
Adapting the Uppaal Model of

a Distributed Lift System

Wan Fokkink1,2, Allard Kakebeen3, and Jun Pang4

1 Vrije Universiteit, Theoretical Computer Science, Amsterdam, The Netherlands
2 CWI, Embedded Systems Group, Amsterdam, The Netherlands

3 INRIA Sophia Antipolis, Everest Project, Sophia Antipolis, France
4 Universität Oldenburg, Safety-Critical Embedded Systems, Oldenburg, Germany

wanf@cs.vu.nl Allard.Kakebeen@sophia.inria.fr

jun.pang@informatik.uni-oldenburg.de

Abstract. In [6] an existing distributed lift system was analyzed using
the process algebraic toolset µCRL, and in [11] the redesign of this system
was analyzed using the timed automata based toolset Uppaal. We adapt
and extend the Uppaal model. Firstly, we refine the synchronization
mechanism between lifts, to explain a new problem that was reported
by the developers of the lift system, and to propose a solution for it.
Secondly, we allow a lift to enter a halt state, after which the entire
system should make an emergency stop, for instance because a lift meets
a maximum height threshold. Using the Uppaal model checker it is
verified that the adapted lift system satisfies the system requirements.

1 Introduction

Verifying the correctness of the protocols that regulate the behavior of dis-
tributed systems is usually a formidable task, as even simple behaviors become
wildly complicated when they are carried out in parallel. Formal verification is
a suitable approach to check whether a specification of such a protocol meets
its requirements. In a formal model of a real-life system, details irrelevant to
the requirements under scrutiny can be abstracted away. With the formal model
at hand, one is able to reason about the system in a systematic and automatic
way, using for example a model checker or theorem prover. This formal reason-
ing can detect errors and suggest ways in which the system can be improved or
optimized.
To achieve more confidence regarding the verified system, the formal model

can be refined by adding more details, flaws in the model (detected using e.g.
model checking) can be repaired, and extensions of the functionality can be
included in the model. In this paper, we report on some experience gained by
adapting the Uppaal model from [11] of a distributed lift system.
This lift system is used in real life for lifting lorries, railway carriages, buses

etc. A system consists of a number of lifts: each wheel is supported by one lift,
and each lift has its own micro-controller. This system is being designed and
implemented by a small Dutch company (for commercial reasons we are not at



liberty to reveal the company name). A special protocol has been developed to
let the lifts, which are connected in a ring network, operate synchronously. It
consists of an initialization phase, in which all lifts get a unique identity, and a
normal operation phase. When in the latter phase say an up button on a lift is
pushed, this lift leads the synchronous upward movement of all lifts until its up

button is released again. Special situations, such as when up buttons at different
lifts are pushed at the same time, have to be taken into account.

In order to explain and repair some detected bugs in the lift system, it was ini-
tially specified in the process algebraic language µCRL, and analyzed by means
of model checking using the µCRL toolset [3]. This work was reported in [5,
6]. In a redesign of the lift system, the developers experienced a new problem.
Since this problem involved exact timing information, and details of the system
that had been abstracted away in the µCRL model, a more detailed model was
specified in Uppaal [10]. Using the graphic simulation tool in Uppaal, the rea-
son for the problem in the redesign was explained, and a solution was proposed.
Moreover, it was shown using model checking that the Uppaal model with this
new solution satisfied all requirements. The solution was incorporated in the
latest release of the lift system in early 2004. This work was reported in [11].

At the end of 2004, the developers of the lift system involved us in two matters
regarding the coming release. Firstly, the developers reported that a new bug
could sometimes occur when an up button was pressed and almost immediately
released again. We refine the synchronization mechanism between lifts in the
Uppaal model from [11], to capture this new problem and propose a solution
for it. Secondly, the developers wanted a more polished solution for the situation
where the system has to make an emergency stop because, for instance, one
of the lifts meets a maximum height threshold. This feature of the system had
been abstracted away in the µCRL and the original Uppaal model. In our new
Uppaal model, we allow a lift to enter a special “halt” state, which is spread
to the other lifts, upon which they all halt. The main challenge is how to move
from this halt state to a standby state, as this requires that the main authority
shifts back from the lift that initiated to halt state to the lift that controlled the
movement.

