
Compilation of certificates

Gilles BARTHE Benjamin GRÉGOIRE Tamara REZK
INRIA Sophia-Antipolis Méditerranée, France

Abstract. The purpose of the course is to stress the importance of verification meth-
ods for bytecode, and to establish a strong relation between verification at source
and bytecode levels. In order to illustrate this view, we shall consider the example
of verification condition generation, which underlies many verification tools and
plays a central role in Proof Carrying Code infrastructure, and information flow
type systems, that are used to enforce confidentiality policies in mobile applica-
tions.

Keywords. Information flow typing, program verification, preservation of typing,
preservation of proof obligations, proof carrying code

1. Introduction

Reliability and security of executable code is an important concern in many application
domains, and in particular mobile code where code consumers run code that originate
from untrusted and potentially malicious producers. While many formal techniques and
tools have been developed to address this concern, it is particularly striking to notice that
many of them operate on source programs, rather than on executable code; the extended
static checking tool ESC/Java [6] and the information flow aware language Jif [14] are
prominent examples of environments that provide guarantees about source (Java) pro-
grams. However, source code verification is not appropriate in the context of mobile
code, where code consumers need automatic and efficient verification procedures that
can be run locally on executable code and that dispense them from trusting code produc-
ers (that are potentially malicious), networks (that may be controlled by an attacker), and
compilers (that may be buggy).

Proof Carrying Code (PCC) [17,15,16] is a security architecture for mobile code that
targets automated verification of executable code and therefore does not require trust in
the code producer, nor in the compiler, nor in the network. In a typical PCC architecture,
programs are compiled with a certifying compiler that returns, in addition to executable
code, evidence that the code satisfies a desired policy. The evidence is provided in the
form of formal objects, that can be used by automatic verification procedures to verify
independently that the compiled code is indeed compliant to the policy. Typically, a cer-
tifying compiler will generate both program annotations, which specify loop invariants
tailored towards the desired policy, as well as proof objects, a.k.a. certificates, that the
program is correct w.r.t. its specification. Early work on PCC is based on verification
condition generation and exploits the Curry-Howard isomorphism to reduce proof check-
ing to type checking; thus, upon reception of an annotated program with a certificate, the
code consumer will automatically extract a set of verification conditions φ1 . . . φn using

a verification condition generator and will establish the validity of these conditions using
the certificate, which should be a tuple (M1, . . . ,Mn) of λ-terms such that Mi : φi for
i = 1 . . . n.

The idea of certifying compilation is also present in typed low-level languages,
where the certificates take the form of type annotations, and certificate checkers are type
systems that reject all executable code that does not comply with the consumer policy.
Typed assembly languages [19] and the Java Virtual Machine (JVM) [13] provide two
well-known examples of typed low-level languages, in which programs come equipped
with type information. In the case of the JVM, the type annotations refer to the signa-
ture of methods, the type of fields and local variables, etc. These type annotations are
used by the bytecode verifier, which performs a dataflow analysis to ensure adherence
to the JVM safety policy (no arithmetic on references, no stack underflow or overflow,
correct initialization of objects before accessing them, etc) [12]. Lightweight bytecode
verification [18] extends the idea of bytecode verification by requiring that programs also
come with additional typing information (concretely the stack type at at junction points)
in order to enable a verification procedure that analyzes the program in one pass.

Through their associated verification mechanisms for executable code, infrastruc-
tures based on certifying compilers and typed low-level languages suitably address the
security concerns for mobile code. Nevertheless, current instances of certifying compil-
ers mostly focus on basic safety policies and do not take advantage of the existing meth-
ods for verifying source code. Ideally, one would like to develop expressive verification
methods for executable code and to establish their adequacy with respect to verification
methods for source programs, so as to be able to transfer evidence from source programs
to executable code. The purpose of these notes is to present two exemplary enforcement
mechanisms for executable code, and to show how they connect to similar enforcement
mechanisms for source code.

The first mechanism aims at ensuring information flow policies for confidentiality: it
is a type-based mechanism, compatible with the principles of bytecode verification. We
show that the type system is sound, i.e. enforce non-interference of typable programs,
and that source programs that are typable in a standard type system for information flow
are compiled into programs that are typable in our type system. The benefits of type
preservation are two-fold: they guarantee program developers that their programs written
in an information flow aware programming language will be compiled into executable
code that will be accepted by a security architecture that integrates an information flow
bytecode verifier. Conversely, they guarantee code consumers of the existence of prac-
tical tools to develop applications that will provably meet the policy enforced by their
information flow aware security architecture.

The second mechanism aims at ensuring adherence of programs to a logical speci-
fication that establishes their functional correctness or their adherence to a given policy:
it is a verification condition generator for programs specified with logical annotations
(pre-conditions, post-conditions, etc) compatible with Proof Carrying Code. We show
that the verification condition generator is sound, i.e. a program meets its specification,
expressed as a pre- and post-condition, provided all verification conditions are valid, and
that verification conditions are preserved by compilation. Since verification conditions
for source programs and their compilation are syntactically equal (and not merely logi-
cally equivalent), one can reuse directly certificates for source programs and bundle them
with the compiled program. Preservation of proof obligations provide benefits similar to

operations op ::= + | − | × | /
comparisons cmp ::= < | ≤ |= |6= | ≥ |>
expressions e ::= x | c | e op e
tests t ::= e cmp e
instructions i ::= x := e assignment

| if(t){i}{i} conditional
| while(t){i} loop
| i; i sequence
| skip skip
| return e return value

where c ∈ Z and x ∈ X .

Figure 1. INSTRUCTION SET FOR BASIC LANGUAGE

preservation of typing and extends the applicability of PCC by offering a means to trans-
fer evidence from source code to executable code and thus to certify complex policies of
executable code using established verification infrastructure at source level.

Contents The relation between source verification and verification of executable code
is established in the context of a small imperative and assembly languages, and for a non-
optimizing compiler, all presented in Section 2. Section 3 is devoted to information flow
whereas Section 4 is devoted to verification condition generation. Section 5 discusses
the impact of program optimizations on our results, and mentions the main difficulties in
extending our results to more realistic settings.

2. Setting

Although the results presented in these notes have been developed for a sequential frag-
ment of the Java Virtual Machine that includes objects, exceptions, and method calls (see
Section 5), we base our presentation on a simple imperative language, which is compiled
to a stack-based virtual machine.

This section introduces the syntax and the semantics of these simple source and
bytecode languages. In addition, we define a non-optimizing compiler, which in the later
sections will be shown to preserve information flow typing as well as verification condi-
tions.

Both the source and bytecode languages use named variables taken from a fixed
set X , and manipulate memories, i.e. mappings from variables to values. In our setting,
values are just integers, thus a memory ρ has type X → Z. We denote by L the set of
memories.

2.1. The source language: IMP

Programs Figure 1 defines the basic source language IMP. We let E be the set of
expressions, and I be the set of instructions. In this language, a program p is simply an
instruction followed by a return (i.e. p = i; return e).

x
ρ

↪→ ρ(x) c
ρ

↪→ c

e1
ρ

↪→ v1 e2
ρ

↪→ v2

e1 op e2
ρ

↪→ v1 op v2

e1
ρ

↪→ v1 e2
ρ

↪→ v2

e1 cmp e2
ρ

↪→ v1 cmp v2

e
ρ

↪→ v
[ρ, x := e] ⇓S ρ⊕ {x← v} [ρ, skip] ⇓S ρ

[ρ, i1] ⇓S ρ′ [ρ′, i2] ⇓S ρ′′

[ρ, i1; i2] ⇓S ρ′′

t
ρ

↪→ true [ρ, it] ⇓S ρ′

[ρ, if(t){it}{if}] ⇓S ρ′
t

ρ
↪→ false [ρ, if] ⇓S ρ′

[ρ, if(t){it}{if}] ⇓S ρ′

t
ρ

↪→ true [ρ, i] ⇓S ρ′ [ρ′, while(t){i}] ⇓S ρ′′

[ρ, while(t){i}] ⇓S ρ′′
t

ρ
↪→ false

[ρ, while(t){i}] ⇓S ρ

Figure 2. SEMANTICS OF THE BASIC LANGUAGE

instruction i ::= push c push value on top of stack
| binop op binary operation on stack
| load x load value of x on stack
| store x store top of stack in variable x
| goto j unconditional jump
| if cmp j conditional jump
| return return the top value of the stack

where c ∈ Z, x ∈ X , and j ∈ P .

