
CIC :̂ type-based termination of recursive definitions in
the Calculus of Inductive Constructions?

Gilles Barthe1, Benjamin Gŕegoire1, and Fernando Pastawski1,2

1 INRIA Sophia-Antipolis, France
{Gilles.Barthe,Benjamin.Gregoire,Fernando.Pastawski}@sophia.inria.fr

2 FaMAF, Univ. Nacional de Ćordoba, Argentina

Abstract. Sized types provides a type-based mechanism to enforce termination
of recursive definitions in typedλ-calculi. Previous work has provided strong
indications that type-based termination provides an appropriate foundation for
proof assistants based on type theory; however, most work to date has been con-
fined to non-dependent type systems. In this article, we introduce a variant of
the Calculus of Inductive Constructions with sized types and study its meta the-
oretical properties: subject reduction, normalization, and thus consistency and
decidability of type-checking and of size-inference. A prototype implementation
has been developed alongside case studies.

1 Introduction

Proof assistants based on dependent type theory rely on termination of typable programs
to guarantee decidability of convertibility and hence decidability of typing. In order to
enforce termination of programs, proof assistants typically require that recursive calls
in a function definition are always performed on structurally smaller arguments; in the
Coq proof assistant, which forms the focus of this article, the requirement is captured by
a guard predicateG on expressions, that is applied to the body of recursive definitions
for deciding whether or not the function should be accepted. Providing a liberal yet
intuitive and correct syntactic guard criterion to guarantee termination is problematic.

Type-based terminationis an alternative approach to enforce termination of recur-
sive definitions through an extended type system that manipulatessized types, i.e. types
that convey information about the size of their inhabitants. In a nutshell, the key in-
gredients of type-based termination are the explicit representation of the successive
approximations of datatypes in the type system, a subtyping relation to reflect inclusion
of the successive approximations and the adoption of appropriate rules for constructors,
case expressions, and fixpoints.

Previous work by the authors [6, 7] and by others (see Section 2) has shown that
type-based termination is an intuitive and robust mechanism, and a good candidate for
enforcing termination in proof assistants based on dependent type theories. However,
these works were concerned with non-dependent type systems. The contribution of the
paper is an extension of these results to dependent type theories, and more precisely

? More details on difficulties with Coq, case studies, remaining issues and proofs and an imple-
mentation are available from the second author’s web page.

to the Calculus of Inductive Constructions; concretely, we introduce CIC,̂ a variant
of the Calculus of Inductive Constructions that enforces termination of recursive def-
initions through sized types. Besides, we show that the system CIĈ enjoys essential
properties required for proof assistants, in particular logical consistency and decidabil-
ity of type-checking, and decidability of size-inference. We have developed a prototype
implementation of CIĈand used it to prove the correctness ofquicksort.

2 Related work

The idea of ensuring termination and productivity of fixpoint definitions by typing can
be traced back to early work by Mendler [21] on recursion schemes, and to work by
Hughes, Pareto and Sabry [18] on the use of sized types to ensure productivity of pro-
grams manipulating infinite objects. We refer the reader to [2, 6] for a review of related
work, and focus on work that deals with dependent types or with size inference.

Inference Chin and Khoo [14] were among the first to study size inference in a non-
dependent setting; they provided an algorithm that generates formulae of Presburger
arithmetic to witness termination for a class of strongly normalizing terms typable in a
(standard) simply typedλ-calculus with recursive definitions.

Type-checking algorithms for systems that enforce type-based termination were de-
veloped by Xi [25] for a system with restricted dependent types and by Abel [1, 2] for a
higher order polymorphicλ-calculus. More recently, Blanqui and Riba [12] have shown
(termination and) decidability of type checking for a simply typedλ-calculus extended
with higher-order rewriting and based on constraint-based termination, a generalization
of type-based termination inspired from [14].

Dependent typesGiménez [17] was the first to consider a dependent type theory that
uses type-based termination: concretely, he defined a variant of the Calculus of In-
ductive Constructions with type-based termination, and stated strong normalization for
his system. The paper does not contain proofs and does not deal with size inference;
besides, Giḿenez does not use an explicit representation of stages, which makes the
system impractical for mutually recursive definitions. This work was pursued by Bar-
ras [4], who considered a variant of Giménez system with an explicit representation of
stages, and proved in Coq decidability of type-checking assuming strong normalization.

Blanqui [10, 11] has defined a type-based variant of the Calculus of Algebraic Con-
structions (CAC) [9], an extension of the Calculus of Constructions with higher-order
rewriting à la Jouannaud-Okada [19], and showed termination and decidability of type-
checking. It is likely that strong normalization for CIĈ (which we conjecture) can be
derived from [10], in the same way that strong normalization of CIC can be derived
from strong normalization of CAC [9]. On the other hand, our inference result is more
powerful than [11]. Indeed, our system only requires terms to carry a minimal amount
of size annotations, and uses a size inference algorithm to compute these annotations,
whereas size annotations are pervasive in Blanqui’s system, and merely checked. We
believe that size inference has a significant impact on the usability of the system, and is
a requirement for a practical use of type-based termination in a proof-assistant.