During the adaptation of the Uppaal model, we made several initial design
errors, which were detected in the model checking phase. In this paper we explain
our ultimate solutions for the synchronization mechanism and the halt state, and
report on some of the initial design errors. Moreover, during the model checking
exercise we detected a flaw in the Uppaal model from [11] (which does not occur
in the real implementation of the lift system). This flaw in the model had gone
unnoticed due to a too restrictive test automaton in that paper. We explain how
this flaw in the model can be repaired. We have shown using the Uppaal model
checker that our solutions are correct, at least for ring networks of size three,
and with respect to the scenarios in our test automata.

A first aim of the current paper is to add yet another experience report on
the use of formal methods in industry. Our collaboration with the company that
builds the lift system has continued over the last five years. This experience is

2



quite unique, in the sense that formal methods and tools (µCRL and Uppaal)
have been applied to the original lift system and its redesigns in three subsequent
case studies. Over the years, the team of developers remained the same, but the
team from the formal methods side has changed at each case study. In Section
6 we will draw some conclusions on the use of formal methods in long term
industrial development, on the basis of these case studies.
A second aim is to communicate our experiences with adapting an Uppaal

model. Also it is explained how we used the Uppaal model checker, with the
help of test automata and decoration variables.
The developers acknowledge the usefulness of formal verification for their re-

design. The new synchronization mechanism was included in the latest release of
the lift system. Our specification of the special halt state will become part of the
next release. The developers are now more confident in the correct functioning
of the redesigned lift system. They stress that applying formal methods in the
early design phases would save them testing effort and cost.
The paper is structured as follows. In Section 2, we provide an informal high-

level description of the lift system, together with an explanation of our Uppaal

model of this system. Section 3 presents the system requirements that we want
to verify. In Section 4 we present the refined synchronization mechanism between
lifts, and explain in detail how we model checked the resulting Uppaal model.
In Section 5 we present the extension with a special halt state for emergency
situations, and again describe the model checking exercise. Section 6 contains
the conclusions. And finally Section 7 contains the most important automata of
the Uppaal model of the lift system.

2 Uppaal Model of the Lift System

2.1 High-level system description

The lift system consists of an arbitrary number of lifts. Each lift supports one
wheel of a vehicle. Different lift systems may have a different number of lifts,
but this has no influence on the analysis, since this network should operate in
the same way regardless how many lifts are connected.
Every lift has its own buttons. Three buttons are taken into account in the

model: setref, up and down. Pressing a setref button on a lift is the only
way a run of the system can start. If an up or down button on a certain lift is
pressed, all lifts in the system are meant to move up or down at the same time.
If the up button at a lift has been pressed, the down button at this same lift
cannot be pressed before the up button is released.
Movement of the lift system is controlled by means of a micro-controller.

Each lift has its own micro-controller, called station here. Stations can adopt
four different states: startup, standby, up and down. The state of a station
can change in two ways: when a button on the lift is pressed, or by receiving a
message from the network.
In the lift system, the data field of the messages transferred over the bus

contains two pieces of information: the position of the sender station and the

3



type of the message. There are two types of messages: state messages and sync
messages. State messages broadcast the state of the sending station to the other
stations, while sync messages initiate physical movement. In response to a sync
message, the receiving station transfers its state to the motor of the lift, which
causes movement. If the station is in the state up, the lift will move up a fixed
distance; if it is in down, the lift will move down.
All the stations are connected to a can (Controller Area Network) bus [4].

The can bus is a multi-master serial bus with error detection capabilities. The
bus transmits messages to the stations. Whenever a station wants to send a mes-
sage, it is said to claim the bus. Stations can receive messages at any moment,
but when a station wants to send a message it has to wait until it is its turn to
claim the bus. In the can bus, all stations can claim the bus at each cycle and
several stations can claim the bus simultaneously. A non-destructive arbitration
mechanism is used to determine which station may send its message. The re-
sulting usage of the bus is ordered, and the stations take fixed turns to send
their messages. To achieve this orderly usage of the bus, before the lift system
can start to operate, there is a start-up phase has been designed in which each
station finds out its position in the network and the total number of lifts in the
network. This start-up phase is part of our Uppaal model, but we abstract away
from it here, as it is identical to the specification of the start-up phase in the
original Uppaal model. See [11] for a detailed description of the start-up phase.
When the start-up phase has finished, each station has been assigned a unique

