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Scoped Types for Real-Time Java

Writing functionally correct programs in the RTSJ is harder than in Java, 
because of the implicit well-formedness relation on references imposed by 
the RTSJ memory model.

Contributions:  

formalization of the well-formedness relation in a typed object calculus

proof: well-typed program ⇒ no dangling pointers & no memory leaks

Our results can be used as a checked discipline for RTSJ programs on vanilla VM
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The Real-Time Specification for Java

Extend Java and VM Specifications with an API that enables creation, 
verification, analysis, execution, and management of Java threads whose 
correctness conditions include timeliness constraints

Timeline:

1999   JSR-001 accepted w. 40 companies involved (IBM, Sun...)

2001   RTSJ v.1.0

2002   TimeSys reference implementation

2003   jRate, Ovm open source;  jTime product
          MacKinac project starts @ Sun Grenoble

2004   RTSJ v.1.0.1
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Why Java as a Real-Time Platform?

 Why switch to Java?     Software-intensive systems require high-level prog. langs. C++ not ideal,  Ada struggling Java = lingua franca in education, well specified,  ~ simple combine real-time and plain Java in the same  VM

 What about the performance myth? Folklore:  Java 2 times slower than C; true for hand-tuned code, in practice < 2 Component-based apps easier to optimize in Java because code  in a common IR Dynamic compilers getting better than static compilers

 Is Java too dynamic? Classloading need not be used ⇒ off-line whole-system optimization Garbage collection still a problem (if you allocate)
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PRISMj

                                   Mission critical avionics DRE 
                                                 Boeing, Purdue, UCI, WUSTL 
                   Route computation, Threat deconfliction algorithms 
                                                                   ScanEagle UAV

Middleware stack is 1MLOC  Java 
                         ⇒ 52KLOC w. Ovm optimizing compiler!

 

                                           3 rate groups (20, 5, 1Hz)
                                               performance 2x jTime,  
                                                      ≈ Sun product VM

     PrismJ avionics controller
   (app layer)

FACET event channel

ZEN  Object Request Broker

Real-time Specification for Java
(User level implementation)

Ovm virtual machine kernel

kernel 
     boundary

3 An Avionics Mission-critical DRE Middleware Stack

We propose to address issue of configuration and adaption of middleware architecture by focusing one

representative DRE application. The software in question implements flight control, threat assessment, and

route deconfliction algorithms for the SCANEAGLE Unmanned Aerial Vehicle (UAV)1. The SCANEAGLE

A is an UAV under joint development by The Boeing Company and The Insitu Group in an effort to meet

the demand for an affordable, fully autonomous vehicle with high endurance. Equipped with an onboard

inertially stabilized daylight video camera, SCANEAGLE A can stay aloft for 15 hours, traveling hundreds

of miles. Fig. 2 depicts the UAV and gives information about the hardware configuration used in flight.

Embedded Planet PowerPC 8260

Core at 300 MHz

256 Mb SDRAM

32 Mb FLASH

PC/104 mechanical sized

Embedded Linux

Figure 2: ScanEagle Unmanned Aerial Vehicle with a PowePC processor running Embedded Linux.

In the system we are considering in this project, which is a feature complete and flight-tested configura-

tion, the UAV is controlled by Prismj, an experimental DRE avionics controller designed to operate under

hard real-time constraints. Prismj is written in the Real-Time Specification for Java (RTSJ) by the Boeing

company. It is a realistic multi-rate cyclic avionics execution context with a number of components and

events that are typical in production avionics mission-critical computing systems. The application runs over

100 threads in three rate groups (20Hz, 5Hz, and 1Hz). These threads perform different tasks. There is a

single infrastructure thread which acts as a cyclic executive and pushes events to components in the physical

device layer. Based on those events, 5Hz and 20Hz threads perform computations on components dedi-

cated to the Global Positioning System (GPS), airframe, tactical steering, and navigation steering. The 1 Hz

thread is a pilot control component and periodically switches all components in the system between tactical

a navigation steering.

The ScanEagle DRE middleware stack, illustrated in Fig. 3, starts with the Prismj application. Prismj

can be configured to use different event channels, transport layers, virtual machines and operating systems.