Figure 3. INSTRUCTION SET FOR THE BASIC BYTECODE

Operational semantics States consist of an instruction and a memory. Thus, the set
StateS = I × L of states is defined as the set of pairs of the form [ρ, i], where i is an
instruction.

Figure 2 presents the big step semantics of the basic source language. The first rela-
tion

ρ
↪→⊆ (E ×L)×Z defines the evaluation under a memory ρ of an expression e into a

value. Abusing notation, we use the same syntax for the evaluation of tests. The second
relation ⇓S⊆ StateS × L defines the big-step semantics of an instruction i as a relation
between an initial memory and a final memory. There is no rule for the return, as it only
appears at the end of the program. We rather define the semantics of programs directly
with the clause:

p = i; return e [ρ0, i] ⇓S ρ e
ρ
↪→ v

p : ρ0 ⇓S ρ, v

ṗ[k] = push c
〈k, ρ, os〉; 〈k + 1, ρ, c :: os〉

ṗ[k] = binop op v = v1 op v2

〈k, ρ, v1 :: v2 :: os〉; 〈k + 1, ρ, v :: os〉

ṗ[k] = load x
〈k, ρ, os〉; 〈k + 1, ρ, ρ(x) :: os〉

ṗ[k] = store x
〈k, ρ, v :: os〉; 〈k + 1, ρ⊕ {x← v}, os〉

ṗ[k] = if cmp j v1 cmp v2

〈k, ρ, v1 :: v2 :: os〉; 〈k + 1, ρ, os〉
ṗ[k] = if cmp j ¬(v1 cmp v2)
〈k, ρ, v1 :: v2 :: os〉; 〈j, ρ, os〉

ṗ[k] = goto j
〈k, ρ, os〉; 〈j, ρ, os〉

ṗ[k] = return
〈k, ρ, v :: os〉; ρ, v

Figure 4. SEMANTICS OF THE BASIC BYTECODE

2.2. The Virtual Machine : VM

Programs A bytecode program ṗ is an array of instructions (defined in figure 3). We
let P be the set of program points, i.e. P = {0 . . . n − 1} where n is the length of ṗ.
Instructions act on the operand stack (push and load, binop perform an operation with
the two top elements, store saves the top element in a variable) or on the control flow
(goto for an unconditional jump and if for a conditional jump). Note that, unlike source
programs, return instructions may arise anywhere in the code. We nevertheless assume
that the program is well-formed, i.e. that the last instruction of the program is a return.

Operational semantics A bytecode state is a triple 〈k, ρ, os〉 where k is a program
counter, i.e. an element of P , ρ is a memory, and os the operand stack that contains
intermediate values needed by the evaluation of source language expressions. We note
StateB the set of bytecode states.

The small-step semantics of a bytecode program is given by the relation ;⊆
StateB× (StateB +L×Z) which represents one step of execution. Figure 4 defines this
relation.

The reflexive and transitive closure ;∗⊆ StateB × StateB of ; is inductively
defined by

〈k, ρ, os〉;∗ 〈k, ρ, os〉
〈k, ρ, os〉; 〈k′, ρ′, os′〉 〈k′, ρ′, os′〉;∗ 〈k′′, ρ′′, os′′〉

〈k, ρ, os〉;∗ 〈k′′, ρ′′, os′′〉

Finally, the evaluation of a bytecode program ṗ : ρ0 ⇓ ρ, v, from an initial memory
ρ0 to a final memory ρ and a return value v is defined by

〈0, ρ0, ∅〉;∗ 〈k, ρ, os〉 〈k, ρ, os〉; ρ, v
ṗ : ρ0 ⇓ ρ, v

Remark that the last transition step is necessary done by a return instruction so the mem-
ory is unchanged.

Compilation of expressions

[[x]] = load x
[[c]] = push c

[[e1 op e2]] = [[e2]]; [[e1]]; binop op

Compilation of instructions

k : [[skip]] =

k : [[x := e]] = [[e]]; store x

k : [[i1; i2]] = k : [[i1]]; k2 : [[i2]]
where k2 = k + |[[i1]]|

k : [[return e]] = [[e]]; return

k : [[if(e1 cmp e2){i1}{i2}]] = [[e2]]; [[e1]]; if cmp k2; k1 : [[i1]]; goto l; k2 : [[i2]]
where k1 = k + |[[e2]]|+ |[[e1]]|+ 1

k2 = k1 + |[[i1]]|+ 1
l = k2 + |[[i2]]|

k : [[while(e1 cmp e2){i}]] = [[e2]]; [[e1]]; if cmp k2; k1 : [[i]]; goto k
where k1 = k + |[[e2]]|+ |[[e1]]|+ 1

k2 = k1 + |[[i]]|+ 1

Figure 5. COMPILATION SCHEME

2.3. The compiler

The compiler from the source language to the bytecode language is defined in Fig-
ure 5. Compilation of expression [[e]] generates a bytecode sequence which evaluate e and
store/push the result on the top of the operand stack. For the compilation of instructions
k : [[i]] the compiler argument k indicates the starting position of the resulting bytecode
sequence.

Compilation of an assignment x := e is the compilation of the expression e followed
by a store x. At the end of the evaluation of [[e]] the value of e is on the top of the operand
stack, then a store x instruction stores this value in the variable x and pop the value from
the stack.

The compilation of a conditional k : [[if(e1 op e2){i1}{i2}]] starts by the sequence
corresponding to the evaluation of the two expressions e2 and e1. After this sequence
the operand stack contains on the top the values of e1 and e2, the if cmp k2 instruction
evaluates the comparison and pop the two value from the stack. If the test is true the
evaluation continues at label k1 corresponding to the beginning of the true branch, if the

test is false the if instruction jumps to label k2 to the beginning of the false branch. At
the end of the true branch a goto instruction jumps to the code of the false branch.

The compilation of a loop k : [[while(e1 cmp e2){i}]] evaluates the two expressions
e2 and e1 and then performs a conditional jump. If the test is false the evaluation jumps to
the code corresponding to the body of the loop, if the test is true the evaluation continue
by the evaluation of the loop body and then perform a jump to the label corresponding to
the beginning of the evaluation of the test.

Finally the compilation of a program p = (i; return e) is defined by:

[[p]]
def≡ 0: [[i]]; [[e]]; return

2.3.1. Correctness

The compiler is correct in the sense that the semantics of a source program is the same
as its compiled version. In other words, for all source program p and initial memory ρ0,
executing p with initial memory ρ0 terminates with final memory ρ and return value v,
iff executing [[p]] with initial memory ρ0 terminates with final memory ρ and return value
v

The correctness proof of compiler is done by exhibiting a strong form of simulation
between the evaluation of the source program and the evaluation of the bytecode pro-
gram. In order to carry the proof, we define a new notion of reduction for bytecode states:
s ;n s′, which stands for s evaluates to s′ in exactly n steps of reduction ;. Remark
that the relation s ;∗ s′ can be defined by ∃n, s ;n s′.

Lemma 2.1 For all bytecode program ṗ, expression e, memory ρ and operand stack os
such that l = |[[e]]| and ṗ[k..k + l − 1] = [[e]] the following proposition holds:

∀ n k′ os′,
〈k, ρ, os〉;n 〈k′, ρ, os′〉 ∧ k′ ≥ k + l⇒
∃ v n′ > 0, 〈k, ρ, os〉;n′ 〈k + l, ρ, v :: os〉;n−n′ 〈k′, ρ, os′〉

The proof is by induction over e. The base cases are trivial. The case of binary expres-
sions is proved using the induction hypothesis.