position and is in the state standby. Then the normal operation phase starts,
which is described in some detail in the remainder of this section. During normal
operation, stations claim the bus in the same order cycle after cycle. A station
knows whether it is its turn to claim the bus by checking the position of the
sender station in the last received message. The state of a station changes from
standby to up or down when its up or down button is pressed, respectively. A
station where this happens is called an active station. The active station sends
an up or down message, according to the button that was pressed at the station.
Each passive station changes its state according to the messages it receives, and
when it is its turn to claim the bus it broadcasts its state. These state messages
are received by all other stations, and the ordered sending of messages makes
sure that the active station counts no more than one message from each station.
When the active station counts enough up (or down) messages, it concludes that
all lifts are ready to move. Then the active station broadcasts a sync message,
after which all lifts move. In contrast to passive stations, the state of the active
station can only change when the pressed button is released again. In that case
its state changes to standby and the station becomes passive again.

2.2 Uppaal model

Uppaal [10] is a toolset for verifying timed systems, which are modeled as
networks of timed automata [2], extended with global shared variables. Clock
variables can be associated to a transition or a node. In a transition, clock
variables can be reset or used as a guard. There are a graphical editor for system

4



specification, a simulator and a model checker. During the design phase, the
simulator is used to validate the dynamic behavior of each design sketch, in
particular for fault detection, and later on for debugging the generated diagnostic
traces. The verifier mainly checks for invariants and reachability properties. It
does so by exploring the state space of a system using on-the-fly techniques.
Symbolic techniques are used to reduce the verification of modal logic formulas
to solving simple reachability constraints.
The Uppaal (version 3.4.11) model of the lift system consists of four au-

tomata: Bus, Timer, Station and Interface. The automaton Bus models the can

bus, and the automaton Timer models time delays. For each lift in the system
we create two automata: Station and Interface, where Station models the micro-
controller, while Interface captures the pressing and releasing of buttons on the
lift. These last two automata can be found at the end of this paper, in Section 7.
The complete Uppaal model is available at www.cs.vu.nl/~wanf/haltmodel3.
xml. Here we only provide sufficient explanations to present our adaptations of
the original Uppaal model and the analysis of this adapted model. A more
detailed explanation and motivation can be found in [9].

Fast and main loop Each station performs two different loops. In the so-called
fast loop, a station can get a message from the bus, and when it is a station’s turn
to claim the bus, it sends a message to the bus intended for the other stations.
Furthermore, the active station can count state messages and initiate movement
of the whole system, by means of a sync message. In a main loop, a station
synchronizes with its interface, to obtain information about which button on
the lift (if any) has been pressed or released. Such a main loop takes place after
a fixed number of cycles from the fast loop.
The two loops were implemented separately because communication with the

bus is relatively fast. The separation leads to faster communication between the
lifts, which is essential for the safe functioning of the system, as else the response
time of the system would become too slow.

Flags In [11], two flags Change and Active were introduced in the automaton
Station, as an improvement over two flags in the implementation of the lift
system. The developers of the lift system acknowledged that this improvement
solved a detected bug in the system, and included the new flags in its redesign.
When Active is set, the corresponding station is active; otherwise, the sta-

tion is passive. Change of a station is set when at this station a button is pressed
or released; this update is communicated to the station through the main loop.
The Change flag is used to remember that the Active flag at this station must
change from passive to active, or vice versa. Change is reset together with a
setting or resetting of Active (or if in the meantime a button is released or
pressed again). This first change happens as soon as the station gets its turn to
claim the bus, and the incoming message carries the state standby.

Bus We omit a precise description of the internals of the automaton Bus, and
view it as a black box that regulates the distribution of messages in the fast

5



loop. In the Uppaal model, there are two channels for communication between
the bus and the stations, and global shared variables are used for data transfer
over these channels. When a station wants to send a message to the bus, it has
to instantiate values for some global variables, for instance the sender’s identity
and state. When communication takes place, the values of those variables are
saved to local variables of the bus. In a similar fashion, messages are sent from
the bus to the stations.