In the following we consider only one static configuration. Prismj components communicate internally by

the means of an Event Channel. An event channel is a standard interface for decoupling event producers

and consumers. The FACET event channel is a customizable real-time Java event channel from Washington

University of St. Louis [16, 20]. A transport layer is needed for communication between the UAV and the

ground station. This is achieved by configuring FACET to use Zen. Zen is a CORBA object request broker

(ORB) designed to support distributed, real-time, and embedded applications. Zen is written in RTSJ by UC

Irvine [27]. Prismj relies on classpath, an open source implementation of the Java standard libraries from

GNU and Purdue’s open sourced Real-time Specification for Java libraries.

The real-time virtual machine used to run Prismj is a configuration of the Ovm framework. The Ovm

project provides an open source framework for building language runtimes. Ovm is a toolkit with the basic

1The system was developed within the PCES program by Boeing, Purdue, UC Irvine and Washington University of St. Louis.
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System K LOCs

PRISMJ 109K

FACET EVENT CHANNEL 15K

ZEN CORBA ORB 179K

RTSJ LIBRARIES 60K

CLASSPATH LIBRARIES 500K

OVM VIRTUAL MACHINE 220K

Figure 3: The Prismj Middleware Stack.

components of a virtual machine. These components can be specialized and assembled into an Ovm con-

figuration customized for a particular problem domain [32]. The framework is designed so as to be able to

support different object models, e.g. Java or C# personalities. A configuration defines a new runtime envi-

ronment. The Real-Time Specification for Java is an example of a configuration yielding a fully functional

virtual machine. Ovm itself is written in Java and bootstrapped by self-compiling the VM to native code.

Here are some noteworthy characteristics of this application:

• Java stack: The entire middleware stack is written in Java. This means that standard bytecode analy-
sis and transformation tools can be used to optimize the architecture in a cross-cutting fashion. While

not essential, in practice, the use of Java greatly simplifies this task. Program analysis of C-based

languages is much harder due to type safety issues and the lack of adequate tools.

• Layer configurability: Each layer in the stack is configurable individually. Different and incompat-
ible techniques are used at each level. Prismj uses XML files with configuration information, FACET

and Zen rely on AspectJ, classpath uses Java language mechanisms and Ovm uses an aspect-like spec-

ification language along with a program transformation engine. The configuration space is typically

rather large. For example, [20] reports that there are 4,596 valid configurations of FACET. There no

mechanism to express dependencies across layers or to express whole-sale configurations.

• Large-scale systems: The size of the source code for the entire stack is over 1 million lines of code.
Yet, in practice, less than 10% is likely to be needed for any actual application. The Ovm ahead-of-

time compiler performs aggressive optimizations (control flow analysis, dead code elimination, etc.),

and is able to reduce the size of the code to 123K Locs, a portion of which is never used. Program

analysis is not a reliable way to reduce code size or configure a system. Any small change in the

source code can have arbitrary effect on the footprint of the resulting program. Moreover, there is no

support for giving feedback to users.

One real problem that designer of Prismj have wrestled with is the complexity of the overall system.

Within 1Mio lines of source code it is impossible to have a complete picture of the components. This

problem is compounded by the fact that typically, programmers don’t know exactly what classes get pulled

in, at least not without understanding the various configuration mechanisms. Apparently simple mistakes,

such as leaving debugging turned on, at some layer can cause the application to misbehave in unpredictable

ways (e.g. trying to print a debug message on the console while in a hard real-time task on the PPC board).

Furthermore, the layers of abstraction add extra performance overhead as current compiler technology is not

able to optimize them away.
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The Real-Time Specification for Java

New language in Java clothing  
  no changes to syntax but idiomatic reinterpretation of existing constructs. Thread Scheduling & Dispatching. Synchronization. Asynchronous Actions. Memory management. Time, Clocks and Timers
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RTSJ Design Overview

SCOPE A

O1

SCOPE B SCOPE C

IMMORTAL MEMORY AREA HEAP MEMORY AREA

O1

O1

O1O1

Challenges

hard/soft/non RT codes must be allowed to 
operate in the same execution environment 
(90/9/1 rule) 

RT threads should never wait for the garbage 
collector (GC)

prevent undesirable interferences, e.g. RT 
thread blocks while waiting for a plain thread 
to release a monitor
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Scoped Memory

SCOPE A

O1

SCOPE B SCOPE C

IMMORTAL MEMORY AREA HEAP MEMORY AREA

O1

O1

O1O1

Object lifetime controlled by reachability,  when last 
thread leaves an area, all objects allocated in it 
reclaimed

Eliminate GC latency; allow temporary objects

NHRT don’t read from heap, thus protected from 
GC interference

Allocation time linear in size, deallocation O(1) 
(modulo finalizers)

