
XEN Memory Management (Intel IA-32)

Andrés Krapf
{Andres.Krapf}@sophia.inria.fr

INRIA, Sophia Antipolis - Méditerranée

October 30, 2007

Abstract

This document describes briefly the main characteristics of the
memory management carried out by Xen Virtualization Platform over
IA-32 architectures.

1 Page Tables - General OS concepts

One of the most important concept to study are page tables. These are the
ones that keep all the translations between virtual and physical addresses.
For each process there is a page directory (pgd).

In Linux, each process is a pointer (mm_struct->pgd) to its own PGD
(Page Directory) which is a physical page frame. This frame contains
an array of type pgd t, which is an architecture-specific type defined in
<asm/page.h>. The page tables are loaded differently depending on the
architecture. On the x86, the process page table is loaded by copying
mm_struct->pgd into the cr3 register, which has the side effect of flushing
the TLB. This register is also referred to as the Page Table Base Register
(PTBR)1

Whenever the cr3 register is written, the TLB is flushed (flushing the
TLB is part of the hardware-defined context switch protocol). When there
is a context switch, the address of the incoming process’s page directory is
written to the cr3 register.

If there is a TLB miss, the OS is not aware of this (for this architecture,
which uses a hardware-managed TLB; the TLB accesses the target Page
Table Entry (PTE), using the page table base register, and updates the
TLB.

In general, there are different types of TLB flushings. For example2

1http://www.stanford.edu/˜stinson/paper notes/fundamental/mem mgmt/ia32 pts.txt
2http://tldp.org/LDP/khg/HyperNews/get/memory/flush.html

1



void flush_tlb_all(void)

removes all mappings in the TLB. At implementation level this could imply
that the cache is also flushed.

void flush_tlb_mm(struct mm_struct *mm)

removes all the entries corresponding to the address space corresponding to
mm_struct. (In particular, an mm struct may map to one or many tasks or
none.)

flush_tlb_range(struct mm_struct *mm, unsigned long start,
unsigned long end);

removes some pages of the address space, and

void flush_tlb_page(struct vm_area_struct *vma,
unsigned long address);

removes a page.
During address translation, the OS will page fault if the page that con-

tains the address is not in memory. The pageFault() function will bring in
the page and allocate a frame to it, possibly swapping out a page to obtain
a free frame. It will also update the page table and TLB.

When the OS swaps a page out from the currently running process, the
OS must invalidate the TLB and page table entry for that page3.

2 Xen’s Management of Page Tables

Xen is responsible for managing the allocation of physical memory to do-
mains, and ensuring safe use of the paging and segmentation hardware4.

2.1 Pseudo-Physical Memory

Since physical memory is allocated and freed on a page granularity, there
is no guarantee that a domain will receive a contiguous stretch of physical
memory. However most operating systems do not have good support for
operating in a fragmented physical address space. To aid porting such oper-
ating systems to run on top of Xen, we make a distinction between machine
memory and pseudo-physical memory.

3http://www.cs.utexas.edu/users/witchel/372/labs/lab3/index.html
4http://www.cl.cam.ac.uk/research/srg/netos/xen/readmes/interface/interface.html

2



To achieve this, Xen maintains a globally readable machine-to-physical
table which records the mapping from machine page frames to pseudo-
physical ones. In addition, each domain is supplied with a physical-to-
machine table which performs the inverse mapping.

2.2 Memory Management Modes

Page Table Updates. In the default mode of operation, Xen enforces
read-only access to page tables and requires guest operating systems
to explicitly request any modifications. Xen validates all such requests
and only applies updates that it deems safe. This is necessary to pre-
vent domains from adding arbitrary mappings to their page tables.

To aid validation, Xen associates a type and reference count with each
memory page. A page has one of the following mutually-exclusive
types at any point in time: page directory (PD), page table (PT), local
descriptor table (LDT), global descriptor table (GDT), or writable
(RW). Note that a guest OS may always create readable mappings of
its own memory regardless of its current type.

Writable Page Tables. Xen also provides an alternative mode of opera-
tion in which guests have the illusion that their page tables are directly
writable. Xen must still validate modifications to ensure secure par-
titioning. To this end, Xen traps any write attempt to a memory
page of type PT (i.e., that is currently part of a page table). If such
an access occurs, Xen temporarily allows write access to that page
while at the same time disconnecting it from the page table that is
currently in use. This allows the guest to safely make updates to the
page because the newly-updated entries cannot be used by the MMU
until Xen revalidates and reconnects the page. Reconnection occurs
automatically in a number of situations: for example, when the guest
modifies a different page-table page, when the domain is preempted,
or whenever the guest uses Xen’s explicit page-table update interfaces.