Timer Transitions normally do not take time in Uppaal, but they do in the lift
system. Each main loop consumes 1 millisecond. After each main loop, the sta-
tion waits 0.5 millisecond to get messages from the bus. During the fast loop, the
receiving and sending messages take 1 millisecond. Before sending a sync mes-
sage, stations delay 1.5 millisecond. And before sending a state message, stations
delay 2 milliseconds. The automaton Timer expresses this time consumption by
means of transitions; this idea is borrowed from [7].

3 Requirements

The desired behavior of the lift system is captured in five requirements it has
to fulfill, taken from [11]. These requirements were formulated together with the
developers of the system.

1. Deadlock freeness: The system never ends up in a state where it cannot
perform any action.

2. Liveness I: If all buttons are released, the system will eventually get to a
state in which all lifts are standby.

3. Liveness II: If exactly one up (or down) button is pressed and not released,
then all lifts will eventually move up (or down).

4. Safety I: If one of the lifts moves, then all other lifts move simultaneously
(that is, within one cycle of the fast loop) in the same direction.

5. Safety II: If the lifts move, then an appropriate button was pressed.

The model checker of Uppaal allows to check formulas over a rather weak
temporal logic. In particular, Liveness II and Safety I cannot be expressed in
this logic. In [1] an approach was developed for model checking such properties
via reachability testing. The idea is to transform the property into a so-called
test automaton, which is placed in parallel to the Uppaal model of the system.
Such a test automaton is typically built from a specific scenario (e.g., a fixed
sequence of button presses and releases), and contains a ‘bad’ state which can
only be reached if the corresponding property is violated.
The test automaton may need some extra information that is not being

maintained in the Uppaal model of the system (such as how often a certain
loop has been taken). This information can be added to the model, without
influencing its functional behavior, in the form of so-called decoration variables.
In our verifications of two versions of the Uppaal model of the lift system,

which will be described in Sections 4 and 5, we made extensive use of test

6



automata and decoration variables. We performed model checking with respect
to networks of two or three lifts.
In the test automata, station 1 will play the role of active station. That is,

the up button at station 1 is the first button to be pressed, making station 1
active. We note that this is not a real limitation, in the sense that the network
is fully symmetric (i.e., all stations exhibit the same behavior).

4 Sync Flag

The developers of the lift system informed us that a deadlock had occurred. After
some testing at their premises, empirical evidence showed that it may occur if an
up (or down) button is released shortly after it was pressed. Since this deadlock
was not detected using the Uppaal model from [11], it appeared that a crucial
aspect of the system was missing in that model. The developers were of the
opinion that the bug was most likely in the synchronization mechanism between
the stations.
Discussions with the developers brought to light the fact that synchronization

of the stations is implemented in a somewhat different fashion than as was
specified in the Uppaal model. In the real system there is an extra Sync flag
at each station, which is missing in the Uppaal model.
When the active station counts enough up (or down) messages, in the Up-

paal model, this station initiates movement straight away by sending a sync
message to the other stations. But in the real system, at each station there is an
extra Sync flag, which is set if the state of the station is up (or down) and there
is no obstruction to send output to the motor. The active station only sends a
sync message when the Sync flag is set at each station. When output is sent to
the motor, the Sync flag at that station is reset. The Sync flag guarantees that
output ports of the stations to their motors are in sink. Else it might be the case
that one station moves while another does not, for instance because the latter
reached its highest position.
At first sight, it makes sense to abstract away from the Sync flag in the

Uppaal model, as it does not take into account obstructions to the output ports.
However, the Sync flag can have an influence on the functional behavior, even
in the absence of such obstructions. We therefore adapted the Uppaal model
from [11] to include the Sync flag, and analyzed by means of the Uppaal model
checker whether the adapted model satisfies the requirements from Section 3.