3 A primer on type-based termination

The object of this section is to provide a (necessarily) brief introduction to type-based
termination. For more information (including a justification of some choices for the
syntax of non-dependent systems and inherited here), we refer the reader to [6, 7].

Consider for example the datatype of lists; in our system, the user declares the
datatype with a declaration

List [A : Set] : Set := nil : List | cons : A → List → List

Lists are then represented by an infinite set of approximationsLists A, wheres is a size
(or stage) expression taken from the following grammar:

s ::= ı | ŝ | ∞

wherê· denotes the successor function on stage expressions, and where we adopt the
convention that̂∞ = ∞. Intuitively, Lists A denotes the type ofA-lists of size at
mosts, and in particular,List∞ A denotes the usual type ofA-lists. In order to reflect
inclusion between successive approximations of lists, we introduce a subtyping relation
with the rules

Lists A ≤ Listbs A Lists A ≤ List∞ A

together with the usual rules for reflexivity, transitivity, and function space.
The typing rules for constructors confirm the intuitive meaning that the size of a

constructor term is one plus the maximum size of its subterms:

Γ `A : ω

Γ `nil |A| : Listbı A

Γ `A : ω Γ `a : A Γ ` l : Lists A

Γ `cons |A| a l : Listbs A

Note that the empty list cannot be of typeListı because it would break normalization.
Furthermore, note that parameters in constructors do not carry any size annotations
(they are removed by the erasure function|.|), both to ensure subject reduction and
to guarantee that we do not have multiple canonical inhabitants for parametrized types:
e.g. in this way we guarantee thatnil Nat is the only empty list inList Nat∞; otherwise
we would have for each stage s an empty listnil Nats of typeList Nat∞.

Then, the typing rule for fixpoints ensures that recursive function calls are always
performed on arguments smaller than the input:

Γ, f : Listı A → B`e : Listbı A → B[ı := ı̂]
Γ `(fix f : |Listı A → B|ı := e) : Lists A → B[ı := s]

whereı occurs positively inB and does not occur inΓ, A. Note that the tag off in the
recursive definition does not carry size annotations (we use the erasure function|.|ı2);
instead, it simply carries position annotations in some places, to indicate which recur-
sive arguments have a size related to the decreasing argument. The purpose of position
annotations is to guarantee the existence of compact most general typings (without po-
sition annotations we would need union types), see [7].

In the conclusion, the stages is arbitrary, so the system features someimplicit stage
polymorphism. Further, the substitution in the conclusion is useful to compute so-called
precise typings. For example, CIĈallows the precise typings formap andfilter:

map : ΠA : Set. ΠB : Set. (A → B) → (listı A) → (listı B)
filter : ΠA : Set. (A → bool) → (listı A) → (listı A)

to reflect that themap andfilter function outputs a list whose length is smaller or equal
to the length of the list that they take as arguments. In turn, the precise typing offilter is
used to type functions that are rejected by many syntactic criteria of termination, such
as thequicksort function. Wahlstedt[23] presents a size-change principle that accepts
many recursion schemes that escape our type system but is unable to gain expressive-
ness from size preserving functions.

4 System CIĈ

The system CIĈis a type-based termination version of the Calculus of Inductive Con-
structions (CIC) [24]. The latter is an extension of the Calculus of Constructions with
(co-)inductive types, and the foundation of the Coq proof assistant. In this paper, we
omit co-inductive types. On the other hand, we present CIĈas an instance of a Sized
Inductive Type System, which is an extension of Pure Type Systems [3] with inductive
types using size-based termination.

Specifications The type system is implicitly parametrized by a specification that is a
quadruple of sortsS, axiomsAxioms, product rulesRules, and elimination rulesElim.
Sorts are the universes of the type system; typically, there is one sortProp of proposi-
tions and a sortSetof types. Axioms establish typing relations between sorts, product
rules determine which dependent products may be formed and in which sort they live,
and elimination rules determine which case analysis may be performed. The specifica-
tion for CIĈ is that of CIC [22].

Terms Following F̂ [7], CIĈ features three families of expressions to ensure subject
reduction and efficient type inference. The first family is made of bare expressions that
do not carry any size information: bare expressions are used in the tags ofλ-abstractions
and case expressions and as parameters in inductive definitions/constructors. The sec-
ond family is made of positions expressions that are used in the tags of recursive defi-
nitions and rely on a mark? to denote (in a recursive definition) which positions have a
size related to that of the recursive argument. Finally, the third family is made of sized
expressions that carry annotations (except in their tags).

Definition 1 (Stages and expressions).

1. The setS of stage expressionsis given by the abstract syntax:s, r ::= ı | ∞ | ŝ.
Stage substitution is defined in the obvious way, and we writes[ı := s′] to denote
the stage obtained by replacingı by s′ in s. Furthermore, the base stage of a stage
expression is defined by the clausesbıc = ı and bŝc = bsc (the function is not
defined on stages that contain∞).