Multiple threads communicate through portal

Nesting is dynamic, established by entry order; can 
change for the same scope
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Scoped Memory Usage

positions = new float[size];
s= new ScopedMemoryArea(min,max);
r=new Runnable() {

void run() {
...read sensor output...
tmp = new float[4*size];
for(i=0;i<size;i++)

positions[i]=...tmp...
}};
s.enter(r);
done();
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Scoped Memory Usage

positions = new float[size];
s= new ScopedMemoryArea(min,max);
r=new Runnable() {

void run() {
...read sensor output...
tmp = new float[4*size];
for(i=0;i<size;i++)

positions[i]=...tmp...
}};
s.enter(r);
done();
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Scoped Types

A variant of ownership types.

Related to region-types and separation logics.

Formalized in a simple extension of Featherweight Java with threads & 
state.

see also:
Flexible alias protection.               Noble, Vitek, Potter   [ECOOP’98]

Scoped Types for Real-time Java.    Zhao, Noble, Vitek     [RTSS04]

Ownership Types for Safe Region-Based Memory Management in Real-Time Java, 
                                               Boyapati, Salcianu, Beebee, Rinard   [PLDI03]
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Scoped Types programming model

(set of)  scopes ≡ Java package

nested scope ≡ nested package

ScopedMemory object ≡ ScopedGate object

enter() ≡ method invocation

IllegalAssignment ≡ compile-time error

scope cycle error ≡ compile-time error
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Validity constraints for ST programs

package b

portal instance

Legal memory reference

Backing store association

Physical  memory

Realtime Thread

c c c

A

BB

package b

package a package a;

@scoped class A {
...

}
package a.b;

@gate class B {
...

}
@scoped class C {

...
}

Fig. 3. A program written with Scoped Types. The program’s static structure consists of two packages a and a.b. At runtime two instance
of the gate class B are created, thus giving rise to two distinct scopes. Notice that gate objects, like ScopedMemory instances in the RTSJ,
are allocated in the parent scope. Overall, the code is shorter than the RTSJ version and makes explicit the allocation context of objects.

classes in immediate subpackages. Instances of classes defined

in top-level package are allocated in immortal memory.

Dynamics. While scoped packages describe the static struc-

ture of an application, restricting programs to a single instance

of each scope (and thus exactly matching the static package

hierarchy) prevents some useful programming idioms. Thus, at

runtime, every instance of a gate class corresponds to a new

memory scope. So an application that creates two gates for

the same package, gets two distinct scopes which can be used

independently. The type system guarantees that references

across sibling scopes cannot arise, thus objects allocated within

two instances of the same gate class can safely be reclaimed

at different times. A scope’s gate is the only object from

the scoped package that is visible in the parent package. In

fact, gates are allocated in their parent scope, just as RTSJ

ScopedMemory objects are allocated in an enclosing area. The

current allocation context is always defined by the package

in which the current class was defined. Changing allocation

context is thus as simple as calling a method of an object living

in a different scope. Concurrency comes in quite naturally –

multiple threads execute in the same scope if they invoke a

method on the same gate. The implementation keeps track

of the number of threads in a scope by a simple reference

counting scheme. Just as in RTSJ, objects within a scope can

be reclaimed when the last thread exits. Fig. 3 illustrates these

concepts.

Static guarantees. Our model imposes some static constraints

on the accessibility of classes. We require that scoped classes

in a package be accessible only to the classes defined in that

package and its subpackages, while gate classes are only acces-

sible to classes defined in their immediate parent package. In

other words, classes are not allowed to access classes in inner

nested subpackages (other than the gates of their immediate

subpackage). These constraints ensure that a package’s gate

classes form an encapsulation boundary for classes outside that

package: scoped classes, and classes in subpackages are inside

that encapsulation boundary. More importantly, they ensure

that objects allocated in one scope may never have outgoing

inferences to objects allocated in inner scopes, and thus that

IllegalAssignmentErrors can never happen. Threads can

only enter the scopes defined in some package (by calling

methods on gate classes in that package) from the code in

the immediate super-package. This ensures that the hierarchy

of memory scopes always follows the same hierarchy as the

corresponding packages, enforcing the single parent rule and

preventing ScopedCycleExceptions.