Deadlock freeness can be expressed in the modal logic of Uppaal:

A[] not deadlock

where deadlock is a predefined predicate in Uppaal that holds for all deadlock
states. We checked this property with respect to a number of scenarios (i.e.,
test automata). Initially this property was violated. Analysis of the error trace
showed that, in line with reports from the developers, the deadlock may occur
if an up (or down) button is released shortly after it has been pressed. Namely,
as said before, the Sync flag is reset when output is sent to the motor. But if

7



the up button is released shortly after it has been pressed, it may be the case
that a Sync flag at some station is set, but never reset, because no output is
sent to the motor. The simple solution for this problem is to reset Sync flags
also when a button is released. We included this solution in our Uppaal model,
upon which no further deadlocks were detected.

Parallel button presses do not have an effect. That is, suppose that a button
at some station is pressed. If (before the release of this button) a button at
another lift is pressed and released, then this does not effect the states of the
stations. We formulated this in a test automaton, in which initially the up button
at station 1 is pressed, expressed by the flag press1!. This button press makes
station 1 active; the guard Active[1]==1 makes sure that this happens before
the up button at station 2 is pressed (press2!), as else station 2 might get active
instead of station 1. Finally the button at station 2 is released (release2!). The
bad state can be reached if as a result the state of one of the stations is not in
sink with the button state of the active station 1. The test automaton uses a
decoration variables countcycle, which in the model is increased by one at every
fast loop, together with a parameter NCYCLE (which we instantiated with 6 for
two lifts, and with 13 for three lifts). The guard countcycle<=NCYCLE on the
last transition guarantees that the scenario covers only a bounded number of
fast loops, as otherwise the property could not be model checked. Without the
guard countcycle==1 on the second transition the bad state could be reached,
as it requires one cycle of the fast loop before all stations have attained the same
state as buttonstate[1].

press1!

countcycle:=0,

S2

S3

S1 S4 bad

release2!
countcycle==1,

press2!,

currentstate[3]!=buttonstate[1]
currentstate[2]!=buttonstate[1] or
currentstate[1]!=buttonstate[1] or
Active[1]==0 or
Active[2]==1 or

countcycle<=NCYCLE,

Active[1]==1

A model checking exercise with respect to our model in parallel to the test
automaton above (for three lifts) showed that the bad state in the test automaton
cannot be reached. In view of this positive model checking result, in the test
automata to follow regarding the liveness and safety requirements, we do not
take into account parallel button presses.

Liveness I was checked for a number of scenarios. Below a test automaton is
presented in which first the up button at station 1 is pressed (making it active),
next the up button at station 2 is pressed, then the button at station 1 is released
(making station 2 active), and finally the button at station 2 is released. As
before, countcycle and NCYCLE are used to make the scenario bounded. The bad
state can be reached if after NCYCLE fast loops the stations are not all standby.
(Again we instantiated NCYCLE with 6 for two lifts, and with 13 for three lifts).

8



release2!

countcycle:=0,

release1!
currentstate[3]!=standby
currentstate[2]!=standby or
currentstate[1]!=standby or

press2!

press1!

S4

S3S2

S1 S5 bad
countcycle==NCYCLE,

A model checking exercise with respect to our model in parallel to the test
automaton above (for three lifts) showed that the bad state in the test automaton
cannot be reached.

Liveness II was verified using a test automaton in which the up button at
station 1 is pressed and not released; Liveness II requires that eventually all
lifts will start moving. As before, countcycle and NCYCLE are used to make
the scenario bounded. In the model, the decoration variable visitmovement is
increased by one every time a lift starts moving. Furthermore, N denotes the
number of lifts in the system. If the up button at station 1 is pressed and not
released, and at the deadline (countcycle==NCYCLE) not all lifts have started
moving (visitmovement<N), then the bad state is reached.

countcycle:=0,

press1!

visitmovement:=0,

visitmovement<N

S1 S2 bad
countcycle==NCYCLE,

A model checking exercise with respect to our model in parallel to the test
automaton above showed that the bad state in the test automaton cannot be
reached.

The test automaton that was used in [11] for checking Safety I captures only
a quite restricted collection of scenarios. We constructed the following more elab-
orate test automaton. It has a similar structure as the previous test automaton.
Suppose that the up button at station 1 is pressed. The bad state can only be
reached if ultimately (countcycle==NCYCLE) all lifts move (visitmovement==N)
while not all stations are in the same state (currentstate[1]!=currentstate[2]
or currentstate[1]!=currentstate[3]).