Lemma 2.2 (Correctness for expressions) For all bytecode program ṗ, expression e,
value v, memory ρ and operand stack os such that l = |[[e]]| and ṗ[k..k + l − 1] = [[e]]

e
ρ
↪→ v ⇐⇒ 〈k, ρ, os〉;∗ 〈k + l, ρ, v :: os〉

The proof is by induction over e. The only difficult case is the⇐= for binary expressions.
We have e = e1 op e2 and [[e]] = [[e2]]; [[e1]]; binop op and

〈k, ρ, os〉;∗ 〈k + l, ρ, v :: os〉

Using the previous lemma there exists v1 and v2 such that v = v1 + v2 and

〈k, ρ, os〉;∗

〈k + |[[e2]]|, ρ, v2 :: os〉;∗

〈k + |[[e2]]|+ |[[e1]]|, ρ, v1 :: v2 :: os〉;∗

〈k + l, ρ, v :: os〉

We conclude using the induction hypothesis.

Lemma 2.3 For all bytecode program ṗ, instruction i which is not a skip, memory ρ and
operand stack os such that l = |[[k]]| and ṗ[k..k+l−1] = k : [[i]] the following proposition
holds:

∀ n k′ ρ′ os os′,
〈k, ρ, os〉;n 〈k′, ρ′, os′〉 ∧ k′ ≥ k + l⇒
∃ ρ′′ n′ > 0, 〈k, ρ, os〉;n′ 〈k + l, ρ′′, os〉;n−n′ 〈k′, ρ′, os′〉

The proof is done using a general induction principle on n (i.e the induction hypothesis
can be applied to any n′ < n) and by case analysis on i. Remark that this lemma can
be proved with os = ∅ due to the fact that the compiler maintains the invariant that the
operand stack is empty at the beginning and at the end of the evaluation of all instructions.
This invariant is used in the proof of the next lemma.

Lemma 2.4 (Correctness for instructions) For all bytecode program ṗ, instruction i,
memories ρ and ρ′ such that l = |[[i]]| and ṗ[k..k + l − 1] = k : [[i]]

[ρ, i] ⇓S ρ′ ⇐⇒ 〈k, ρ, ∅〉;∗ 〈k + l, ρ′, ∅〉

The direction =⇒ is done by induction on the evaluation of i (i.e one the derivation of
[ρ, i] ⇓S ρ′) and presents no difficulty. To prove the direction⇐= we prove that :

∀n, 〈k, ρ, ∅〉;n 〈k + l, ρ′, ∅〉 =⇒ [ρ, i] ⇓S ρ′

The proof is done using a general induction principle on n and by case analysis on i. The
cases of loop and conditional use the previous lemma.

Proposition 2.5 (Correctness of the compiler) For all source program p, initial mem-
ory ρ0, final memory ρ and return value v,

p : ρ0 ⇓S ρ, v ⇐⇒ [[p]] : ρ0 ⇓ ρ, v

This is a direct application of the above lemmas.

3. Information flow

Confidentiality (also found in the literature as privacy or secrecy) policies aim to guar-
antee that an adversary cannot access information considered as secret. Thus, confiden-
tiality is not an absolute concept but is rather defined relative to the observational capa-
bilities of the adversary. In these notes, we assume that the adversary cannot observe or
modify intermediate memories, and cannot distinguish if a program terminates or not. In
addition, we consider that information is classified either as public, and thus visible by
adversary, or secret. We refer to [?] for further details on information flow.

3.1. Security policy

In this section, we specify formally (termination insensitive) non-interference [5,10], a
baseline information flow policy, which assumes that an adversary can read the public
inputs and outputs of a run, and which ensures that adversaries cannot deduce the value
of secret inputs from observing the value of public outputs. In its more general form, non-
interference is expressed relative to a lattice of security levels. For the purpose of these
notes, we consider a lattice with only two security levels, and let S = {L,H} be the
set of security levels, where H (high) and L (low) respectively correspond to secret and
public information; one provides a lattice structure by adding the subtyping constraint
L ≤ H .

A policy is a function that classifies all variables as low or high.

Definition 3.1 (Policy) A policy is a mapping Γ : X → S.

In order to state the semantic property of non-interference, we begin by defining when
two memories are indistinguishable from the point of view of an adversary.

Definition 3.2 (Indistinguishability of memories) Two memories ρ, ρ′ : L are indistin-
guishable w.r.t. a policy Γ, written ρ ∼Γ ρ

′ (or simply ρ ∼ ρ′ when there is no ambigu-
ity), if ρ(x) = ρ′(x) for all x ∈ X such that Γ(x) = L.

One can think about the adversary as a program with access to only low parts of the
memory and that is put in sequence with the code that manipulates secret information.
Its goal is to distinguish between two different executions starting with indistinguishable
memories ρ1 and ρ2. This is stated in the following definition.

Definition 3.3 (Non-interfering program) A bytecode program ṗ is non-interfering
w.r.t. a policy Γ, if for every ρ1, ρ

′
1, ρ2, ρ

′
2, v1, v2 such that ṗ : ρ1 ⇓ ρ′1, v1 and

ṗ : ρ2 ⇓ ρ′2, v2 and ρ1 ∼ ρ2, we have ρ′1 ∼ ρ′2 and v1 = v2.

The definition of non-interference applies both to bytecode programs, as stated above,
and source programs. Note moreover that by correctness of the compiler, a source pro-
gram p is non-interfering iff its compilation [[p]] is non-interfering.

3.2. Examples of insecure programs

This section provides examples of insecure programs that must be rejected by a type
system. For each example, we provide the source program and its compilation. In all
examples, xL is a low variable and yH is a high variable.

Our first example shows a direct flow of information, when the result of some se-
cret information is copied directly into a public variable. Consider the program xL :=
yH ; return 0 and its compilation in Figure 6(a). The program stores in the variable xL

the value held in the variable yH , and thus leaks information.
Our second example shows an indirect flow of information, when assignments to

low variables within branching instructions that test on secret information leads to infor-
mation leakages. Consider the program if(yH = 0){xL := 0}{xL := 1}; return 0 and
its compilation in Figure 6(b). The program yields an implicit flow, as the final value
of xL depends on the initial value of yH . Indeed, the final value of xL depends on the

1 load yH

2 store xL

3 push 0
4 return

1 push 0
2 load yH

3 if = 7
4 prim 0
5 store xL

6 goto 9
7 prim 1
8 store xL

9 push 0
10 return

1 push 0
2 load yH

3 if = 6
4 push 0
5 return
6 push 0
7 store xL

8 push 0
9 return

1 push 0
2 load yH

3 if = 6
4 push 0
5 return
6 push 1
7 return

Figure 6. EXAMPLES OF INSECURE PROGRAMS

initial value of yH . The problem is caused by an assignment to xL in the scope of an if
instruction depending on high variables.

Our third example1 shows an indirect flow of information, caused by an abrupt ter-
mination within branching instructions that test on secret information leads to infor-
mation leakages. Consider the program if(yH = 0){return 0}{skip};xL := 0; return 0
and its compilation in Figure 6(c); it yields an implicit flow, as the final value of xL

depends on the initial value of yH . Our fourth example is of a similar nature, but
caused by a return whose value depends on a high expression. Consider the program
if(yH = 0){return 0}{return 1} and its compilation in Figure 6(c). Indeed, the final
value of xL is 0 if the initial value of yH is 0. The problem is caused by a return instruc-
tion within the scope of a high if instruction.

3.3. Information flow typing for source code

In this section, we introduce a type system for secure information flow for IMP inspired
from [20]. Typing judgments are implicitly parametrized by the security policy Γ of the
form:

` e : τ (expressions)
` i : τ (statements)

where e is an expression, i is a statement and τ is a security level. The intuitive meaning
of ` e : τ is that τ is an upper bound of the security levels of variables that occur in e,
whereas the intuitive meaning of ` i : τ is that i is non-interfering and does not assign
to variables with security level lower than τ .

Figure 7 and Figure 8 respectively present the typing rules for expressions and in-
structions. The rule for assignments prevents direct flows, whereas the rule for if state-
ments prevents indirect flows. Note that the typing rule for return is only sound because
we do not allow return expressions to appear within statements: indeed, the source code
of the program in Figure 6(c), in which a return statement appears in a high branching
statement, is insecure.