Scoped Type Confinement Rules. Scoped Types’ static

guarantees are enforced by the following syntactic rules that

must hold for all scoped and gate classes. Rules C1, C2, and C3
bind scoped classes, while Rules S1 to S3 bind gate classes.
Besides the visibility constraints of Rules C1 and S1, we also
require that (C2) references of scoped type cannot be widened
to types in other packages while (S2) the references of gate
types cannot be widened to other types. Note that a reference

of type C can be widened to type D only if C is a subtype of
D. Reference widening can happen through operations such as
assignments, casts, and method invocations. The restrictions

on reference widening help us to track references by their

C1 A scoped type is visible only to classes in the same
package or subpackages.

C2 A scoped type can only be widened to other scoped
types in the same package.

C3 The methods invoked on a scoped type must be defined
in the same package.

S1 A gate type is only visible to the classes in the
immediate super-package.

S2 A gate type cannot be widened to other types.

S3 The methods invoked on a gate type must be defined
in the same class.
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A Scoped Type Program

as hashCode() or I/O). Reflection is currently not allowed to operate on scoped
classes, this restriction may be relaxed in the future if it proves too constraining.
All scoped classes are preinitialized by the virtual machine at startup time to
avoid delaying a real-time thread. Array types are treated specially, it is possible
to use them freely as long as they are either not exposed (i.e. not returned by
methods or exposed in fields) or wrapped in special utility classes.

4.3 Putting it all together

package corba.orb

public class ORB
extends ScopedGate {

POA[] poas = new POA[10];
Message msg = new Message();

public void handleRequest(Buffer b) {
msg.init(b);
POA poa = findPoa(msg);
poa = (pos==null) ?

addPoa(new Poa(msg)) : poa;
poa.handleRequest(msg);

}
...

}
public class Message {

...
public Message duplicate() {

return new Message(...); }
}

package corba.orb.poa

public class POA
extends ScopeGate {

Scratch scope = new Scratch();
void handleRequest(Message msg) {

Message message = msg;
if (...)

message = msg.clone();
scratch.dispatch(message);
scratch.reset();

}
}

package corba.orb.poa.scratch

public class Scratch
extends ScopeGate {

void dispatch(Message m) {
... }

...
}

Fig. 8. Programming with Scope Type.

We now proceed with an example that illustrates request processing when
using scoped types. Fig. 8 gives the code of a number of gate classes and
scoped classes. Fig. 9 illustrates the steps of computation ensuing from the call
orb.handleRequest(buffer).

Fig. 9(a) shows a possible state of the program where object G1 - G4 represent
gates. G1 is the ORB gate, it refers to two POA gates. The reference counts for
all gates is zero as no threads are active in the scopes. The figure also show the
scopes associated with each gate object. The orb (G1) refers to an instance of
Message (O1), which is a scoped class allocated in the orb’s scope. Since the
fields of the orb are package-scoped, no one else can gain direct access to them.
Note that the gate itself is not visible to object in the ORB package.

14
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Scoped Program

Every dynamic scope is

implemented by a package in 
the source

represented by a gate at runtime

Several scope of the same kind 
can be instantiated

Gates are norma Java objects 
with fields pointing into the 
scope

ORB CORE SCOPE

1G1

POA SCOPE

SCRATCH

O10G2

0G3

0G4

frame
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Scoped Program

ORB CORE SCOPE

1G1

POA SCOPE

SCRATCH

O11G2

0G3

0G4O2

frame

frame

Every call to a gate 
switches the allocation 
context 

scoped classes can refer 
to objects in the parent package

Gates have an associated 
reference count
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Scoped Program

ORB CORE SCOPE

1G1

POA SCOPE

SCRATCH

O11G2

1G3

0G4O2

O3

frame

frame

frame

Scopes are cleared by 
calling reset() on a gate 
with RC=0.

Code duplication may arise 
if the same class must be used 
in different scopes.
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Scoped Java Calculus

and consist of TmpAircraft, TmpPosition and Frame.

Notice that with Scoped Types it is impossible to confuse

planes in the inner imm.mem.cdmem scope with planes in the

stable imm.mem scope, as they are represented by different

types. A copy method is implemented in TmpAircraft to

create a Aircraft object that must, by definition, be allocated

in the parent scope. Similarly, since the state table is allocated

in imm.mem, the types in imm.mem.cdmem are not accessible

to it. Thus, we cannot use a TmpAircraft object as the key

to find out whether a plane is already stored in the table, and

we use an Aircraft object instead. The update method of a

TmpAircraft object refreshes the key with the information

about the current plane.

