
Immutable objects in Java

Erik Poll
Radboud University Nijmegen

Erik Poll Immutable Objects 2

Immutable objects in Java

• Context of this work: verification of Java programs
annotated with JML specifications

• Goal: a notion of immutable object, that can be statically
enforced, guarantees immutability, and can be exploited
in program verification

• Work in progress: more inventory of (solvable) problems
than a solution

Erik Poll Immutable Objects 3

Overview

Java provides final – ie. immutable - fields
What about immutable objects ?

• Why would we want this?

• What does immutable mean ?
 How to enforce and exploit it ?

Erik Poll Immutable Objects 4

Why immutability ? (1)

Good programming practice
“immutable objects greatly simplify your life”
• no problems with aliasing
• no problems with race conditions
• ...
• conceptually: immutable object is a value,

as in functional programming

Erik Poll Immutable Objects 5

Why immutability ? (2)

Performance
• no need for synchronisation
• compiler and VM optimisations

Erik Poll Immutable Objects 6

Why immutability ? (3)

Specification
• interesting property to specify, not just because of (1)

and (2), but as an important integrity property

• Eg immutability of Strings, URLs, permissions, etc. vital
for security

Erik Poll Immutable Objects 7

Why immutability ? (4)

Reasoning/program verification

public void m(String str){

 if (str.equals(“abc”)) {

 y.f[0]=‘x’;

 //@ assert str.equals(“abc”);

 ...

}

Erik Poll Immutable Objects 8

Why immutability ? (4)

 JML has a library of – supposedly immutable - model
classes, for mathematical objects such as sets, relations,

//@ public JMLObjectSet s;

//@ requires ! s.contains(o);

//@ ensures s.equals(\old(s).union(o));

public void addListener(Object o) { ... }

Guaranteeing immutability

Erik Poll Immutable Objects 10

starting point: pure

JML has the notion of pure

• pure method has no side-effects
• pure constructor has no side-effects, except
 on newly allocated state
• pure class only has pure methods, pure constructors,

and pure sub-classes

Erik Poll Immutable Objects 11

pure does not imply immutable

public /*@ pure @*/ class Integer{

 public int i;

 public Integer(int j){ i = j; }

 public int getValue(){ return i; }

}

Pure (no side-effects), but not immutable,
because anyone can change the public field i

Erik Poll Immutable Objects 12

Is this pure class immutable ?

public /*@ immutable?? @*/ class Integer {

 private int i;

 public Integer(int j){ i = j; }

 public int getValue(){ return i; }

}

Still not immutable, because field i is not final:
 Integer(5) may be observed to change from 0 to
5 in multi-threaded programs

Erik Poll Immutable Objects 13

Final is necessary for field immutability

class /*@ immutable @*/ Integer {

 private final int i;

 public Integer(int j){ i = j; }

 public int getValue(){ return i; }

}

Thanks to the newly revised Java Memory Model (JSR-133)

Erik Poll Immutable Objects 14

Final is not suffient for field immutability

public /*@ immutable?? @*/ class Integer {

 public static Integer latest;

 private final int i;

 public Integer(int j){ i = j;

 latest = this;} // leaks

 public int getValue(){ return i;)

}

Constructor leaks this, hence field i not immutable:
Integer(5) may be observed to change from 0 to 5.

There are a few more ways to leak this

Erik Poll Immutable Objects 15

Immutable instance field

• final instance fields are not always immutable

• final instance field is immutable, provided the constructor
doesn’t leak a reference to this

• One of the goals of the new Java Memory Model (JSR-
133)

Erik Poll Immutable Objects 16

Shallow immutability

• A pure class are shallowly immutable iff
1. all instance fields are final, and
2. constructors don’t leak this

• Definition implicit in JSR-133
• Usually too weak: we often want fields of fields (sub-

objects) to be immutable too

Erik Poll Immutable Objects 17

Shallow immutability too weak

 public /*@ immutable? @*/ class BankTransfer{

 private final char[] src,dest; //account nr’s

 private final Integer amount;

 ...

 char[] getDest(){ return dest; } // not ok

 Integer getAmount(){ return amount; } // ok

}

 We may want sub-components src and dest to be
immutable too...