9



currentstate[1]!=currentstate[3]
currentstate[1]!=currentstate[2] or

countcycle:=0,

press1!

visitmovement:=0,

visitmovement==N,

S1 S2 bad
countcycle==NCYCLE,

To our surprise, a model checking exercise with respect to our model in
parallel to the test automaton above showed that Safety I was violated. We also
checked this test automaton against the Uppaal model from [11], and there too
it was violated. In the model, lifts could actually move in opposite directions!
This bug did not occur in a network with two lifts, but it did in a network
with three lifts. Analysis of the error trace showed the reason for the bug: in
the Uppaal model (unlike the implementation), a global variable in the can

bus maintains the message state; each station can read this variable. With three
lifts, it is possible that a station receives a state message without processing
it yet. Then another station may send a message to the bus, overwriting the
message state variable before the first station reads it. The solution for this
problem is simply to conform to the implementation, by introducing a message
state variable at each station. We included this solution in our Uppaal model,
upon which Safety I was satisfied.
Finally, we verified Safety II in the same fashion as in [11]. The idea is to

put a ‘false’ guard on all transitions in the Interface automaton that represent a
button being pressed, and to add a flag move to the node capturing movement
in the Station automaton, which is set if this node is visited. Now Safety II can
be verified using the following modal formula:

A[] move == 0.

We also verified Safety II with respect to a number of scenarios in which a
button is pressed and then released within a short time interval, expressed by
the parameter SHORT. We verified that in such scenarios no lift moves. In the
test automaton below, SHORT was given the value 3 (in case of three lifts).

S1

release1!

countcycle:=0,

countcycle:=0, countcycle==SHORT,

press1!

visitmovement:=0,

visitmovement>0

S2 S3 bad
countcycle==NCYCLE,

5 HALT State

In the implementation of the lift system, the situation is taken into account
where the system has to make an emergency stop, for instance because one of

10



the lifts meets a minimum or maximum height threshold. This feature of the
system was abstracted away in the Uppaal model in [11]. The developers of the
lift system asked us to propose a more polished solution for emergency stops,
because in their implementation emergency stops were dealt with in a rather ad
hoc fashion.
We extended the Station automaton, by allowing it to enter a special halt

state, which is spread to the other lifts, upon which they all halt. Adapting the
model can be split into three tasks: (1) achieve halt in the detecting station,
(2) communicate this halt state to the other stations, and (3) leave the halt

state to continue normal operation from the standby state.

Detecting halt In the Station automaton, we added a transition which allows a
station (nondeterministically) to detect a halt notification, after which it changes
its state to halt. Initially, we allowed this transition to be taken only when the
lift is in movement. However, according to the developers, in real life detection
may also happen when a button was pressed but no movement has taken place
yet. Therefore the latter was added as an extra possibility.

Spreading halt The halt state is spread to the other stations via the fast loop.
When a station in state halt gets its turn to claim the bus, it sends out a halt
message, which makes the other stations take on the halt state too.

Leaving halt The hardest part is leaving the halt state once the button that
initiated the last movement has been released. The active station, at which this
button was pressed, then needs to return to the standby state to resume normal
operation. It must therefore ignore further incoming halt messages from the other
stations. So if a station is in halt state, and its Active and Change flags are
both set (meaning that it is the active station and the button has been released),
it adopts the standby state, and spreads this state to the other stations via the
fast loop.
We analyzed by means of the Uppaal model checker whether the adapted

model, including the halt state, satisfies the requirements from Section 3. Two
requirements need the proviso that halt is not detected.

1. Liveness II: If exactly one up (or down) button is pressed and not released,
and halt is not detected, then all lifts will eventually move up (or down).

2. Safety I: If one of the lifts moves, and halt is not detected, then all other
lifts simultaneously move in the same direction.

Furthermore, together with the developers of the system we formulated one extra
liveness requirement and one extra safety requirement.

1. Liveness III: After halt is detected, it is always possible for the system to
get to a state where all stations are standby.