In this way, Scoped Types statically maintains the invariants

that RTSJ checks dynamically. By statically associating scoped

objects to their defining packages, Scoped Types can ensure

that illegal incoming references are never created. Similarly,

by modeling nested scopes with nested packages, Scoped

Types ensure that scopes will never form cycles. Finally, by

statically tracking the objects contained within each scope,

Scoped Types ensure that it is safe to discard all the objects

in a scope once the last thread has left it.

B. Refactoring an existing system

We are in the process of refactoring a RTSJ program called

Zen to use Scoped Types. Zen is a CORBA object request

broker designed to support distributed, real-time and embed-

ded (DRE) applications, written in the Real-time Specification

for Java [10]. Zen has been designed for memory-constrained

DRE applications. For our experiment we have selected a

minimal configuration (about 20K LOC of Java code) that

provides sufficient functionality for a number of benchmark

applications that will be tested on a 300Mhz PPC board

with 64MB of memory. We used the Eclipse development

environment to assist in the refactoring exercise.

The process of refactoring Zen proved surprisingly simple.

The first step is to instrument the program to print for each

object instantiated its class and the scope in which it is created

and also to print the parent relation between scopes. The

second step involve creating Java packages that mirrored the

scope hierarchy. Then, classes that are used unambiguously

in only one scope can be moved to the respective package

(with Eclipse this is painless). The remaining classes are used

in several scopes, for these it may be necessary to either find

a way to modify the application logic, or, in last resort, to

duplicate code.

Figure 6 summarizes the difference in package structure

between Zen and ScopedZen. The majority of classes in

subpackages of zen.orb are moved up to the new package

orb. This corresponds to the main memory area in which

an ORB executes. The class ORB is the gate class for the

orb package, each instance of this class represent one ORB

running in the virtual machine. The orb.transport and

orb.transport.message are used in the processing of

requests. Once a request has been processed all objects allo-

cated in those scopes are reclaimed. Finally, the other scopes

ZEN SCOPED ZEN

zen.orb orb
zen.orb.any orb.acceptor
zen.orb.dynany orb.poa
zen.orb.giop orb.transport
zen.orb.policies orb.transport.message
zen.orb.resolvers orb.threadpool
zen.orb.transport orb.waiter
zen.orb.transport.iiop
zen.poa
zen.poa.mechanism
zen.poa.policy

Fig. 6. Refactoring the Zen CORBA ORB.

(orb.acceptor, orb.threadpool and orb.waiter) are

present to mirror the original design of Zen. They could be

folded in orb as their lifetime is exactly that of orb.

IV. THE SJ CALCULUS

To gain confidence in the programming model underlying

our proposal, we introduce the SJ calculus, a sparse imperative

and concurrent object calculus, modeled after Featherweight

Java [11], in which scopes are first-class values. SJ formalizes

the type confinement rules of Scoped Type in terms of a type

system. Our proof of type soundness gives us the guarantee

that confinement cannot be breached during execution of

a well-typed program. We can then proceed to prove that

the shape of the scope hierarchy is restricted to tree. And,

finally, that deallocation of a scope will not result in dangling

references. SJ is a simple object calculus, to keep the semantics

concise we have omitted some features that are not essential

to the main results. These features include static methods,

synchronization, access modifiers, and down-cast expressions.

Some specific features related to scoped memory such as

the size and the type of the memory area (linear or variable

allocation time) are also omitted.

A. Syntax and Types

The syntax of the SJ calculus, Figure 7, draws on our

previous work [9]. The formalism and syntax is based on

the Featherweight Java (FJ) system which has been widely

adopted as a vehicle of language research. SJ has two kinds of

class declarations, scoped classes and gate classes, the former

annotated with a scoped and the latter with a gate. Classes
belong to packages, which can be nested in an arbitrary

L ::= ◦ class P.C ! D { C f; K M }
K ::= C() {super(); this.f := new D(); }
M ::= C m(C x) { return e; }
e ::= x | e.f | e.m(e) | new C() | e.f := e

| spawn e | reset e | v

◦ ::= gate | scoped v ::= " P ::= p | p.P

Fig. 7. Syntax of the SJ calculus.