The type system is sound, in the sense that typable programs are non-interfering.

1Both the third and fourth examples are not legal source programs in our syntax. We nevertheless provide
the source code for readability.

VAR

` x : Γ(x)
VAL

` c : L

OP
` ei : τ for i = 1, 2
` e1 op e2 : τ

TEST
` ei : τ for i = 1, 2
` e1 cmp e2 : τ

SUBE
` e : τ τ ≤ τ ′

` e : τ ′

Figure 7. INFORMATION FLOW TYPING RULES FOR EXPRESSIONS

ASSIGN
` e : τ τ ≤ Γ(x)
` x := e : Γ(x)

SEQ

` i : τ ` i′ : τ
` i; i′ : τ

SUBC
` i : τ τ ′ ≤ τ

` i : τ ′

COND
` t : τ ` i : τ ` i′ : τ

` if(t){i}{i′} : τ

WHILE
` t : τ ` i : τ
` while(t){i} : τ

SKIP

` skip : H

RET
` e : L

` return e : L

Figure 8. INFORMATION FLOW TYPING RULES FOR STATEMENTS

Proposition 3.4 (Soundness of source type system) If p = i; return e is typable, i.e.
` i : τ and return e : L, then p is non-interfering.

One can prove the above proposition directly, in the style of [20]. An alternative is to
derive soundness of the source type system from soundness of the bytecode type system,
as we do in the next section.

3.4. Information flow for bytecode

To prevent illicit flows in a non-structured language, one cannot simply enforce local
constraints in the typing rules for branching instructions: one must also enforce global
constraints that prevent low assignments and updates to occur under high guards (condi-
tional branching that depends on high information). In order to express the global con-
straints that are necessary to enforce soundness, we rely on some additional information
about the program. Concretely, we assume given control dependence regions (cdr) which
approximate the scope of branching statements, as well as a security environment, that

attaches to each program point a security level, intuitively the upper bound of all the
guards under which the program point executes.

Before explaining the typing rules, we proceed to define the concept of control de-
pendence region, which is closely related to the standard notion used in compilers. The
notion of region can be described in terms of a successor relation 7→⊆ P × P between
program points. Intuitively, j is a successor of i, written i 7→ j, if performing one-step
execution from a state whose program point is i may lead to a state whose program point
is j. Then, a return point is a program point without successor (corresponding to a return
instruction); in the sequel, we write i 7→ exit if i is a return point and let Pr denote the
set of return points. Finally, if instructions usually have two successors; when it is the
case, the program point of this instruction is referred as a branching point. Formally, the
successor relation 7→ is given by the clauses:

• if ṗ[i] = goto j, then i 7→ j;
• if ṗ[i] = if cmp j, then i 7→ i + 1 and i 7→ j. Since if instructions have two

successors, they are thus referred to as branching points;
• if ṗ[i] = return, then i has no successors, and we write i 7→ exit;
• otherwise, i 7→ i+ 1.

Control dependence regions are characterized by a function that maps a branching pro-
gram point i to a set of program points region(i), called the region of i, and by a partial
function that maps branching program points to a junction point jun(i). The intuition be-
hind regions and junction points is that region(i) includes all program points executing
under the guard of i and that jun(i), if it exists is the sole exit to the region of i; in par-
ticular, whenever jun(i) is defined there should be no return instruction in region(i). The
properties to be satisfied by control dependence regions, called SOAP properties, are:

Definition 3.5 A cdr structure (region, jun) satisfies the SOAP (Safe Over APproxima-
tion) properties if the following holds:

SOAP1: for all program points i, j, k such that i 7→ j and i 7→ k and j 6= k, either
k ∈ region(i) or k = jun(i);

SOAP2: for all program points i, j, k, if j ∈ region(i) and j 7→ k, then either k ∈
region(i) or k = jun(i);

SOAP3: for all program points i, j, if j ∈ region(i) and j 7→ exit then jun(i) is unde-
fined.

Given a cdr structure (region, jun), it is straightforward to verify whether or not it satisfies
the SOAP properties.

Definition 3.6 A security environment is a mapping se : P → S.

The bytecode type system is implicitly parametrized by a policy Γ, a cdr structure
(region, jun), and a security environment se. Typing judgments are of the form

i ` st⇒ st′

where i is a program point, and st and st′ are stacks of security levels. Intuitively, st and
st′ keep track of security levels of information on the operand stack during all possible
executions.

P [i] = push n
i ` st⇒ se(i) :: st

P [i] = binop op
i ` k1 :: k2 :: st⇒ (k1 t k2) :: st

P [i] = store x se(i) t k ≤ Γ(x)
i ` k :: st⇒ st

P [i] = load x
i ` st⇒ (Γ(x) t se(i)) :: st

P [i] = goto j
i ` st⇒ st

P [i] = return se(i) = L
i ` k :: st⇒ ε

P [i] = if cmp j ∀j′ ∈ region(i), k ≤ se(j′)
i ` k :: st⇒ liftk(st)

Figure 9. TRANSFER RULES FOR VM INSTRUCTIONS

Figure 9 presents a set of typing rules that guarantee non-interference for bytecode
programs, where t denotes the lub of two security levels, and for every k ∈ S, liftk is
the point-wise extension to stack types of λl. k t l. The transfer rule for if requires that
the security environment of program points in a high region is high. In conjunction with
the transfer rule for load, the transfer rule for if prevents implicit flows and rejects the
program of Figure 6(b). Likewise, in conjunction with the transfer rule for push, which
requires that the value pushed on top of the operand stack has a security level greater
than the security environment at the current program point, and the typing rule for return

which requires that se(i) = L and thus avoids return instructions under the guard of high
expressions, the transfer rule for return prevents implicit flows and rejects the program
of Figure 6(c). Besides, the transfer rule for return requires that the value on top of the
operand stack has a low security level, since it will be observed by the adversary. It thus
rightfully rejects the program of Figure 6(d).

In addition, the operand stack requires the stack type on the right hand side of ⇒
to be lifted by the level of the guard, i.e. the top of the input stack type. It is necessary
to perform this lifting operation to avoid illicit flows through operand stack. The fol-
lowing example, which uses a new instruction swap that swaps the top two elements of
the operand stack, illustrates why we need to lift the operand stack. This is a contrived
example because it does not correspond to any simple source code, but it is nevertheless
accepted by a standard bytecode verifier.

1 push 1
2 push 0
3 push 0
4 load yH

5 if 7
6 swap
7 store xL

8 push 0
9 return

In this example, the final value of variable xL depends on the initial value of yH and so
the program is interfering. It is rightfully rejected by our type system, thanks to the lift
of the operand stack at program point 5.

One may argue that lifting the entire stack is too restrictive, as it leads the typing
system to reject safe programs; indeed, it should be possible, at the cost of added com-
plexity, to refine the type system to avoid lifting the entire stack. Nevertheless, one may
equally argue that lifting the stack is unnecessary, because as noted in Section 2 the stack
at branching points only has one element in all compiled programs, in which case a more
restrictive rule of the form below is sufficient:

P [i] = if cmp j ∀j′ ∈ region(i).k ≤ se(j′)
i ` k :: ε⇒ ε

Furthermore, there are known techniques to force that the stack only has one element at
branching points.

Typability Typing rules are used to establish a notion of typability. Following Freund
and Mitchell [9], typability stipulates the existence of a function, that maps program
points to stack types, such that each transition is well-typed.

Definition 3.7 (Typable program) A program ṗ is typable w.r.t. a memory security pol-
icy Γ, and cdr structure (region, jun), and a security environment se : P → S iff there
exists a type S : P → S? such that:

• S0 = ε (the operand stack is empty at the initial program point 0);

• for all i ∈ P and j ∈ P ∪{exit}, i 7→ j implies that there exists st ∈ S? such that
i ` Si ⇒ st and st v Sj .

where we write Si instead of S(i) and v denotes the point-wise partial order on type
stack with respect to the partial order taken on security levels.

The type system is sound, in the sense that typable programs are non-interfering.