WF([])
empty

WF(Γ) Γ `T : ω

WF(Γ (x : T))
cons

WF(Γ) (ω, ω′) ∈ Axioms

Γ `ω : ω′ sort

WF(Γ) Γ (x) = T

Γ `x : T
var

Γ `T : ω1 Γ (x : T)`U : ω2 (ω1, ω2, ω3) ∈ Rules

Γ `Πx :T. U : ω3
prod

Γ `Πx :T. U : ω Γ (x : T)`u : U

Γ `λx : |T |. u : Πx :T. U
abs

Γ `u : Πx :T. U Γ ` t : T

Γ `u t : U [x := t]
app

Γ ` t : T Γ `U : ω T � U

Γ ` t : U
conv

WF(Γ) I ∈ Σ

Γ `Is : TypeInd(I)
ind

I ∈ Σ Γ (x : TypeConstr(c, s))`x p a : U
params(c) = #p args(c) = #a x fresh inΓ, p, a

Γ `c(|p|, a) : U
constr

Γ ` t : Ibs p a I ∈ Σ Γ `P : TypePred(I, s, p, ω′)
(I.ω, ω′) ∈ Elim params(I) = #p Γ `bi : TypeBranch(ci, s, P, p)

Γ `case|P | t of {ci ⇒ bi} : P a t
case

T = Π∆. Πx :Iı u. U ı pos U #∆ = n− 1
ı does not occur in∆, u, Γ, t Γ `T : ω Γ (f : T)` t : T [ı := bı]

Γ `(fixn f : |T |ı := t) : T [ı := s]
fix

Fig. 1.Typing rules

2. The set ofP size positions is defined as{?, ε}.
3. The generic set of terms over the seta is defined by the abstract syntax:

T[a] ::= Ω | X | λX :T◦. T[a] | T[a] T[a] | ΠX :T[a]. T[a] | C(T◦,T[a]) | Ia

| caseT◦ T[a] of {C ⇒ T[a]} | fixn X :T? := T[a]

whereΩ, X, I andC range over sorts, variables, datatypes and constructors.
4. The set of bare expressions, position expressions, and sized expressions are defined

by the clausesT◦ ::= T[ε] andT? ::= T[P] andT ::= T[S].

Note that we require that constructors are fully applied; as mentioned above, we also
separate arguments of constructors into parameters that do not carry any size infor-
mation and arguments that may carry size information. Besides, the fixpoint definition
carries an indexn that determines the recursive argument of the function. Finally, ob-
serve that case expressions are tagged with a function that gives the type of each branch,
as required in a dependently typed setting.

Reduction and conversionThe computational behavior of expressions is given by the
usual rules forβ-reduction (function application),ı-reduction (pattern matching) and
µ-reduction (unfolding of recursive definitions). The definition of these rules relies on
substitution, whose formalization must be adapted to deal with the different categories
of expressions.

Definition 2 (Erasure and substitution).

1. The function|.| : T?∪T → T◦ is defined as the obvious erasure function from sized
terms (resp. position terms) to bare terms.

2. The function|.|ı : T → T? is defined as the function that replaces stage annotations
s with ? if the base stage ofs is ı (bsc = ı) and byε otherwise.

3. The substitution ofx by N into M is written asM [x := N]. (In fact we need
three substitution operators, one for each category of terms; all are defined in the
obvious way, and use the erasure functions when required.)

4. The substitution of stage variableı by stage expressions is defined asM [ı := s].

We are now in position to define the reduction rules.

Definition 3 (Reduction rules and conversion).

– The reduction relation→ is defined as the compatible closure of the rules:

(λx :T ◦. M) N → M [x := N] (β)

caseT◦ cj(p
◦, a) of {ci ⇒ ti} → tj a (ı)

(fixn f :T ? := M) b c(p◦, a) → M [f := (fixn f :T ? := M)] b c(p◦, a) (µ)

whereb is of lengthn− 1.
– We write

∗→ and≈ respectively for the reflexive-transitive and reflexive-symmetric-
transitive closure of→.

Both reduction and conversion are closed under substitution. Moreover, reduction is
Church-Rosser.

Lemma 1 (Church-Rosser).For every expressionsu and v such thatu ≈ v there
existst such thatu

∗→ t andv
∗→ t.

In particular normal forms are unique, hence we writeNF(A) for the normal form ofA
(if it exists) w.r.t.→.

Subtyping In order to increase its expressiveness, the type system features a subtyping
relation that is derived from a partial order on stages. The partial order reflects two
intuitions: first, that an approximationIs is contained in its successor approximation
Ibs; second, thatI∞ is closed under constructors, and the fixpoint of the monotonic
operator attached to inductive types.

Definition 4 (Substage).The relations is a substage ofs′, written s v s′, is defined
by the rules:

s v s

s v r r v p

s v p s v ŝ s v ∞

The substage relation defines a subtyping relation between types, using for each induc-
tive type a declaration that indicate the polarity of its parameters.

Definition 5 (Polarity declaration). We assume that each inductive typeI comes with
a vectorI.ν of polarity declarations, where each element of a polarity declaration can
be positive, negative or invariant:

ν ::= + | − | ◦

Subtyping is then defined in the expected way, using an auxiliary relation that defines
subtyping between vectors of expressions relative to a vector of positivity declarations.

Definition 6 (Subtyping).