CASSIS, Nice, March 05

The Scoped Type System

Γ, Σ ! x : Γ(x) (T-VAR)

Γ, Σ ! ! : Σ(!) (T-LOC)

Γ, Σ ! e0 : C fields(C) = (C f)

Γ, Σ ! e0.fi : Ci
(T-FIELD)

Γ, Σ ! e0 : C0 mdef (m, C0) = C′
0

mtype(m, C′
0) = C→ C

Γ, Σ ! e : D D # C C0 # C′
0

Γ, Σ ! e0.m(e) : C
(T-INVK)

Γ, Σ ! new C() : C (T-NEW)

Γ, Σ ! e0 : C0 fields(C0) = (C f)
Γ, Σ ! e : C C # Ci

Γ, Σ ! e0.fi = e : Ci
(T-UPDATE)

Γ, Σ ! e : Thread
Γ, Σ ! spawn e : Thread

(T-SPAWN)

Γ, Σ ! e : C C is a gate

Γ, Σ ! reset e : C
(T-RESET)

Fig. 11. Expression typing.

Store Typing:

dom(Σ) = dom(σ) ∀! ∈ dom(σ) .

Σ ! σ(!) ∧ Σ(!) = C if σ(!) = C!0(v)

Σ ! σ
(T-STORE)

fields(C) = (C f) ∅, Σ ! v : D D # C

Σ ! C! (v)
(T-STORELOC)

Method typing:

Γ = x : C, this : C0 Γ, ∅ ! e : C′ C′ # C

override(m, D, C→ C) Γ ! visible(e, C)

C m(C x) { return e; } OK IN C0 # D
(T-METHOD)

Class typing:

K = C() {super(); this.f := new D(); }
M OK IN C # D D # C visible(CDD, C)

◦ class P.C # D { C f; K M } OK
(T-CLASS)

Fig. 12. Type rules of store, method, and class.

σ(") = C!′
(v), then by Rule (T-STORELOC), an object C!′

(v)
is well-typed, if the types of v are scope-safe subtypes of the
field types.

In the typing rule for class (T-CLASS), we require that in a

class C, and the types of the fields and the base class must be
visible in C. Also, all methods in a class must be well-typed by
Rule (T-METHOD). If a method in the class C0 is well-typed,

then the method body e is well-typed by the expression typing
rules, the type of the method body is a scope-safe subtype of

the return type, and in addition, the method body must be

visible in C0 as defined by the judgment Γ ! visible(e, C0).
The predicate override(m, C0, C→ C) in Rule (T-METHOD) is

true if either the method m is not accessible in C0 or the type

signature returned by mdef (m, C0) is the same as C→ C. Note
that in (T-CLASS) we abuse notation by writing visible(C, C)
to assert that all types in the C are visible in C.

Visibility of types and expressions. The static constraints in

our model are mostly to restrict widening of references, and

also to limit the accessibility of expressions by their types.

For example, an expression of scoped type C is only visible
in the defining package of C and its subpackages. We define a
relation on types – visible(C, C0) (type C is visible from type

C0), which encodes the SJ access control rules: a scoped type

defined in package P is visible to the class C0 defined in P
and its subpackages; a gate class C is only visible from the

class C0 defined in the immediate parent package. One slightly

surprising implication of this definition is that a gate type is

not visible in its own class definition. Thus a gate class C
does not contain code that refers to itself with the exception,

as we shall see later, of the pseudo variable this which may
indeed be used to access fields and methods from within the

gate class.

We check the method body to determine whether type

visibility constraints are violated in a class. In Rule (T-

METHOD), the judgment Γ ! visible(e, C0) holds if e of type
C is visible in a class C0, which means that either e = this
or the type C is visible in the class C0 (i.e. visible(C, C0))
and all the subexpressions of e are visible in C0. We make

an exception for this because even though a gate type is
visible only to the classes of its immediate super-package, a

gate object must be able to use the variable this for accessing
its fields and calling its methods. For any scoped class, the type

of the variable this are always visible in its class.

D. Properties.

The purpose of our model is to simplify the allocation

of objects in scoped memory areas. Thus, we would like to

statically guarantee the properties that during the evaluation

of a real-time program,

1) the nesting structure of scopes remain a tree,

2) deallocated objects in scopes are no longer accessible.