Proposition 3.8 Let ṗ be a bytecode program and (region, jun) a cdr structure that sat-
isfies the SOAP properties. Suppose ṗ is typable with respect to region and to a memory
security policy Γ. Then ṗ is non-interfering w.r.t. Γ.

The proof is based on the SOAP properties, and on two unwinding lemmas showing
that execution of typable programs does not reveal secret information. In order to state
the unwinding lemmas, one must define an indexed indistinguishability relation between
stacks and states.

Definition 3.9 (Indistinguishability of states)

• A S-stack S is high, written high(S), if all levels in S are high.

• Indistinguishability os ∼S,S′ os′ between stacks os and os (relative to S-stacks S
and S′) is defined inductively by the clauses:

high(S) high(S′) #os = #S #os′ = #S′

os ∼S,S′ os′

os ∼S,S′ os′

v :: os ∼L::S,L::S′ v :: os′
os ∼S,S′ os′

v :: os ∼H::S,H::S′ v′ :: os′

where # denotes the length of a stack.
• Indistinguishability between states 〈i, ρ, os〉 ∼S,S′ 〈i′, ρ′, os′〉 (relative to stack

of security levels S and S′) holds iff os ∼S,S′ os′ and ρ ∼ ρ′.

We must also introduce some terminology and notation: we say that the security envi-
ronment se is high in region region(i) if se(j) is high for all j ∈ region(i). Besides, we
let pc(s) denote the program counter of a state s. Then, the unwinding lemmas can be
stated as follows:

• locally respects: if s ∼S,T t, and pc(s) = pc(t) = i, and s ; s′, t ; t′,
i ` S ⇒ S′, and i ` T ⇒ T ′, then s′ ∼S′,T ′ t′.

• step consistent: if s ∼S,T t, and pc(s) = i, and s ; s′ and i ` S ⇒ S′, and se(i)
is high, and S is high, then s′ ∼S′,T t.

In order to repeatedly apply the unwinding lemmas, we need additional results about
preservation of high contexts.

• high branching: if s ∼S,T t with pc(s) = pc(t) = i and pc(s′) 6= pc(t′), if
s ; s′, t ; t′, i ` S ⇒ S′ and i ` T ⇒ T ′, then S′ and T ′ are high and se is
high in region region(i).

• high step: if s ; s′, and pc(s) ` S ⇒ S′, and the security environment at
program point pc(s) is high, and S is high, then S′ is high.

The combination of the unwinding lemmas, the high context lemmas, the monotonic-
ity lemmas and the SOAP properties enable to prove that typable programs are non-
interfering. The proof proceeds by induction on the length of derivations: assume that we
have two executions of a typable program ṗ, and that sn and s′m are final states:

s0 ; · · ·; sn

s′0 ; · · ·; s′m

such that pc(s0) = pc(s′0) and s0 ∼Spc(s0),Spc(s′
0)
s′0. We want to establish that either

the states sn and s′m are indistinguishable, i.e. sn ∼Spc(sn),Spc(s′
m)

s′m, or that both stack
types Spc(sn) and Spc(s′

m) are high. By induction hypothesis, we know that the property
holds for all strictly shorter execution paths.

Define i0 = pc(s0) = pc(s′0). By the locally respects lemma and typability hypoth-
esis, s1 ∼st,st′ s

′
1 for some stack types st and st ′ such that i0 ` Si0 ⇒ st , st v Spc(s1),

i0 ` Si0 ⇒ st ′, st ′ v Spc(s′
1)

.

• If pc(s1) = pc(s′1) we can apply monotony of indistinguishability (w.r.t. indexes)
to establish that s1 ∼Spc(s1),Spc(s′

1)
s′1 and conclude by induction hypothesis.

• If pc(s1) 6= pc(s′1) we know by the high branching lemma that se is high in region
region(i0) and st and st ′ are high. Hence both Spc(s1) and Spc(s′

1)
are high.

Using the SOAP properties, one can prove that either jun(i0) is undefined and
both Spc(sn) and Spc(s′

m) are high, or that jun(i0) is defined and there exists k, k′,
1 ≤ k ≤ n and 1 ≤ k′ ≤ m such that k = k′ = jun(i0) and sk ∼Spc(sk),Si0

s′0
s0 ∼Si0 ,Spc(s′

k′)
s′k′ . Since s0 ∼Si0 ,Si0

s′0 we have by transitivity and symmetry

of ∼, sk ∼Spc(sk),Spc(s′
k′)

s′k′ with pc(sk) = pc(s′k′) and we can conclude by
induction hypothesis.

3.5. Preservation of Typability

In this section, we focus on preservation of typability by compilation. Since the bytecode
type system uses both a cdr structure (region, jun) and a security environment se, we
must extend the compiler of Section 2.3 so that it generates for each program p a cdr
structure (region, jun) and the security environment se such that [[p]] is typable w.r.t.
(region, jun) and se. The cdr structure of the compiled programs can be defined easily.
For example, the region of if statement is given by the clause:

k : [[if(e1 cmp e2){i1}{i2}]] = [[e2]]; [[e1]]; if cmp k2; k1 : [[i1]]; goto l; k2 : [[i2]]
where k1 = k + |[[e2]]|+ |[[e1]]|+ 1

k2 = k1 + |[[i1]]|+ 1
l = k2 + |[[i2]]|

region(k1 − 1) = [k1, l − 1]
jun(k1 − 1) = l

blev(k1 − 1) =
⋃
{τ |` e1 cmp e2 : τ}

Note that in addition to the region, we define the branching level blev(k1 − 1) of k1 − 1
as the minimal level of its associated test, i.e. blev(k1 − 1) low if all variables in e1 and
e2 are low, and high otherwise.

Likewise, the region of while statement is given by the clause:

k : [[while(e1 cmp e2){i}]] = [[e2]]; [[e1]]; if cmp k2; k1 : [[i]]; goto k
where k1 = k + |[[e2]]|+ |[[e1]]|+ 1

k2 = k1 + |[[i]]|+ 1
region(k1 − 1) = [k, l − 1]

jun(k1 − 1) = l
blev(k1 − 1) =

⋃
{τ |` e1 cmp e2 : τ}

The security environment is derived from the cdr structure and the branching level of
program points. Formally, we define

se(i) =
⋃
{blev(j) | i ∈ region(j)}

with the convention that
⋃
∅ = L.

Theorem 3.10 (Typability Preservation) Let p be a typable source program. Then [[p]]
is a typable bytecode program w.r.t. the generated cdr structure (region, jun) and the

generated security environment se. In addition, the cdr structure (region, jun) satisfies
the SOAP properties.

Using the fact that the compiler preserves the semantics of program, the soundness of the
information flow type system for bytecode and preservation of typability, we can derive
soundness of the information flow type system for the source language.

Corollary 3.11 (Soundness of source type system) Let p be a typable IMP program
w.r.t. to a memory security policy Γ. Then p is non-interfering w.r.t. Γ.

By preservation of typing, [[p]] is typable, and thus non-interfering by soundness of the
bytecode type system. By correctness of the compiler, the program p is non-interfering
iff its compilation [[p]] is non-interfering, and therefore p is non-interfering.

3.6. Optimizations

Simple optimizations such as constant folding, dead code elimination, and rewriting
conditionals whose conditions always evaluate to the same constant can be modeled as
source-to-source transformations and can be shown to preserve information-flow typing.
Figure 10 provides examples of transformations that preserve typing.2 Most rules are of
the form

P [i] = ins constraints

P [i] = ins′
P [i, i+ n] = ~ins constraints

P [i, i+ n] = ~ins′

where ins is the original instruction and ins′ is the optimized instruction. In some cases
however, the rules are of the form

P [i, n+m] = ~ins constraints

P [i, n+m′] = ~ins′

with m 6= m′. Therefore such rules do not preserve the number of instructions, and the
transformations must recompute the targets of jumps, which is omitted here.