– LetR be an equivalence relation stable under substitution of terms and stages. The
subtyping relations�R and�ν

R are simultaneously defined by the rules:

t1 R t2

t1 �R t2

T2 �R T1 U1 �R U2

Πx :T1. U1 �R Πx :T2. U2

s v s′ t1 �I.ν
R t2

Is t1 �R Is′ t2

t1 R u1 t �ν
R u

t1.t �◦.νR u1.u

t1 �R u1 t �ν
R u

t1.t �+.ν
R u1.u

u1 �R t1 t �ν
R u

t1.t �−.ν
R u1.u

t R u

t �∅R u

– We define� as the transitive closure of�≈. (Note that� is reflexive and allows
redex elimination through≈.)

– We define≤ as�=. (Note that≤ is reflexive and transitive.)

The subtyping relation� shall be used to define the type system of CIC,̂ whereas
the subtyping relation≤ shall be used by the inference algorithm. The two subtyping
relations are related by the following lemma.

Lemma 2. If A andA′ are normalizing, thenA � A′ iff NF(A) ≤ NF(A′).

Positivity In order to formulate the type system and to specify which inductive def-
initions are correct and supported by CIC,̂ we need several notions of positivity and
strict positivity. Strict positivity is used to guarantee termination of recursive functions,
whereas positivity is used to verify that polarity declarations are correct and in the rule
for fixpoints. We begin by defining positivity of stage variables. In contrast to simple
type systems, positivity cannot be defined syntactically, and we are forced to use a se-
mantic definition.

Definition 7 (Positivity of stage variables).ı is positive inT , written ı pos T , iff
T [ı := s1] � T [ı := s2] for all s1, s2 such thats1 v s2.

The above definition involves a universal quantification and thus is not practical for
algorithmic purposes. We provide an equivalent definition that can be used for type
checking.

Lemma 3 (Redefinition of positivity). If T is normalizing then

ı pos T ⇔ T � T [ı := ı̂] ⇔ NF(T) ≤ NF(T [ı := ı̂])

We can generalize the notion of positivity to term variables.

Definition 8 (Positivity of term variables).

– x is positive inT , writtenx pos T , iff T [x := t1] � T [x := t2] for all t1, t2 such
that t1 � t2.

– x is negative inT , writtenx neg T , iff T [x := t2] � T [x := t1] for all t1, t2 such
that t1 � t2.

We conclude this section with a definition of strict positivity. Indeed, contrary to
earlier work with non-dependent type systems, we cannot allow positive inductive types
in our system, because it would lead to an inconsistency [15].

Definition 9 (Strictly positive). A variablex is strictly positive inT , writtenx POS T ,
if x does not appear inT or if T ≈ Π∆. x t andx does not appear in∆ andt.

Inductive types Inductive definitions are declared in a signatureΣ; each inductive
definition is introduced with a declaration of the form

Ind(I[∆p]ν : Π∆a. ω :=
−−−−−−−−−→
ci : Π∆i. δ ti)

whereI is the name of the inductive type,∆p is a context defining its parameters and
their type,∆a is a context defining its arguments and their type,ω is a sort andν is
its polarity declaration. To the right of the:= symbol, we find a list of constructors
with their types:ci represents the name of thei-th constructor, and∆i is the context
for its arguments, andδ ti represents the type of the resulting constructor term—for
technical reasons, we use a special variableδ representing the current inductive type.
In the sequel, we shall use some notations to deal with inductive definitions. First, we
write I ∈ Σ for Ind(I[∆p]ν : Π∆a. ω :=

−−−−−−−−−→
ci : Π∆i. δ ti) ∈ Σ. Figure 2 introduces

further notations referring to inductive definitions :I.ω andTypeInd(I) are respectively
the sort and the type ofI; params(I) = params(c) indicates the number of parameters
of the inductive type and of its constructors. Then, we define the type of a constructor
(TypeConstr(c, s)), of the case predicate (TypePred(I, s, p, ω′)) and the type of case
branchesTypeBranch(ci, s, P, p).

As usual, we separate between parameters and arguments of inductive types—they
are handled differently in the syntax and shall be handled differently in the conversion
rule—and assume that inductive types do not share constructors. Furthermore, contexts
of inductive definitions are subject to well-formedness constraints; some constraints
rely on the type system defined in the next paragraph. A context of inductive definitions
is well-formed if it is empty[] or if it is of the formΣ; Ind(...) whereΣ is well formed
and all of the following hold:

1. the inductive definition is well-typed, i.e.`Π∆p. Π∆a. ω : ω′ for someω′ is a
valid typing judgment with signatureΣ;

2. the constructors are well-typed, i.e.∆p (δ : Π∆a. ω)`Π∆i. δ ti : ωi for someωi

is a valid typing judgment with signatureΣ;
3. variableδ is strictly positive in the type of every constructor argument (δ pos ∆i).
4. each occurrence of inductive types in∆p,∆a,∆i is annotated with∞;
5. each variable in∆p satisfies the polarity condition in the type of each constructor.

This meansdom(∆p) pos I.ν∆p and for every constructorci, dom(∆p) pos I.ν∆i.