In RTSJ, the nesting structure of scopes is determined by

how threads enter scopes. In our model, the scope structure

is fixed by how the gate objects representing the scopes are

created. That is, if a scope a is represented by a gate object
created in the scope b, then a must be directly contained in
b; moreover, the gate object representing a is defined in the
immediate subpackage of the gate object representing b. Thus,
our type system guarantees that the scopes represented by the

gate objects always form a tree. It also ensures that the threads

in a program will preserve such a scope tree such that each

thread either enters the scopes already entered by the thread or

enters a new scope directly contained in the current scope of

Γ, Σ ! x : Γ(x) (T-VAR)

Γ, Σ ! ! : Σ(!) (T-LOC)

Γ, Σ ! e0 : C fields(C) = (C f)

Γ, Σ ! e0.fi : Ci
(T-FIELD)

Γ, Σ ! e0 : C0 mdef (m, C0) = C′
0

mtype(m, C′
0) = C→ C

Γ, Σ ! e : D D # C C0 # C′
0

Γ, Σ ! e0.m(e) : C
(T-INVK)

Γ, Σ ! new C() : C (T-NEW)

Γ, Σ ! e0 : C0 fields(C0) = (C f)
Γ, Σ ! e : C C # Ci

Γ, Σ ! e0.fi = e : Ci
(T-UPDATE)

Γ, Σ ! e : Thread
Γ, Σ ! spawn e : Thread

(T-SPAWN)

Γ, Σ ! e : C C is a gate

Γ, Σ ! reset e : C
(T-RESET)

Fig. 11. Expression typing.

Store Typing:

dom(Σ) = dom(σ) ∀! ∈ dom(σ) .

Σ ! σ(!) ∧ Σ(!) = C if σ(!) = C!0(v)

Σ ! σ
(T-STORE)

fields(C) = (C f) ∅, Σ ! v : D D # C

Σ ! C! (v)
(T-STORELOC)

Method typing:

Γ = x : C, this : C0 Γ, ∅ ! e : C′ C′ # C

override(m, D, C→ C) Γ ! visible(e, C)

C m(C x) { return e; } OK IN C0 # D
(T-METHOD)

Class typing:

K = C() {super(); this.f := new D(); }
M OK IN C # D D # C visible(CDD, C)

◦ class P.C # D { C f; K M } OK
(T-CLASS)

Fig. 12. Type rules of store, method, and class.

σ(") = C!′
(v), then by Rule (T-STORELOC), an object C!′

(v)
is well-typed, if the types of v are scope-safe subtypes of the
field types.

In the typing rule for class (T-CLASS), we require that in a

class C, and the types of the fields and the base class must be
visible in C. Also, all methods in a class must be well-typed by
Rule (T-METHOD). If a method in the class C0 is well-typed,

then the method body e is well-typed by the expression typing
rules, the type of the method body is a scope-safe subtype of

the return type, and in addition, the method body must be

visible in C0 as defined by the judgment Γ ! visible(e, C0).
The predicate override(m, C0, C→ C) in Rule (T-METHOD) is

true if either the method m is not accessible in C0 or the type

signature returned by mdef (m, C0) is the same as C→ C. Note
that in (T-CLASS) we abuse notation by writing visible(C, C)
to assert that all types in the C are visible in C.

Visibility of types and expressions. The static constraints in

our model are mostly to restrict widening of references, and

also to limit the accessibility of expressions by their types.

For example, an expression of scoped type C is only visible
in the defining package of C and its subpackages. We define a
relation on types – visible(C, C0) (type C is visible from type

C0), which encodes the SJ access control rules: a scoped type

defined in package P is visible to the class C0 defined in P
and its subpackages; a gate class C is only visible from the

class C0 defined in the immediate parent package. One slightly

surprising implication of this definition is that a gate type is

not visible in its own class definition. Thus a gate class C
does not contain code that refers to itself with the exception,

as we shall see later, of the pseudo variable this which may
indeed be used to access fields and methods from within the

gate class.

We check the method body to determine whether type

visibility constraints are violated in a class. In Rule (T-

METHOD), the judgment Γ ! visible(e, C0) holds if e of type
C is visible in a class C0, which means that either e = this
or the type C is visible in the class C0 (i.e. visible(C, C0))
and all the subexpressions of e are visible in C0. We make

an exception for this because even though a gate type is
visible only to the classes of its immediate super-package, a

gate object must be able to use the variable this for accessing
its fields and calling its methods. For any scoped class, the type

of the variable this are always visible in its class.

D. Properties.

The purpose of our model is to simplify the allocation

of objects in scoped memory areas. Thus, we would like to

statically guarantee the properties that during the evaluation

of a real-time program,

1) the nesting structure of scopes remain a tree,

2) deallocated objects in scopes are no longer accessible.