In the rules, we use F to denote a stack-preserving sequence of instructions, i.e. a
sequence of instructions such that the stack is the same at the beginning and the end of F
execution, which we denote as F∈ StackPres in the rules. We also assume that there are
no jumps from an instruction in F outside F , so that all executions must flow through
the immediate successor of F , and that there are no jumps from an instruction outside
F inside F , so that all executions enter F through its immediate predecessor. In other
words, we assume that ins :: F :: ins′ is a program fragment, where ins and ins′ are
the instructions preceding and following F .

The last rule uses VAL(x, i) to denote the safe approximation of the value of x at
program point i; this approximation can be statically computed through, e.g., symbolic
analysis. The optimizations use two new instructions nop and dup, the first one simply
jump to the next program point, the second duplicates the top value of the stack and
continues the execution to the next program point.

2Thanks to Salvador Cavadini for contributing to these examples.

P [i, i+ n+ 2] = i :: F :: pop i ∈ {load x, push n}
P [i, i+ n] = F

P [i, i+ n] = binop op :: F :: pop
P [i, i+ n] = pop :: F :: pop

P [i] = store x x is dead at P [i]
P [i] = pop

P [i, i+ n] = load x :: F :: load x store x 6∈ F
P [i, i+ n] = load x :: F :: dup

P [i, i+ n] = store x :: F :: load x store x 6∈ F
P [i, i+ n] = dup :: store x :: F

P [i, i+ 2 + n] = store x :: load x :: F :: store x store x, load x 6∈ F
P [i, i+ n] = F :: store x

P [i, i+ 2] = push c1 :: push c2 :: binop op
P [i] = push (c1 op c2)

P [i] = load x VAL(x, i) = n
P [i] = push n

In all rules, we assume that F is stack-preserving.

Figure 10. OPTIMIZING TRANSFORMATION RULES

As noted in [?], more aggressive optimizations may break type preservation, even
though they are semantics preserving, and therefore security preserving. For example,
applying common subexpression elimination to the program

xH := n1 ∗ n2; yL := n1 ∗ n2

where n1 and n2 are constant values, will result in the program

xH := n1 ∗ n2; yL := xH

Assuming that variable xH is a high variable and yL is a low variable, the original pro-
gram is typable, but the optimized program is not, since the typing rule for assignment
will detect an explicit flow yL := xH . For this example, one can recover typability by
creating a low auxiliary variable zL in which to store the result of the computation n1∗n2,
and assign zL to xH and yL, i.e.

zL := n1 ∗ n2;xH := zL; yL := zL

source logical expressions ē ::= res | x̄ | x | c | ē op ē
source logical tests t̄ ::= ē cmp ē
source propositions φ ::= t̄ | ¬φ | φ ∧ φ | φ ∨ φ | φ⇒ φ | ∃x. φ | ∀x. φ

Figure 11. SPECIFICATION LANGUAGE FOR SOURCE PROGRAMS

wpS(skip, ψ) = ψ, ∅ wpS(x := e, ψ) = ψ{x← e}, ∅

wpS(i2, ψ) = φ2, θ2 wpS(i1, φ2) = φ1, θ1
wpS(i1; i2, ψ) = φ1, θ1 ∪ θ2

wpS(it, ψ) = φt, θt wpS(if , ψ) = φf , θf

wpS(if(t){it}{if}, ψ) = (t⇒ φt) ∧ (¬t⇒ φt), θt ∪ θf

wpS(i, I) = φ, θ
wpS(whileI(t){i}, ψ) = I, {I ⇒ (t⇒ φ) ∧ (¬t⇒ ψ)} ∪ θ

Figure 12. WEAKEST PRE-CONDITION FOR SOURCE PROGRAMS

The above examples show that a more systematic study of the impact of program opti-
mizations on information flow typing is required.

4. Verification conditions

Program logics are expressive frameworks that enable reasoning about complex proper-
ties as well as program correctness. Early program verification techniques include Hoare
logics, and weakest pre-condition calculi, which are concerned with proving program
correctness in terms of triples, i.e. statements of the form {P}c{Q}, where P and Q are
respectively predicates about the initial and final states of the program c. The intended
meaning of a statement {P}c{Q} is that any terminating run of the program c starting
with a state s satisfying the pre-condition P will conclude in a state s′ that satisfies the
post-condition Q. In these notes, we focus on a related mechanism, called verification
condition generation, which differs from the former by operating on annotated programs,
and is widely used in program verification environments.

4.1. Source language

The verification condition generator VCgen operates on annotated source programs, i.e.
source programs that carry a pre-condition, a post-condition, and an invariant for each

stack expressions ōs ::= os | ē :: ōs |↑k ōs
bytecode logical expressions ē ::= res | x̄ | x | c | ē op ē | ōs[k]
bytecode logical tests t̄ ::= ē cmp ē
bytecode propositions φ ::= t̄ | ¬φ | φ ∧ φ | φ ∨ φ | φ⇒ φ | ∃x. φ | ∀x. φ

where os is a special variable representing the current stack operand stack.

Figure 13. SPECIFICATION LANGUAGE FOR BYTECODE PROGRAMS

loop.

Definition 4.1 (Annotated source program)

• The set of propositions is defined in Figure ??, where x̄ is a special variable rep-
resenting the initial value of the variable x, and res is a special value representing
the final value of the evaluation of the program.

• A pre-condition is a proposition that only refers to the initial values of variables.
An invariant is a proposition that refers to the initial and current values of vari-
ables (not to the final result). A post-condition is a proposition.

• An annotated program is a triple (p,Φ,Ψ), where Φ is a pre-condition, Ψ is a
post-condition, and p is a program in which all while loops are annotated (we note
whileI(t){s} for a loop annotated with invariant I).

The VCgen computes a set of verification conditions (VC). Their validity ensure that the
program meets its contract, i.e. that every terminating run of a program starting from a
state that satisfies the program pre-condition will terminate in a state that satisfies the
program post-condition, and that loop invariants hold at the entry and exit of each loops.

Definition 4.2 (Verification conditions for source programs)

• The weakest pre-condition calculus wpS(i, ψ) relative to a instruction i and a
post-condition ψ is defined by the rules of Figure ??.

• The verification conditions of an annotated program (p,Φ,Ψ) with p = i; return e
is defined as

VCgenS(p,Φ,Ψ) = {Φ⇒ φ{~x← ~̄x}} ∪ θ

where wpS(i,Ψ{res← e}) = φ, θ.

4.2. Target language

As for the source language, the verification condition generator operates on annotated
bytecode programs, i.e. bytecode that carry a pre-condition, a post-condition and loop
invariants. In an implementation, it would be reasonable to store invariants in a separate
annotation table, the latter being a partial function form program points to propositions.
Here we find it more convenient to store the annotations directly in the instructions.

Definition 4.3 (Annotated bytecode program)

• The set of bytecode propositions is defined in Figure ??.

• An annotation is a proposition that does not refer to the operand stack. A pre-
condition is an annotation that only refers to the initial value of variables. An
invariant is an annotation that does not refer to the result of the program. A post-
condition is an annotation.

• An annotated bytecode instruction is either an bytecode instruction or a bytecode
proposition and a bytecode instruction:

ī ::= i | φ : i

• An annotated program is a triple (ṗ, Φ̇, Ψ̇), where Φ̇ is a pre-condition, Ψ̇ is a post-
condition, and ṗ is a bytecode program in which some instructions are annotated.

At the level of the bytecode language, the predicate transformer wp is a partial function
that computes, from a partially annotated program, a fully annotated program in which
all labels of the program have an explicit pre-condition attached to them. However, wp
is only defined on programs that are sufficiently annotated, i.e. through which all loops
must pass through an annotated instruction. The notion of sufficiently annotated is char-
acterized by an inductive and decidable definition and does not impose any specific struc-
ture on programs.

Definition 4.4 (Well-annotated program) A annotated program ṗ is well-annotated if
every program point satisfies the inductive predicate reachAnnotṗ defined by the clauses:

ṗ[k] = φ : i
k ∈ reachAnnotṗ

ṗ[k] = return
k ∈ reachAnnotṗ

∀k′. k 7→ k′ ⇒ k′ ∈ reachAnnotṗ
k ∈ reachAnnotṗ

Given a well-annotated program, one can generate an assertion for each label, using the
assertions that were given or previously computed for its successors. This assertion repre-
sents the pre-condition that an initial state before the execution of the corresponding label
should satisfy for the function to terminate only in a state satisfying its post-condition.