I.ω := ω
TypeInd(I) := Π∆p. Π∆a. ω
params(I) := #∆p

params(c) := #∆p

args(c) := #∆i

TypeConstr(ci, s) := Π∆p. Π(∆i[δ := Is dom(∆p)]). Ibs dom(∆p) ti

TypePred(I, s, p, ω′) := Π∆a[dom(∆p) := p]. Πx :Ibs p dom(∆a). ω′

TypeBranch(ci, s, P, p) := (Π∆i. P ti ci(|p|, dom(∆i))) [dom(∆p) := p][δ := Is p]

Fig. 2.Definitions over inductive constructions

6. positive and negative variables in∆p do not appear in argumentsti that appear in
the types of constructors.

7. from subtyping rules, we have thatp1 �I.ν p2 impliesI p1a � I p2a. We require
dom(∆p) pos I.ν∆a to guarantee that ifI p1a and all the components ofp2 are
well typed, thenI p2a will be well typed.

Clause 3 ensures termination, whereas Clause 4 ensures that constructors use previ-
ously defined datatypes, but not approximations of previously defined datatypes—it is
not clear whether lifting such a restriction would make the system more useful and how
much the theory would be impacted. Clauses 5 and 6 reflect the subtyping rules for in-
ductive types, and are used in the proof of subject reduction. Lastly, clause 7 is required
to guarantee the completeness of type inference.

Typing Typing judgments are defined in the usual way. They are implicitly parame-
terized by a signature of inductive declarations, and by a specification that consists of
a set of axioms, product rules, and elimination rules. Axioms establish typing relations
between sorts, product rules determine which dependent products may be formed and
in which sort they live, and elimination rules determine which case analysis may be
performed. For example, Coq does not allowElim(Prop,Set).

Definition 10 (Contexts and judgments).

– A context is a finite list of declarationsΓ := (x1 : T1) . . . (xn : Tn) where
x1, . . . , xn are pairwise disjoint variables andT1, . . . , Tn are expressions.

– A typing judgment is a tuple of the formΓ ` t : T , whereΓ is a context,t andT
are expressions.

– A judgment is derivable iff it can be obtained using the rules of Figure 1.

5 Meta-theory

This section states the main properties that CIĈ inherits from its non-dependent ances-
tors, and that justifies it as a foundation for proof assistants. Once the distinction be-
tween terms and types is reestablished for CIC,̂ the algorithm and most proofs may be
adapted with only minor modifications inherent to the complexity of CIC. All properties
are proved for arbitrary specifications, and rely on the assumption of normalization.

Subject reduction and consistencyIn order to prove subject reduction, we must first
establish substitution lemmas, generation lemmas, correctness of types and inversion of
products.

Lemma 4.

– Correctness of types:If Γ ` t : T then there existsω ∈ S such thatT = ω or
Γ `T : ω

– Inversion of productIf Πx :A. B � Πx :C. D thenC � A and alsoB � D
– Subject reductionIf Γ `M : T andM → M ′ thenΓ `M ′ : T

The proof of subject reduction is in most parts analogous to the one for CIC. The
difficulty posed by fixpoint reduction is dealt with thanks to a lemma stating preserva-
tion of typing under stage substitution[6].

As usual, subject reduction and confluence allow to deduce consistency from nor-
malization.

Size inference Proof assistants based on dependent type theory rely on the Curry-
Howard isomorphism to reduce proof-checking to type-checking. In this context, it is
important to be able to decide whether a term is typable or not. Furthermore, it is im-
portant for usability that size annotations should not be provided by users, for whom
sized types should be as transparent as possible. Thus, we want to device a procedure
that takes as input a context and a bare expression and returns a decoration of the bare
expression and a most general typing if it exists, or an error if no decoration of the
expression is typable.

There are two fundamental steps in designing a type-checking algorithm for depen-
dent types—without subtyping and inductive types. The first step is to give a syntax-
directed formulation of the typing rules, with conversion used only in specific places;
the second step is to give a procedure to decide the convertibility of two terms. The
syntax-directed algorithm always calls convertibility checking on typable terms, which
are thus known to be normalizing, and convertibility is decidable in this case— thanks
to confluence and normalization, one can compute both normal forms and check the
equality.

In our setting, convertibility is replaced by subtypingT � U , but we can adopt the
strategy for testing convertibility for well typed terms (that are strongly normalizing):
compute both normal forms and check whether they are related by subtyping≤, see
Lemma 2. However, termination is enforced with size information, which must be in-
ferred during type-checking. Although it would be tempting to perform type-checking
using erased types and perform termination checking afterwards, this is not possible
with dependent types because it would entail not knowing termination at type-checking,
which itself results in undecidability. Thus, we must check termination during type-
checking, and more concretely when checking recursive definitions. Informally, we
achieve the desired effect by creating and propagating constraints between stages while
checking expressions, and resolving the constraints while checking a recursive defini-
tion.

Formally, our algorithm returns for every contextΓ and unannotated expressione◦

either an error if no annotatione of e◦ is typable inΓ or else a most general annotatione

of e◦ and typing of the formC ⇒ T whereC is a set of constraints (stage inequalities),
andT is an annotated type subject to the following properties:

Soundness:for every stage substitutionρ satisfyingC, we haveρΓ `ρe : ρT .
Completeness:for every stage substitutionρ′ and annotatione′ of e◦ such thatρ′Γ `

e′ : T ′, there existsρ, a stage substitution such thatρ satisfiesC andρΓ = ρ′Γ and
ρe = e′ andρT � T ′.

