of
Halevi's programme, in spite of the amount of work investedas
(the project was initiated in June 2006.

A medium-term objective would be to develop a minimalist
interface that eases the writing of games and provides a fized
of mechanisms (tactics, proof-by-pointing) to prove sonasi®
transitions, leaving the side conditions as hypothesekeptoof.
We believe that such an interface would help cryptograpbessre
that there are no obvious flaws in their definitions and prolfs
fact, it is our experience that the type system and the autmina
tactics provide valuable information to debug games andfpro

Future work Numerous research directions remain to be ex-
plored. Our first objective is to strengthen our results GgEP
andFDH. Another objective is to formalize the correctness of the
symbolic model and of automated methods for proving computa
tional soundness, i.e. formalize results frarn[11,[17, 25¢. iend

to focus first on[[1l7], as its formalization may be useful torgase

2008/11/4



automation inCertiCrypt. It would also be beneficial to formal-
ize cryptographic meta-results such as the equivalenceeeet

IND-CPA andIND-CCA2 under plaintext awareness. It would also

be worthwhile to explore applications QertiCrypt outside cryp-
tography, in particular to randomized algorithms and caxipy.

References

[1] M. Abadi and P. Rogaway. Reconciling two views of crypiaghy
(the computational soundness of formal encryptiodpurnal of
Cryptology 15(2):103-127, 2002.

[2] R. Affeldt, M. Tanaka, and N. Marti. Formal proof of prdsa
security by game-playing in a proof assistant. Hroceedings
of International Conference on Provable Security, Prov3ee7,
volume 4784 olecture Notes in Computer Scienpages 151-168.
Springer-Verlag, 2007.

[3] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic foranmation
flow in object-oriented programs. Rroceedings of the 33rd ACM
Symposium on Principles of Programming Languagesgjes 91-102.
ACM Press, 2006.

[4] P. Audebaud and C. Paulin-Mohring. Proofs of randomized
algorithms in Coq.Science of Computer Programmir2p08.

[5] M. Backes and P. Laud. Computationally sound secrecyfsro
by mechanized flow analysis. Iroceedings of the 13th ACM
Conference on Computer and Communications Secyritges 370—
379. ACM Press, 2006.

G. Barthe, J. Cederquist, and S. Tarento. A machinelatec
formalization of the generic model and the random oracle ehod
In 2nd International Joint Conference on Automated Reasgning
pages 385-399. Springer-Verlag, 2004.

M. Bellare and P. Rogaway. Optimal asymmetric encryptioHow
to encrypt with RSA. IPAdvances in Cryptology — EUROCRYPT,94
volume 950 ofLNCS pages 92-111. Springer-Verlag, 1995.

M. Bellare and P. Rogaway. The exact security of digitghatures
— How to sign with RSA and Rabin. lAdvances in Cryptology
— EUROCRYPT'96volume 1070 ofLecture Notes in Computer
Sciencepages 399-416. Springer-Verlag, 1996.

M. Bellare and P. Rogaway. The security of triple encigptand
a framework for code-based game-playing proofs.Attvances in
Cryptology — EUROCRYPT'Q&olume 4004 oLNCS pages 409—
426, 2006.

[10] N. Benton. Simple relational correctness proofs fatistanalyses
and program transformations. Rroceedings of the 31th ACM
Symposium on Principles of Programming Languageges 14-25.
ACM Press, 2004.

[11] V. Bertot, B. Grégoire, and X. Leroy. A structured apgach to proving
compiler optimizations based on dataflow analysisInternational
Workshop on Types for Proofs and Programsume 3839 of ecture
Notes in Computer Sciengeages 66—81. Springer-Verlag, 2006.

6

—

[7

—

8

-

[9

—

[12] B.Blanchet. A computationally sound mechanized préeesecurity
protocols. INIEEE Symposium on Security and Privapages 140—
154, 2006.

[13] B. Blanchet and D. Pointcheval. Automated securityofsavith
sequences of games. MKdvances in Cryptology — CRYPTO;06
volume 4117 olecture Notes in Computer Scienpages 537-554.
Springer-Verlag, 2006.

[14] R. Canetti, O. Goldreich, and S. Halevi. The random lerac
methodology, revisited. Cryptology ePrint Archive, Ref#98/011,
1998.

[15] R. Corin and J. den Hartog. A probabilistic Hoare-stidgic
for game-based cryptographic proofs. mMmoceedings of the
33rd International Colloquium on Automata, Languages and
Programming volume 4052 of. NCS pages 252-263, 2006.