2. Safety III: If halt is detected, then within a certain amount of time a state
is reached where no lift moves.

11



Deadlock freeness, Liveness I and Safety II could be verified as in the previous
section. For the other requirements, a global decoration variable halted was
introduced, to signal the detection of halt. In the test automata for Liveness II

and Safety I, we added a guard to ensure that the bad node can only be reached
if halted is not set. With these adapted test automata, Liveness II and Safety

I could be verified without problem.
Liveness III was checked against a test automaton that is similar to the

test automaton that we used for Liveness I in the previous section. The main
difference is that a guard halted==1 was added, to express that halt has been
detected. A model checking exercise with respect to our model in parallel to the
resulting test automaton showed that the bad state cannot be reached.

countcycle:=0,

press1! release1!

halted==1,

currentstate[3]!=standby
currentstate[2]!=standby or
currentstate[1]!=standby or

S2S1 S3 bad
countcycle==NCYCLE,

For Safety III, initially we required that after a detection of halt, all lifts
would stop moving within one cycle of the fast loop. However, this turned out
to be too strict. If the lifts are moving, and the station detecting halt has just
sent a state message to the bus, it may be that two cycles of the fast loop are
needed before all lifts have halted. Safety III with “four cycles of the fast loop”
substituted for “a certain amount of time” does hold (in case of three lifts).
That is, all stations except the one that detects halt move at most twice after
this detection; so in general there can be at most 2N-2 movements from the
moment halt is detected. In the model, the value of the decoration variable
visitmovement (which is increased by one at every movement of a lift) is set to
zero as soon as halted is set. The bad state is reached if visitmovement>=2N-1
and halted==1. We successfully checked the following test automaton against
our model.

badS2S1

press1!

halted==1

visitmovement==2N-1,

6 Concluding Remarks

In this paper, we have reported on an industrial case study in which formal tech-
niques were applied for the analysis of a distributed system for lifting trucks.
Our work can be considered as one more piece of evidence that formal verifica-
tion techniques are sufficiently mature to be applied in the design of industrial

12



systems. In particular embedded controllers appear to be well-suited for formal
modeling and verification with model checking, as they tend to combine a high
degree of complexity with a manageable state space.

A formal model is always an abstraction of the real system. The good thing
is that this enables to study the core of a system, without superfluous details
that may needlessly obscure the picture and increase the state space. A draw-
back however is that one may abstract away too much. In our case study, we
saw two examples of this, regarding the Uppaal model from [11]. Firstly, ab-
stracting away from the Sync flag meant that a bug in the implementation
was missed. Secondly, using one global shared variable instead of different local
shared variables at all stations induced a serious flaw in the model.

The latter flaw brings us to the use of test automata, as this flaw was initially
missed due to a too restrictive test automaton. Uppaal’s modal logic is not
very expressive. It is well-known that test automata can come to the rescue, to
express different scenarios of a property that is outside the scope of the modal
logic. However, this comes at a price. First of all, it means that only a subset of
scenarios is verified. Furthermore, building a good test automaton can be quite
laborious. Last but not least, a test automaton can itself be too restrictive or
even flawed.

A strong point of formal models is that it is relatively easy to extend or adapt
them, and then verify the adapted model. We experienced that it is very useful
to have the ability to try different solutions to a problem (in this case the extra
halt state), and verify with model checking whether a solution is satisfactory.
This was far easier than it would have been for the developers of the system to
implement these different solutions and perform a substantial testing effort.

One has to keep in mind that an adaptation of the model can give rise to
an adaptation of requirements, or to new requirements. Here we had to adapt
Liveness II and Safety I, and introduced new requirements Liveness III and
Safety III, for the extended model that includes a halt state.

For us, the excellent graphical interface of Uppaal has been invaluable, as
it enabled the developers of the lift system to fully understand and comment on
our formal models. We would like to emphasize the importance of establishing a
good relationship between a formal methods group and a team of engineers. This
relationship should be built on mutual trust and technical insight. Too often, a
formal verification effort within industry is limited to a single case study. In
general it would be much more fruitful to perform a series of case studies with
the same group of engineers, and ideally with subsequent releases of the same
system. This way the engineers get better acquainted with the formal methods
approach, and the formal methods people get a better technical insight. Even
more important, this way the results of a formal analysis can have a direct
impact on the design of a system, and the strengths of formal models come to
light. Namely, while developers may struggle to adapt the implementation and
have to spend considerable testing effort, adaptation of the formal model and
the subsequent model checking exercise tend to take relatively little effort.