The notion of constraint system and satisfaction are defined formally as follows.

Definition 11 (Constraint and constraint systems).

1. Astage constraintis a pair of stages, writtens1 v s2.
2. Aconstraint systemis a finite set of stage constraints.
3. A stage substitutionρ satisfies a constraint systemC, written ρ |= C, if for every

constraints1 v s2 in C, we haveρ(s1) v ρ(s2).

Note that the stage substitution that maps all stage variables to∞ is a solution of all
constraint systems.

We now turn to the formal description of the algorithm, which is adapted from [7].
The inference algorithmInfer(V, Γ, e◦) takes as input a contextΓ , an unannotated ex-
pressione◦ and an auxiliary parameterV that represents the stage variables that have
been previously used during inference (we need the latter to guarantee that we only
introduce fresh variables). It returns a tuple(V ′, C, e, T) wheree is an annotated ver-
sion of e◦, T is a sized type,C is a constraint system, andV ′ is an extended set of
stage variables that has been used by the algorithm. The invariants areFV(Γ) ⊆ V and
V ⊆ V ′ andFV(C, e, T) ⊆ V ′. For practical reasons, we also use a second algorithm
Check(V, Γ, e◦, T) which returns a tuple(V ′, C, e), wheree is an annotated version of
e◦ such thate has typeT in environmentΓ (and fails if no suche exists). The invariants
areFV(Γ, T) ⊆ V andV ⊆ V ′ andFV(C, e) ⊆ V ′.

Definition 12. The algorithmsInfer andCheck are defined in Figure 3.

The algorithms rely on several auxiliary functions. First, there are functionsaxioms ,
rules , elim that verify compatibility with the specification—here we assumeAxioms
andRules to be functional. Then, there is an auxiliary functionwhnf that computes the
weak head normal form of an expression—here we assume that the type system is nor-
malizing, and use the fact that the function will only be called on typable expressions.
As mentioned above, we also need an auxiliary function that generates constraints from
subtyping judgments—the function is used inCheck and the rule for fixpoints. Be-
sides, there are auxiliary functions for fixpoints.

The algorithm is close to the usual type checking algorithm of CIC. The most dif-
ficult part is the case of fixpoints. First, the algorithm type checks the type annotation
T ? = Π∆◦. Πx : I? u◦. U? and gets, as part of the result, an annotated termT
that corresponds to the final type of the recursive definition, as well as it’s sort,W .
Here, we identify the stage variableα annotating the decreasing inductive argument.
Next, we compute fromU andU?, the expected return type,̂U , for the body of the
recursive definition using theshift function, which replaces all stage annotationss in

recursive positions bŷs; in addition,shift returns the setV ? of replaced variables.
Once done, we check that the bodye◦ can be decorated into an expressione of type
T̂ = Π∆. Πx : I bα u. Û . Finally, we call the auxiliary functionRecCheck to guaran-
tee termination. The functionRecCheck takes as input:

– the stage variableα which corresponds to the recursive argument, and which must
be mapped to a fresh base stageı;

– a set of stage variablesV ? that must be mapped to a stage expression with the same
base stage asα. The setV ? is determined by the position types in the tag of the
recursive definition. In particular, we haveα ∈ V ?;

– a set of stage variablesV 6= that must be mapped to a stage expression with a base
stage different fromı;

– a set of constraintsC ′;

and returns an error or a set of constraints subject to some conditions. In [7], we pro-
vide an implementation of RecCheck and a proof of some soundness and completeness
conditions. We use these results in the proof of the proposition below.

Proposition 1. Assume that typable terms and normalizing and that the specification
is functional.

– Check andInfer are sound:

Check(V, Γ, e◦, T) = (V ′, C, e) ⇒ ∀ρ |= C. ρΓ `ρe : ρT
Infer(V, Γ, e◦) = (V ′, C, e, T) ⇒ ∀ρ |= C. ρΓ `ρe : ρT

– Check andInfer terminate and are complete:
1. If ρΓ ` e : ρT and FV(Γ, T) ⊆ V then there existV ′, C, e′, ρ′ such that

ρ′ |= C andρ =V ρ′ andρ′e′ = e andCheck(V, Γ, |e|, T) = (V ′, C, e′).
2. If ρΓ `e : T andFV(Γ) ⊆ V there existV ′, C, e′, T ′, ρ′ such thatρ′ |= C and

ρ′T ′ � T andρ′ =V ρ andρ′e′ = e andInfer(V, Γ, |e|) = (V ′, C, e′, T ′).

Proof. By simultaneous induction on the structure ofe◦ for soundness and on the typing
derivation for completeness.

Normalization Both consistency and decidability of type checking and size inference
rely on normalization.

Conjecture 1 If Γ `M : A taking as specification that of CIC [22] thenM is strongly
normalizing.