Definition 4.5 (Verification conditions for bytecode programs) Let (ṗ, Φ̇, Ψ̇) be a
well-annotated program.

• The weakest pre-condition wpL(k) of a program point k and the weakest pre-
condition wpi(k) of its corresponding instruction are defined in Figure ??.

• The verification conditions VCgenB(ṗ, Φ̇, Ψ̇) is defined by the clauses:

Φ̇⇒ wpL(0){~x← ~̄x}) ∈ VCgenB(ṗ, Φ̇, Ψ̇)
ṗ[k] = φ : i

φ⇒ wpi(k)) ∈ VCgenB(ṗ, Φ̇, Ψ̇)

wpi(k) = wpL(k + 1){os← c :: os} if ṗ[k] = push c
wpi(k) = wpL(k + 1){os← (os[0] op os[1]) ::↑2 os} if ṗ[k] = binop op
wpi(k) = wpL(k + 1){os← x :: os} if ṗ[k] = load x
wpi(k) = wpL(k + 1){os, x← ↑ os, os[0]} if ṗ[k] = store x
wpi(k) = wpL(l) if ṗ[k] = goto l
wpi(k) = (os[0] cmp os[1]⇒ wpL(k + 1){os← ↑2 os})

∧ (¬(os[0] cmp os[1])⇒ wpL(l){os← ↑2 os})
if ṗ[k] = if cmp l

wpi(k) = Ψ̇{res← os[0]} if ṗ[k] = return

wpL(k) = φ if ṗ[k] = φ : i
wpL(k) = wpi(k) otherwise

Figure 14. WEAKEST PRE-CONDITION FOR BYTECODE PROGRAMS

ρ̄, os, ρ ` os 7→ os
ρ̄, os, ρ ` ē 7→ e ρ̄, os, ρ ` ōs 7→ os′

ρ̄, os, ρ ` ē :: ōs 7→ v :: os′

ρ̄, os, ρ ` ōs 7→ v1 :: . . . :: vk :: os′

ρ̄, os, ρ `↑k ōs 7→ os′
ρ̄, os, ρ ` ōs 7→ v0 :: . . . :: vk :: os′

ρ̄, os, ρ ` ōs[k] 7→ vk

ρ̄, os, ρ ` x̄ 7→ ρ̄(x) ρ̄, os, ρ ` x 7→ ρ(x) ρ̄, os, ρ ` c 7→ c
ρ̄, os, ρ ` ē1 7→ v1 ρ̄, os, ρ ` ē2 7→ v2

ρ̄, os, ρ ` ē1 op ē2 7→ v1 op v2

Figure 15. INTERPRETATION OF BYTECODE EXPRESSIONS

4.3. Soundness

Bytecode (resp. source) propositions can be interpreted as predicates on bytecode (resp.
source) states. In the case of bytecode, the interpretation builds upon a partially defined
interpretation of expressions (partiality comes from the fact that some expressions refer
to the operand stack and might not be well defined w.r.t. particular states).

Definition 4.6 (Correct program)

• The evaluation of logical bytecode expressions ē in an initial memory ρ̄, a current
operand stack os and a current memory ρ to a value v is defined by the rules of
Figure ??. This evaluation is naturally extended to bytecode propositions ρ̄, os, ρ `
P 7→ φv , where φv is a boolean formula, with the following rule for tests:

ρ̄, os, ρ ` ē1 7→ v1 ρ̄, os, ρ ` ē2 7→ v2
ρ̄, os, ρ ` ē1 cmp ē2 7→ v1 cmp v2

• An initial memory ρ̄, a current operand stack os and a current memory ρ validate
a logical bytecode proposition φ,ρ̄, os, ρ ` φ, if ρ̄, os, ρ ` φ 7→ φv and φv is a
valid boolean formula.

• A well-annotated bytecode program (ṗ, Φ̇, Ψ̇) is correct, written ` VCgenB(ṗ, Φ̇, Ψ̇),
if all the verification conditions are valid.

Soundness establishes that the VCgen is a correct backwards abstraction of one step
execution.

Lemma 4.7 (One step soundness of VCgen) For all correct programs (ṗ, Φ̇, Ψ̇):

〈k, ρ, os〉; 〈k′, ρ′, os′〉
ρ̄, os, ρ ` wpi(k)

}
⇒ ρ̄, os′, ρ′ ` wpL(k′)

Furthermore, if the evaluation terminates 〈k, ρ, os〉 ; ρ, v (i.e the instruction at posi-
tion k is a return) then ρ̄, ∅, ρ′ ` Ψ̇{res← v}

Soundness of the VCgen w.r.t. pre-condition and post-condition follows.

Corollary 4.8 (Soundness of VCgen) For all correct programs (ṗ, Φ̇, Ψ̇), initial mem-
ory ρ̄, final memory ρ and final value v, if ṗ : ρ̄ ⇓ ρ, v and ρ̄, ∅, ∅ ` Φ̇ then
ρ̄, ∅, ρ ` Ψ̇{res← v}

The proof proceeds as follows. First, we prove by induction on n that

〈k, ρ, os〉;n 〈k′, ρ′, os′〉
ρ̄, os, ρ ` wpi(k)

}
⇒ ρ̄, os′, ρ′ ` wpi(k

′)

If n = 0, it is trivial. If n = 1+m, we have 〈k, ρ, os〉; 〈k1, ρ1, os1〉;n 〈k′, ρ′, os′〉.
It is sufficient to prove that ρ̄, os1, ρ1 ` wpi(k1), since then we can conclude the proof
using the induction hypothesis. Using the previous lemma, we get ρ̄, os1, ρ1 ` wpL(k1).

We now conclude with a case analysis:

• if the program point k1 is not annotated then wpL(k1) = wpi(k1), and we are
done;

• if the program point k1 is annotated, say ṗ[k1] = φ : i, then wpL(k1) = φ. Since
the program is correct the proposition φ ⇒ wpi(k1) is valid and so ρ̄, os1, ρ1 `
wpi(k1).

Second, since ṗ : ρ̄ ⇓ ρ, v there exists n such that

〈0, ρ0, ∅〉;n 〈k, ρ, os〉; ρ, v

By step one above, we have ρ0, os, ρ ` wpi(k). Furthermore, ṗ[k] = return so wpi(k) =
Ψ̇{res← os[0]}. This concludes the proof.

4.4. Preservation of proof obligations

We now extend our compiler so that it also inserts annotations in bytecode programs,
and show that it transforms programs into well-annotated programs, and that further-
more it transforms correct source programs into correct bytecode programs. In fact, we
show a stronger property, namely that the proof obligations at source and bytecode level
coincide.

The compiler of Section 2.3 is modified to insert invariants in bytecode:

k : [[whileI(e1 cmp e2){i}]] = I : [[e2]]; [[e1]]; if cmp k2; k1 : [[i]]; goto k
where k1 = k + |[[e2]]|+ |[[e1]]|+ 1

k2 = k1 + |[[i]]|+ 1

As expected, the compiler produces well-annotated programs.

Lemma 4.9 (Well-annotated programs) For all annotated source program(p,Φ,Ψ),
the bytecode program [[p]] is well-annotated.

In addition, the compiler “commutes” with verification condition generation. Further-
more, the commutation property is of a very strong form, since it claims that proof obli-
gations are syntactically equal.

Proposition 4.10 (Preservation of proof obligations – PPO) For all annotated source
program (p,Φ,Ψ):

VCgenS(p,Φ,Ψ) = VCgenB([[p]],Φ,Ψ)

Thus, correctness proofs of source programs can be used directly as proof of bytecode
programs without transformation. In particular, the code producer can directly prove the
source program and send the proofs and the compiled program to the code consumer
without transforming the proofs.

Using the fact that the compiler preserves the semantics of program, the soundness
of the verification condition generator for bytecode and PPO, we can derive soundness
of the source verification condition generator. (The notion of correct source program is
defined in the same way as that of bytecode program).