 If so, leaking references to them is not ok

Erik Poll Immutable Objects 18

Deep immutability

A pure class is deeply immutable if
1. all instance fields are final, and
2. constructors don’t leak this, and
3. all instance fields that are references

i. have immutable types, or
ii. cannot be aliased (enforced using some form of

alias control)

Erik Poll Immutable Objects 19

Deep immutability too strong

public /*@ immutable?? @*/ BankTransfer {

 private final Integer amount;

 private final BankAccount src, dest;

 ...

}

 Deep-immutability would require immutability of the
source and destination bank accounts.

 What if we only want immutability of the references src
and dest, but not the objects they refer to?

Erik Poll Immutable Objects 20

Deep immutability too strong

public /*@ immutable @*/ BankTransfer {

 private final Integer amount;

 private final /*@ mutable @*/ BankAccount

 src, dest;

 ...

}

 src and dest excluded from the “state” of the
immutable BankTransfer object: references are part of
the “state”, but the objects they point to are not.

 (Javari notation of mutable used here; JML actually has
different notion of universe to delimit object state.)

Erik Poll Immutable Objects 21

State-based immutability

A pure class is state-based immutable if
1. all instance fields are final, and
2. constructors don’t leak this, and
3. all instance fields that are references

i. have immutable types, or
ii. cannot be aliased, or
iii. excluded from the “state” of the object

Javari of [Birka&Ernst] provides this (almost)

Exploiting immutability
in program verification

Erik Poll Immutable Objects 23

Observational immutability

• Example: bankTransfer.getAmount() is a constant

• object is “observationally immutable” if we cannot
observe any mutation by invoking its methods

• if o is observationally immutable, then
 o.m(x1,...,xn)
 always returns the same result, if xi are primitive values

or immutable objects

Erik Poll Immutable Objects 24

Exploiting immutability in ESC/Java2

A method
 C m(C1 x1, ... Cn xn)
is interpreted as function
 m : GlobalState×Ref×C1×..×Cn —> C

For immutable objects we can omit state
 m : Ref×C1×..×Cn —> C
if all Ci are primitive or immutable

Implemented by David Cok in ESC/Java2

Erik Poll Immutable Objects 25

State based immutability does not imply
observational immutability

public /*@ immutable @*/ StrangeInteger {

 final int i;

 StrangeInteger(int j){ i = j; }

 int getValue(){ return SomeClass.someStaticField;}

}

 Excluding such examples requires analysing read’s as well
as write’s...

 Immutable object should not write in its state and not
read outside its state (or – more liberally – only read
immutable fields outside its state)

Erik Poll Immutable Objects 26

Two views on immutability

1. state-based: no side-effects on the “state” of an
object

2. observational: methods behave as mathematical
functions, and “always” returning the same result

 Proposed analyses are for 1, but for program verification

we want 2, which requires a more complicated analysis:
looking at read effects, as well as write effects

Erik Poll Immutable Objects 27

Related work

Javari [Birka & Ernst, OOPSLA’04]

• proposal to add readonly modifier to Java
• more refined notion of immutability, eg allowing both

mutable and immutable (readonly) references to the same
object

• enforces state-based immutability
• doesn’t guarantee observational immutability

Erik Poll Immutable Objects 28

Exploiting immutability further?

public JMLObjectSet {

 JMLObjectSet add(Object o) {...}

 JMLObjectSet remove(Object o) {...}

 boolean contains(Object o) {...}

}

 s.contains(o) always gives the same result, even if o
is not an immutable object

 Checking this would involve checking if o is dereferenced

in the body of contains

Erik Poll Immutable Objects 29

Alternative approach

 We could also give a native implementation (or
axiomatisation) of an immutable class such as
JMLObjectSet in the back-end theorem prover.

 Maybe this is a better way to fully exploit the property
of JMLObjectSets being immutable.

Erik Poll Immutable Objects 30

Open question

• Notion of purity (absence of all side-effects) in practice
often too strong. Sometime we want to allow harmless
side-effects.

 Eg [99.44% pure, Barnet et al.]

• Does the same hold for immutability?

Erik Poll Immutable Objects 31

Conclusions

• Immutability is nice property, that deserves to be
documented, if not in Java then in JML

• Main gain not in program verification, but stressing
design decision and lightweigth static checks

• At least two notions of immutability: state-based
immutability considers write’s but not read’s, and hence
can’t guarantee observational immutability

• Good news: exploiting immutability in verification is easy
• Bad news: enforcing it is possible, but complicated
• Checking observational immutability requires alias control

and effect system for reads.