Our earlier work on non-dependent systems demonstrates that it is rather direct to adapt
existing model constructions to type-based termination, and that the resulting model
is in fact easier to justify than for systems that use a syntactic guard predicate to en-
force termination. Thus we strongly believe—but have not checked details—that ex-
isting model constructions for CIC, e.g. [16, 24], can be adapted immediately to CIC,̂
using the construction of [6] for inductive definitions. As discussed in Section 2, it is
likely that the conjecture can also be deduced from [10].

6 Implementation and case studies

We have developed a prototype implementation of the type checker and size inference
algorithm for a fragment of CIĈ, and used it to programquicksort and prove its cor-
rectness.

We have also used CIĈto define general recursive functions, following the ap-
proach developed by Bove and Capretta [13] for Martin-Löf’s type theory—we have
not carried this work with the prototype because it currently does not support induc-
tive families. In a nutshell, the approach consists in defining an inductive predicate
that characterizes the domain of the function to be defined, and to define the function
by induction on the proof that the argument is in the domain. One difficulty with this
approach is that it requires to prove some inversion lemmas in a very contrived way,
not using Coq standard tactics for inversion [5, 8]. In a type-based setting, the problem
disappears, i.e. there is no restriction on the way the lemmas are proved, because the
statements make it clear that the recursive call will be performed on a smaller proof.
The example illustrates that type-based termination makes it easier to define general
recursive definitions, and suggests that CIĈ is a more appropriate setting than CIC to
pursue the program of [5] to support general recursive definitions via tools that generate
termination proofs for functions that are shown terminating with e.g. the size-change
principle [20].

7 Concluding remarks

We have defined CIĈ, a variant of the Calculus of Inductive Constructions that en-
forces termination of recursive definitions via sized types, and shown that it enjoys the
required meta-theoretical properties to serve as a basis for proof assistants. A prototype
implementation has been developed and applied on medium size case studies.

The immediate objective for further work is to resolve outstanding issues that CIĈ
inherited fromF ,̂ and that must be solved prior to integrating type-based termination
in Coq, namely mutually recursive types and global definitions. Our longer term goal
is to integrate type-based termination in Coq. We believe that it shall result in a more
robust and flexible system that is easier for users to understand and for developers to
evolve.

References

1. A. Abel. Termination checking with types.RAIRO– Theoretical Informatics and Applica-
tions, 38:277–320, October 2004.

2. A. Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types. PhD thesis,
Ludwig-Maximilians-Universiẗat München, 2006.

3. H. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay, and T. Maibaum, edi-
tors,Handbook of Logic in Computer Science, pages 117–309. Oxford Science Publications,
1992. Volume 2.

4. B. Barras.Auto-validation d’un système de preuves avec familles inductives. PhD thesis,
Universit́e Paris 7, 1999.

5. G. Barthe, J. Forest, D. Pichardie, and V. Rusu. Defining and reasoning about recursive
functions: a practical tool for the Coq proof assistant. In M. Hagiya and P. Wadler, editors,
Proceedings of FLOPS’06, volume 3945 ofLecture Notes in Computer Science, pages 114–
129. Springer-Verlag, 2006.

6. G. Barthe, M. J. Frade, E. Giḿenez, L. Pinto, and T. Uustalu. Type-based termination of
recursive definitions.Mathematical Structures in Computer Science, 14:97–141, February
2004.

7. G. Barthe, B. Gŕegoire, and F. Pastawski. Practical inference for typed-based termination
in a polymorphic setting. In P. Urzyczyn, editor,Proceedings of TLCA’05, volume 3641 of
Lecture Notes in Computer Science, pages 71–85. Springer-Verlag, 2005.

8. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development—
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
Springer-Verlag, 2004.

9. F. Blanqui.Théorie des Types et Récriture. PhD thesis, Université Paris XI, Orsay, France,
2001. Available in english as ”Type theory and Rewriting”.

10. F. Blanqui. A type-based termination criterion for dependently-typed higher-order rewrite
systems. In V. van Oostrom, editor,Proceedings of RTA’04, volume 3091 ofLecture Notes
in Computer Science, pages 24–39, 2004.

11. F. Blanqui. Decidability of type-checking in the calculus of algebraic constructions with size
annotations. In C.-H.L. Ong, editor,Proceedings of CSL’05, volume 3634 ofLecture Notes
in Computer Science, pages 135–150. Springer-Verlag, 2005.

12. F. Blanqui and C. Riba. Constraint based termination. Manuscript, 2006.
13. A. Bove and V. Capretta. Modelling general recursion in type theory.Mathematical Struc-

tures in Computer Science, 15:671–708, February 2005.
14. W.-N. Chin and S.-C. Khoo. Calculating sized types.Higher-Order and Symbolic Compu-

tation, 14(2–3):261–300, September 2001.
15. T. Coquand and C. Paulin. Inductively defined types. In P. Martin-Löf and G. Mints, editors,

Proceedings of COLOG’88, volume 417 ofLecture Notes in Computer Science, pages 50–66.
Springer-Verlag, 1988.

16. H. Geuvers. A short and flexible proof of strong normalisation for the Calculus of Construc-
tions. In P. Dybjer, B. Nordström, and J. Smith, editors,Proceedings of TYPES’94, volume
996 ofLecture Notes in Computer Science, pages 14–38. Springer-Verlag, 1995.