Shadow Page Tables. Xen also supports a form of shadow page tables in
which the guest OSs use a independent copies of page tables which
are unknown to the hardware (i.e. which are never pointed to by cr3).
Instead Xen propagates changes made to the guest’s tables to the real
ones, and vice versa.

3 Updating MMU

• Since guest operating systems have read-only access to their page ta-
bles, Xen must be involved for making any changes. The following
multi-purpose hypercall can be used to

3



– modify page-table entries,

– update the machine-to-physical mapping table,

– flush the TLB,

– install a new page-table base pointer,

– and more.

mmu_update(mmu_update_t *req, int count,
int *success_count)

It is used to process a set of requests for efficient in a batch manner.
Xen will check that the updates are safe.

• There are some occasions (notably handling a demand page fault)
where a guest OS will wish to modify exactly one PTE (page table
entry) rather than a batch, and where that PTE is mapped into the
current address space.

update_va_mapping(unsigned long va, uint64_t val,
unsigned long flags)

It updates the currently installed PTE that maps virtual address va to
new value val. As with mmu update, Xen checks the modification is
safe before applying it. The flags determine which kind of TLB flush,
if any, should follow the update.

• Finally, sufficiently privileged domains may occasionally wish to ma-
nipulate the pages of others:

update_va_mapping(unsigned long va, uint64_t val,
unsigned long flags, domid_t domid)

It is identical to update va mapping except that the pages being mapped
must belong to the domain domid.

• An additional MMU hypercall provides an “extended command” in-
terface. This provides additional functionality beyond the basic table
updating commands:

mmuext_op(struct mmuext_op *op, int count,
int *success_count, domid_t domid)

4



This hypercall is used to perform additional MMU operations. These
include updating cr3 (or just re-installing it for a TLB flush), request-
ing various kinds of TLB flush, flushing the cache, installing a new
LDT, or pinning & unpinning page-table pages (to ensure their refer-
ence count doesn’t drop to zero which would require a revalidation of
all entries). Some of the operations available are restricted to domains
with sufficient system privileges.

It is also possible for privileged domains to reassign page ownership via
an extended MMU operation, although grant tables are used instead
of this where possible

4 Changing Memory Management Mode

A hypercall interface is exposed to activate and deactivate various optional
facilities provided by Xen for memory management. It toggles various mem-
ory management modes.

vm_assist(unsigned int cmd, unsigned int type)

5 Segmentation Support

The Global Descriptor Table or GDT is a data structure used by Intel x86-
family processors in order to define the characteristics of the various memory
areas used during program execution, for example the base address, the size
and access privileges like executability and writability. These memory areas
are called segments in Intel terminology.

Xen allows guest OSes to install a custom GDT if they require it; this is
context switched transparently whenever a domain is [de]scheduled.

set_gdt(unsigned long *frame_list, int entries)

installs a global descriptor table for a domain.
Xen also allows guest operating systems to update just an individual

segment descriptor in the GDT or LDT:

update_descriptor(uint64_t ma, uint64_t desc)

updates the GDT/LDT entry at machine address ma; the new 8-byte de-
scriptor is stored in desc. Xen performs a number of checks to ensure the
descriptor is valid.

5



6 Context Switching

When a guest OS wishes to context switch between two processes, it can use
the page table and segmentation hypercalls described above to perform the
the bulk of the privileged work. In addition, however, it will need to invoke
Xen to switch the kernel (ring 1) stack pointer:

stack_switch(unsigned long ss, unsigned long esp)

requests kernel stack switch from hypervisor; ss is the new stack segment,
esp is the new stack pointer.

7 Memory Allocation

The maximum allocation, set at domain creation time, cannot be modified.
However a domain can choose to reduce and subsequently grow its current
allocation by using the following call:

memory_op(unsigned int op, void *arg)

8 Trusted OSes

Some platforms, like VLX, consider the existence of trusted OS as well as
untrusted OSes. Trusted OSes execute freely without being controlled at
all.

Other platforms, like XEN, consider that all guest OSes are untrusted
and only one component which ”could” be considered as a trusted OS, called
Domain0. Domain0 engages in management control and monitoring tasks,
and also in device sharing.

6