In RTSJ, the nesting structure of scopes is determined by

how threads enter scopes. In our model, the scope structure

is fixed by how the gate objects representing the scopes are

created. That is, if a scope a is represented by a gate object
created in the scope b, then a must be directly contained in
b; moreover, the gate object representing a is defined in the
immediate subpackage of the gate object representing b. Thus,
our type system guarantees that the scopes represented by the

gate objects always form a tree. It also ensures that the threads

in a program will preserve such a scope tree such that each

thread either enters the scopes already entered by the thread or

enters a new scope directly contained in the current scope of
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Correctness

If it is the case that

P  ≡   P′′ |  t [ ... .l E [ reset l0 ] ] 

σ P is well typed

σ P   ⇒   σ′ P′       where P′ ≡  P′′ | t[ ... l E[ l0 ]]

then

objects allocated in the scope represented by gate σ l0  are 
not reachable in σ′ P′
                                                    (i.e. no dangling pointers)

                                              [Zhao, Noble, Vitek. RTSS’04]
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GIOP Message Parsers

1.21.1

Acceptor
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TRANSPORT

SCOPE

THREAD POOL SCOPE

Lane Lane Lane

1.0

CDR Streams

ORB CORE SCOPE

DemuxMap

POA SCOPE

upcall objects

POA SCOPE

upcall objects

SCRATCH 

SCOPE

servant objects

SCRATCH 

SCOPE

POOL

IMMORTAL SCOPE HEAP

SCOPE Servant Servant

IDL
Skeleton

IDL
Skeleton

1

2

4

5

6

3

Zen is a RT-CORBA object request broker

~ 100 KLoc written in RTSJ at UCI

with  a rich (ie. complex) memory scope structure

scopes protect the ORB 
core from interference

use RTSJ design patterns

   Bridge, Wedge Thread, 

   ScopedRunLoop, EIR

Real-Time Java scoped memory: 
design patterns and semantics. 
Pizlo, Fox, Holmes, Vitek.  
[ISORC04]

Empiric Validation
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Refactoring ZEN

zen.orb (16)
zen.orb.giop (4)
zen.orb.giop.IOP (3)
zen.orb.giop.type (5)
zen.orb.giop.v1 0 (9)
zen.orb.policies (9)
zen.orb.transport (3)
zen.orb.transport.iiop (1)
zen.poa (3)
zen.poa.mechanism (19)
zen.poa.policy (7)
zen.util (11)
scope.orb (45)
scope.orb.connection (7)
scope.orb.requestprocessor (10)
scope.requestwaiter (3)
rootable.helloservant (1)

Fig. 11. Scoped Zen Package Structure (156 classes in total)

zen.orb 38 zen.orb 16
zen.orb.any 2 –
zen.orb.any.monolithic 1 –
zen.orb.dynany 11 –
zen.orb.giop 6 zen.org.giop 4
zen.orb.giop.IOP 3 zen.orb.giop.IOP 3
zen.orb.giop.type 5 zen.orb.giop.type 5
zen.orb.giop.v1 0 9 zen.orb.giop.v1 0 9
zen.orb.giop.v1 1 5 zen.orb.giop.v1 1 5
zen.orb.giop.v1 2 4 zen.orb.giop.v1 2 4
zen.orb.policies 13 zen.orb.policies 9
zen.orb.resolvers 2 –
zen.orb.transport 11 zen.orb.transport 3
zen.orb.transport.iiop 4 zen.orb.transport.iiop 1
zen.poa 16 zen.poa 3
zen.poa.mechanism 27 zen.poa.mechanism 19
zen.poa.policy 7 zen.poa.policy 7
zen.util 21 zen.util 11

scope.orb 45
scope.orb.connection 7
scope.orb.requestprocessor 10
scope.requestwaiter 3

Fig. 12. Package Structure (185 classes in total)

18

Successfully refactored Zen 

Eliminated ~30 classes out of 186, 
little code duplication

Software structure became easier to 
understand

Several bugs were discovered

Faster execution times

... 2nd round of refactoring in progress
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Conclusions

✓ Java is safer than C++ because

    VM guarantees memory errors do not occur ⇒ increased productivity

    comes at cost in performance/predictability

    GC  = a system-managed memory leak

✓ RTSJ is memory-safe but

    harder to use because of extra dimension (locality)

    errors are reported at run-time ⇒ decreased reliability

    memory leaks are reported eagerly

✓ Scoped Types 

    prevent dynamic access violation and 

    structure code so as to reflect a program’s memory layout
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