17. E. Giḿenez. Structural recursive definitions in Type Theory. In K.G. Larsen, S. Skyum, and
G. Winskel, editors,Proceedings of ICALP’98, volume 1443 ofLecture Notes in Computer
Science, pages 397–408. Springer-Verlag, 1998.

18. J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems using sized
types. InProceedings of POPL’96, pages 410–423. ACM Press, 1996.

19. J.-P. Jouannaud and M. Okada. Executable higher-order algebraic specification languages.
In Proceedings of LICS’91, pages 350–361. IEEE Computer Society Press, 1991.

20. C.-S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program
termination. InProceedings of POPL’01, pages 81–92. ACM Press, 2001.

21. N. P. Mendler. Inductive types and type constraints in the second-order lambda calculus.
Annals of Pure and Applied Logic, 51(1-2):159–172, March 1991.

22. C. Paulin-Mohring.Définitions Inductives en Theorie des Types d’Ordre Superieur. Habili-
tationà diriger les recherches, Université Claude Bernard Lyon I, 1996.

23. David Wahlstedt. Type theory with first-order data types and size-change termination. Tech-
nical report, Chalmers University of Technology, 2004. Licentiate thesis 2004, No. 36L.

24. B. Werner. Méta-th́eorie du Calcul des Constructions Inductives. PhD thesis, Université
Paris 7, 1994.

25. H. Xi. Dependent Types for Program Termination Verification. InProceedings of LICS’01,
pages 231–242. IEEE Computer Society Press, 2001.

Check(V, Γ, e◦, T) = Ve, Ce ∪ Te � T, e
where(Ve, Ce, e, Te) := Infer(V, Γ, e◦)

Infer(V, Γ, ω) = V, ∅, ω, axioms(ω)

Infer(V, Γ, x) = V, ∅, x, Γ (x)

Infer(V, Γ, λx :T ◦
1 . e◦) = Ve, C1 ∪ Ce, λx :T ◦

1 . e, Πx :T1. T2

where(V1, C1, T1, W1) := Infer(V, Γ, T ◦
1) andwhnf(W1) = ω1

(Ve, Ce, e, T2) := Infer(V1, Γ ; x :T1, e
◦)

Infer(V, Γ, Πx :T ◦
1 . T ◦

2) =
V2, C1 ∪ C2, Πx :T1. T2, rules(ω1, ω2)

where(V1, C1, T1, W1) := Infer(V, Γ, T ◦
1) andwhnf(W1) = ω1

(V2, C2, T2, W2) := Infer(V1, Γ ; x :T1, T
◦
2)

and whnf(W2) = ω2

Infer(V, Γ, e◦1 e◦2) = V2, C1 ∪ C2, e1 e2, T [x := e2]
where(V1, C1, e1, T1) := Infer(V, Γ, e◦1)

whnf(T1) = Πx :T2. T
(V2, C2, e2) := Check(V1, Γ, e◦2, T2)

Infer(V, Γ, I) = V ∪ {α}, ∅, Iα, TypeInd(I) with α 6∈ V

Infer(V, Γ, c(p◦, a◦)) = Vc, C, c(p◦, a), T
whereTc := TypeConstr(c, α) with α 6∈ V

params(c) = #p◦ andargs(c) = #a◦ andx free inΓ, p, a
(Vc, C, x p a, T) = Infer(V ∪ {α}, Γ (x : Tc), x p◦ a◦)

Infer(V, Γ, caseP◦ e◦c of {ci ⇒ e◦i }) =
Vn, Cc ∪ Cp ∪

Sn
i=0 Ci, caseP◦ ec of {ci ⇒ ei}, P a ec

where(Vc, Cc, ec, Tc) := Infer(V, Γ, e◦c)
whnf(Tc) = Ir p a andparams(I) = #p andα 6∈ Vc

(VP , CP , P, TP) := Infer(Vc ∪ {α}, Γ, P ◦) andTP0 := TP

∀i = 1 . . . args(I) + 1, Πxi :Ti. TPi := whnf(TPi−1)
ω′ := whnf(TPargs(I)+1) andelim(I.ω, ω′)

C0 := r v bα ∪ TP � TypePred(I, α, p, ω′)) andV0 := VP

∀i = 1 . . . n, (Vi, Ci, ei) :=
Check(Vi−1, Γ, e◦i , TypeBranch(ci, α, P, p))

given T ? ≡ Π∆◦. Πx :I? u◦. U? with #∆◦ = n− 1
Infer(V, Γ, fixn f :T ? := e◦B) =

VB , Cf , fixn f :T ? := eB , Π∆. Πx :Iα u. U
where(VT , CT , Π∆. Πx :Iα u. U, W) := Infer(V, Γ, |T ?|)
and whnf(W) = ω

(V ?, bU) := shift(U, U?) andT ′ := Π∆. Πx :Iα u. U
(VB , CB , eB) :=

Check(VT , Γ (f : T ′), e◦B , Π∆. Πx :I bα u. bU)

Cf := RecCheck(α, V ?, VB\V ?, CT ∪ CB ∪ U � bU)

Fig. 3. Inference Algorithm