[16] J.-S. Coron. On the exact security of Full Domain HashAdvances
in Cryptology volume 1880 ol ecture Notes in Computer Science

12

pages 229-235. Springer-Verlag, 2000.

[17] J. Courant, M. Daubignard, C. Ene, P. Lafourcade, aridakhnech.
Towards automated proofs for asymmetric encryption in émelom
oracle model. InComputer and Communications Securi@CM
Press, 2008.

[18] T. EIGamal. A public key cryptosystem and a signatuteesee based
on discrete logarithms. IAdvances in Cryptology — CRYPTO;84
volume 196 ofLNCS pages 10-18. Springer-Verlag, 1985.

[19] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Ster®ARDAEP is
secure under the RSA assumptidiournal of Cryptology 17(2):81—
104, 2004.

[20] S. Goldwasser and S. Micali. Probabilistic encryptidn Comput.
Syst. S¢j.28(2):270—299, 1984.

[21] S. Halevi. A plausible approach to computer-aided togpaphic
proofs. Cryptology ePrint Archive, Report 2005/181, 2005.

[22] J. Hurd, A. Mclver, and C. Morgan. Probabilistic guadd®mmands
mechanized in HOLTheor. Comput. S¢i346(1):96-112, 2005.

[23] B. Jonsson and K. G. Larsen. Specification and refineroént
probabilistic processes. IRroceedings of the 6th Annual IEEE
Symposium on Logic in Computer Scignpages 266-279. IEEE
Computer Society Press, 1991.

[24] D. Kozen. Semantics of probabilistic progranrdsComput. Syst. Sgi.
22:328-350, 1981.

[25] P. Laud. Semantics and program analysis of computiosecure
information flow. InEuropean Symposium on Programminglume
2028 ofLecture Notes in Computer Sciengages 77-91. Springer-
Verlag, 2001.

[26] X. Leroy. Formal certification of a compiler back-end; pro-
gramming a compiler with a proof assistant. Rroceedings of the
33rd ACM Symposium Principles of Programming Languageges
42-54. ACM Press, 2006.

[27] C. Meadows. Formal methods for cryptographic protcamhlysis:
Emerging issues and trend$EEE Journal on Selected Areas in
Communications21(1):44-54, 2003.

[28] D. Nowak. A framework for game-based security proofs1 |
Information and Communications Securityolume 4861, pages
319-333. Springer-Verlag, 2007.

[29] N. Ramsey and A. Pfeffer. Stochastic lambda calculusrannads of
probability distributions. IfProceedings of the 29th ACM Symposium
on Principles of Programming Languaggsages 154-165. ACM
Press, 2002.

[30] A. Roy, A. Datta, A. Derek, and J. C. Mitchell. Inductiygoofs
of computational secrecy. IBuropean Symposium On Research
In Computer Securityvolume 4734 of_ecture Notes in Computer
Sciencepages 219-234. Springer-Verlag, 2007.

[31] V. Shoup. OAEP reconsidered. Kdvances in Cryptology —
CRYPTO’01 volume 2139 ofLecture Notes in Computer Science
pages 239-259. Springer-Verlag, 2001.

[32] V. Shoup. Sequences of games: a tool for taming contylémi
security proofs. Cryptology ePrint Archive, Report 20@B232004.

[33] C. Sprenger and D. Basin. Cryptographically-soundqaal-model
abstractions. IrProceedings of CSF'Q8ages 115-129. IEEE
Computer Society, 2008.

[34] J. Stern. Why provable security matters?Aldvances in Cryptology
— EUROCRYPT'03volume 2656 ofLecture Notes in Computer
ScienceSpringer-Verlag, 2003.

[35] The Coq development team. The Coq Proof Assistant Reber
Manual v8.1, 2006. Available atttp://coq.inria.frl

2008/11/4


http://coq.inria.fr

	Introduction
	Basic examples
	The ElGamal encryption scheme
	The PRP/PRF switching lemma

	Games as programs
	The pWhile language
	Operational semantics
	Probabilistic polynomial-time programs
	Adversaries

	Relational Hoare Logic
	Probabilistic Relational Hoare Logic (pRHL)
	Observational equivalence

	Proof methods for bridging steps
	Certified program transformations
	Lazy sampling
	Algebraic equivalences

	Proof methods for failure events
	Case studies
	Existential unforgeability of FDH
	Semantic security of OAEP

	Related work
	Conclusion