Corollary 4.11 (Soundness of VCgenS) If ` VCgenS(p,Φ,Ψ) then for all initial mem-
ories ρ0 satisfying Φ, if p : ρ0 ⇓S ρ, v then ρ0, ρ ` Ψ.

By correctness of the compiler, [[p]] : ρ0 ⇓ ρ, v. By preservation of proof obligations,
` VCgenB([[p]],Φ,Ψ). By correctness of the bytecode VCgen, ρ0, ρ ` Ψ.

4.5. Optimizations

Preservation of proof obligations does not hold in general for program optimizations, as
illustrated by the following example:

r1 := 1
{true}
r2 := r1
{r1 = r2}

r1 := 1
{true}
r2 := 1
{r1 = r2}

The proof obligations related to the sequence of code containing the assignment r2 := r1
is true⇒ r1 = r1 and true⇒ r1 = 1 for the original and optimized version respectively.
The second proof obligation is unprovable, since this proof obligation is unrelated to the
sequence of code containing the assignment r1 := 1.

In order to extend our results to optimizing compilers, we are led to consider certifi-
cate translation, whose goal is to transform certificates of original programs into certifi-
cates of compiled programs. Given a compiler [[·]], a function [[·]]spec to transform spec-
ifications, and certificate checkers (expressed as a ternary relation “c is a certificate that
P adheres to φ”, written c : P |= φ), a certificate translator is a function [[·]]cert such that
for all programs p, policies φ, and certificates c,

c : p |= φ =⇒ [[c]]cert : [[p]] |= [[φ]]spec

In [1], we show that certificate translators exist for most common program optimizations,
including program transformations that perform arithmetic reasoning. For such transfor-
mations, one must rely on certifying analyzers that generate automatically certificates of
correctness for the analysis, and then appeal to a weaving process to produce a certificate
of the optimized program.

Whereas [1] shows the existence of certificate translators on a case-by-case basis, a
companion work [2] uses the setting of abstract interpretation [7,8] to provide sufficient
conditions for transforming a certificate of a program p into a certificate of a program p′,
where p′ is derived from p by a semantically justified program transformation, such as
the optimizations considered in [1].

5. Extensions to sequential Java

The previous sections have considered preservation of information flow typing and
preservation of proof obligations for a simple language. In reality, these results have been
proved for a sequential Java-like language with objects, exceptions, and method calls.
The purpose of this section is to highlight the main issues of this extension. The main
difficulties are three-fold:

• dealing with object-orientation: Java and JVM constructs induce a number of well-
known difficulties for verification. For instance, method signatures (for type sys-
tems) or specifications (for logical verification) are required for modular verifica-
tion. In addition, signatures and specifications must account for all possible termi-
nation behaviors; in the case of method specifications, it entails providing excep-
tional post-conditions as well as normal post-conditions. Furthermore, signatures
and specifications must be compatible with method overriding;

• achieving sufficient precision: a further difficulty in scaling up our results to a Java-
like language is precision. The presence of exceptions and object-orientation yields
a significant blow-up in the control flow graph of the program, and, if no care is
taken, may lead to overly conservative type-based analyses and to an explosion
of verification conditions. In order to achieve an acceptable degree of usability,
both the information flow type system and the verification condition generator
need to rely on preliminary analyses that provide a more accurate approximation
of the control flow graph of the program. Typically, the preliminary analyses will

perform safety analyses such as class analysis, null pointer analysis, exception
analysis, and array out-of-bounds analysis. These analyses drastically improve the
quality of the approximation of the control flow graph (see [4] forthe case of null
pointer exceptions). In particular, one can define a tighter successor relation 7→ that
leads to more precise cdr information and thus typing in the case of information
flow [3], and to more compact verification conditions in the case of functional
verification [11];

• guaranteeing correctness of the verification mechanisms: the implementation of
type-based verifiers and verification condition generators for sequential Java byte-
code are complex programs that form the cornerstone of the security architectures
that we propose. It is therefore fundamental that their implementation is correct,
since flaws in the implementation of a type system or of a verification condition
generator can be exploited to launch attacks. We have therefore used the Coq proof
assistant [?] to certify both verification mechanisms. The verification is based on
Bicolano, a formal model of a fragment of the Java Virtual Machine in the Coq
proof assistant. In addition to providing strong guarantees about the correctness
of the type system and verification condition generator, the formalization serves
as a basis for a Foundational Proof Carrying Code architecture. A distinctive fea-
ture of our architecture is that both the type system and the verification condition
generator are executable inside higher order logic and thus one can use reflection
for verifying certificates. As compared to Foundational Proof Carrying Code [?],
which is deductive in nature, reflective Proof Carrying Code exploits the interplay
between deduction and computation to support efficient verification procedures
and compact certificates.

6. Conclusion

Popular verification environments such as Jif (for information flow) and ESC/Java (for
functional verification) target source code, and thus do not address directly the concerns
of mobile code, where code consumers require guarantees on the code they download and
execute. The purpose of these notes has been to demonstrate in a simplified setting that
one can bring the benefits of source code verification to code consumers by developing
adequate verification methods at bytecode level and by relating them suitably to source
code verification.

Acknowledgments This work is partially supported by the EU project MOBIUS, and
by the French ANR project PARSEC.

References

[1] A. W. Appel. Foundational Proof-Carrying code. In Proceedings of LICS’01, pages 247–258. IEEE
Computer Society, 2001.

[2] G. Barthe, B. Grégoire, C. Kunz, and T. Rezk. Certificate translation for optimizing compilers. In K. Yi,
editor, Static Analysis Symposium, number 4134 in Lecture Notes in Computer Science, Seoul, Korea,
August 2006. Springer-Verlag.

[3] G. Barthe, D. Naumann, and T. Rezk. Deriving an information flow checker and certifying compiler for
Java. In Symposium on Security and Privacy. IEEE Press, 2006.

[4] G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-interference java bytecode verifier.
In R. De Niccola, editor, European Symposium on Programming, volume 4421 of Lecture Notes in
Computer Science, pages 125 – 140. Springer-Verlag, 2007.

[5] D. R. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java and JML — progress and issues in build-
ing and using ESC/Java2, including a case study involving the use of the tool to verify portions of an
Internet voting tally system. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, edi-
tors, Proceedings of CASSIS’04, volume 3362 of Lecture Notes in Computer Science, pages 108–128.
Springer-Verlag, 2005.

[6] Coq Development Team. The Coq Proof Assistant User’s Guide. Version 8.0, January 2004.
[7] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints. In Principles of Programming Languages, pages 238–
252, 1977.

[8] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Principles of Program-
ming Languages, pages 269–282, 1979.

[9] S. N. Freund and J. C. Mitchell. A Type System for the Java Bytecode Language and Verifier. Journal
of Automated Reasoning, 30(3-4):271–321, December 2003.

[10] J. Goguen and J. Meseguer. Security policies and security models. In Proceedings of SOSP’82, pages
11–22. IEEE Computer Society Press, 1982.

[11] X. Leroy. Java bytecode verification: algorithms and formalizations. Journal of Automated Reasoning,
30(3-4):235–269, December 2003.

[12] A.C. Myers. Jflow: Practical mostly-static information flow control. In Proceedings of POPL’99, pages
228–241. ACM Press, 1999.

[13] G.C. Necula. Proof-Carrying Code. In Proceedings of POPL’97, pages 106–119. ACM Press, 1997.
[14] G.C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University, October 1998. Available

as Technical Report CMU-CS-98-154.
[15] G.C. Necula and P. Lee. Safe kernel extensions without run-time checking. In Proceedings of OSDI’96,

pages 229–243. Usenix, 1996.
[16] E. Rose. Lightweight bytecode verification. Journal of Automated Reasoning, 31(3-4):303–334, 2003.
[17] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal on Selected Areas

in Communication, 21:5–19, January 2003.
[18] D. Volpano and G. Smith. A Type-Based Approach to Program Security. In M. Bidoit and M. Dauchet,

editors, Proceedings of TAPSOFT’97, volume 1214 of Lecture Notes in Computer Science, pages 607–
621. Springer-Verlag, 1997.