13



7 Uppaal Automata of the Lift Model

We present the two most important automata of our Uppaal model. Start-up
phase and the automata Bus and Timer are left out.
The automaton Interface, which is depicted in Figure 1, captures the buttons

on a lift.

Fig. 1. The automaton Interface.

The automaton Station is depicted in two separate parts, which are joined
together at the initial node normaloperation. At this node, two loops of a
station can be performed: the main loop and the fast loop.
The main loop, which is depicted in Figure 2, is a short loop in which the

automaton Station synchronizes with its Interface. Executing the main loop is
the only way the station can get information about which button on the lift (if
any) is pressed or released. This main loop takes place after a fixed number of fast
loops, which is modeled as a constant CYCLES in the Uppaal model. A counter
cyclecounter is used to record the number of fast loops that have happened
after the last main loop. When cyclecounter==CYCLES, the main loop takes
place and cyclecounter is reset to 0. If the station detects a difference between
its current state (modeled by the variable currentstate) and the state of the
Interface (modeled by variable buttonstate), the station may change its state
and adopt the one from the Interface.
In the fast loop, which is depicted in Figure 3, a station can do several things.

First a station can get messages from the bus. Second, a station can send a

14



Fig. 2. Part of the automaton Station: Main loop.

message to the other stations, if it gets the turn to use the bus. Third, the active
station can count state messages and initiate a movement of the whole system.
In that case the active station will enter the node activemovement, while the
other stations get a sync message and enter the node passivemovement.

Acknowledgments We thank the developers of the lift system for their collabo-
ration and fruitful discussions. Henk Barendregt and Frits Vaandrager provided
useful feedback.

References

1. L. Aceto, A. Burgueno and K.G. Larsen. Model checking via reachability testing for
timed automata. In Proc. 4th Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS’98), LNCS 1384, pp. 263-280. Springer-Verlag,
1998.

15



2. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. van Langevelde, B. Lisser, and J.C.
van de Pol. µCRL: A toolset for analysing algebraic specifications. In Proc. 13th
Conference on Computer Aided Verification (CAV’01), LNCS 2102, pp. 250–254.
Springer, 2001.

4. Robert Bosch Gmbh, Postfach 30 02 40, D-70442 Stuttgart, Germany. CAN Spec-
ification. Version 2.0, 1991.

5. J.F. Groote, J. Pang, and A.G. Wouters. A balancing act: Analyzing a distributed
lift system. In Proc. 6th Workshop on Formal Methods for Industrial Critical
Systems (FMICS’01), pp. 1–12, 2001.

6. J.F. Groote, J. Pang, and A.G. Wouters. Analysis of a distributed system for
lifting trucks. Journal of Logic and Algebraic Programming, 55(1/2):21–56, 2003.

7. K. Havelund, K.G. Larsen and A. Skou. Formal verification of a power controller
using the real-time model checker Uppaal. In Proc. 5th AMAST Workshop on
Formal Methods for Real-Time and Probabilistic Systems (ARTS’99), LNCS 1601,
pp. 277-298. Springer-Verlag, 1999.

8. B. Karstens. Formal Verification of the Redesign of a Distributed Lift System using
Uppaal. MSc thesis, Utrecht University, June 2003. Available at www.phil.uu.

nl/preprints/scripties/list.html.
9. A. Kakebeen. Extension and Formal Verification of a Distributed Lift System in

Uppaal. MSc thesis, Radbout Universiteit Nijmegen, August 2005. Available at
www.cs.vu.nl/~wanf/kakebeen.doc.

10. K.G. Larsen, P. Pettersson, and Y. Wang. Uppaal in a nutshell. Software Tools
for Technology Transfer, 1(1–2):134–152, 1997.

11. J. Pang, B. Karstens, and W.J. Fokkink. Analyzing the redesign of a distributed
lift system in Uppaal. In Proc. 5th Conference on Formal Engineering Methods
(ICFEM’03), LNCS 2885, pp. 504–522. Springer-Verlag, 2003.

16



Fig. 3. Part of the automaton Station: Fast loop.

17


