
Strenghtening Content Security Policy via Monitoring and URL
Parameters Filtering

Dolière Francis Somé
CISPA

Germany
doliere.some@cispa.saarland

Tamara Rezk
Inria
France

tamara.rezk@inria.fr

ABSTRACT
Content Security Policy (CSP) is a security mechanism for miti-
gating content injection attacks. It makes it possible to specify the
origins of content allowed to load in a webpage. Upon enforcement,
CSP-compliant browsers would block content not matching the
CSP. Previous works have demonstrated limitations of CSP that
can lead to security violations. We observe that CSP bypasses (due
to JSONP and open redirects) can be linked to the fact that in CSP
specification, URL parameters are considered safe by default. In
particular, the ability to bypass partially whitelisted origins using
HTTP redirections has been rendered possible starting from CSP2
for privacy purposes (not to reveal redirection URLs), while this
can lead to security holes. In this work, we discuss 4 extensions
to strengthen CSP via a monitoring mechanism: the ability to se-
lectively exclude whitelisted content, express more fine grained
checks on URL arguments, explicitly prevent redirections to par-
tially whitelisted origins, and an efficient reporting mechanism to
collect content that are allowed by a CSP enforced on a webpage.
We show that using CSP along with these extensions improves the
security of web applications and overcomes known weaknesses of
the current CSP specification. We demonstrate the feasibility of our
proposals by an implementation using service workers.

CCS CONCEPTS
• Security and privacy→ Browser security;Web application
security; Access control.

KEYWORDS
Content Security Policy; Same-Origin Policy; Service Workers

ACM Reference Format:
Dolière Francis Somé and Tamara Rezk. 2020. Strenghtening Content Secu-
rity Policy via Monitoring and URL Parameters Filtering. In 19th Workshop
on Privacy in the Electronic Society (WPES’20), November 9, 2020, Virtual
Event, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3411497.3420222

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WPES’20, November 9, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8086-7/20/11. . . $15.00
https://doi.org/10.1145/3411497.3420222

1 INTRODUCTION
Content Security Policy (CSP) is a defense-in-depth mechanism that
has been introduced to mitigate the impact of content injection and
data exfiltration attacks in web applications [36]. In particular, CSP
can be used to mitigate Cross-Site Scripting (XSS), one of the most
prevalent attacks in the web [4]. CSP is well supported by browsers,
and its adoption by web applications is increasingly growing [14, 27,
29, 32, 34]. CSP is mostly an origin-based whitelisting mechanism 1,
the set of origins of content allowed to load in a webpage are
declared in the policy. Upon enforcement, browsers allow only
content from the whitelisted origins, thereby blocking content not
matching the policy. There are 2 main components provided by the
specification for declaring policies: directives and directive values.
Each directive is linked to a specific type of content (scripts, images,
stylesheets, plugins, etc.), and directive values are the trusted origins
from which the specific type of content are allowed to load.
script-src trusted.com;

object-src 'none';

Listing 1: Example of CSP

In the policy above, the directive script-src sets restrictions on
scripts, and object-src sets restrictions on plugins. Scripts are
allowed to load from trusted.com and no plugin is allowed to
load [31, 35, 36].

Problem. Previous studies have demonstrated the limitations
of CSP as a whitelisting mechanism, and the attacks that can be
mounted to bypass CSP [20, 32]. Thus, they motivated the decla-
ration in policies of individual content or set of content (partially
whitelisted origins) instead of whitelisting entire origins, as the
latters could host insecure JSONP endoinpts, open redirects or (un-
trusted) content such as the AngularJS library that can lead to CSP
bypasses [20, 32]. Hence, Weichselbaum et al. [32] proposed the
use of nonces to mitigate CSP bypasses based on open redirects and
unsafe JSONP endpoints. However, this solution comes with the fol-
lowing issues. First, the security of nonces is questionable because
they are included in the DOM of webpages [15, 35, 36]. Moreover,
the use of nonces does not prevent a script that is already loaded
in the webpage from making requests with JSONP parameters, or
from redirecting to partially whitelisted origins, especially if the
script gets compromised. Second, nonces apply only to scripts and
stylesheets, and not to other types of content such as images whose
URLs parameters an attacker can leverage to exfiltrate user data
for instance. Compositional Content Security Policy (CCSP), a pro-
posal of Calzavara et al. [15], also relies on individual whitelists, and
therefore can lead to CSP bypasses in case of HTTP redirections.
1Individual content can also be whitelisted by nonces and hashes

https://doi.org/10.1145/3411497.3420222
https://doi.org/10.1145/3411497.3420222
https://doi.org/10.1145/3411497.3420222

We observe that CSP bypasses (due to JSONP and open redirects)
can be linked to the fact that in CSP specification, URL parameters
are considered safe by default. Therefore attackers can leverage
them in order to bypass policies. Furthermore, when an origin
(i.e. trusted.com) or specific path (i.e. trusted.com/scripts/)
is whitelisted, it is not possible to exclude specific content (i.e.
trusted.com/untrusted.js or trusted.com/scripts/untrusted.js).

Proposal. To address these issues, we propose to complement
and strengthen CSP by a monitor that can effortlessly be included in
client code delivered to the browser in order to disallow redirections,
selectively exclude whitelisted content and URL parameters, and
improve the feedback CSP reporting mechanism.

Disallowing redirections to partially whitelisted origins
Partially whitelisted origins is the more reliable way of whitelisting
origins. Nonetheless, this can be bypassed using HTTP redirections.
We propose the specification of a new directive disallow-redirects
that can be used in policies to instruct the monitor to prevent all
redirections to partially whitelisted origins.

Adding checks on URLs parameters In CSP specification,
URL parameters are considered safe by default, while they can
be leveraged by attackers to bypass CSP, in presence of unsafe
JSONP endpoints and open redirects. We propose extending the
URL matching algorithm of CSP [31, 35, 36], which is used to check
whether a URL is allowed by a policy or not, in order to take into
consideration URL parameters. The proposed extension is to enable
declaring origins, paths, and specific content by specifying the URL
arguments that are trusted or untrusted. One can therefore ban
parameters from whitelisted origins, whitelist specific parameters
and blacklist others.

Selectively exclude whitelisted content Currently CSP spec-
ification defines 2 modes: the report-only mode in which policies
are enforced, but browsers do not block content not allowed by
the policy; and the enforcement mode in which content that are
not allowed by the policy are effectively blocked. We refer to these
two modes as CSP whitelisting modes. We propose to introduce
a new header, Content-Security-Policy-Blacklisting to ex-
clude specific content or set of content on a domain from loading
in a webpage. The blacklisting mode is meant to be used
always as a complement of a CSP in whitelisting mode.
This is because, in general blacklisting alone is less reliable than
whitelisting. That notwithstanding, CSP in blacklistingmode proves
useful when one knows that a whitelisted origin hosts content that
are potentially malicious, or endpoints whose URL parameters can
be leveraged to bypass a policy. This new mode can also serve
to explicitly prevent the loading of sensitive content in a web-
page, as they may reveal information about a logged-in user for
instance [17].

Efficient feedback reporting mechanism Finally, we com-
plement CSP with a mechanism for collecting content that match
a policy (aka feedback), similarly to CSP violations reports that
can be collected using the report-uri and report-to directives.
To specify the endpoints for collecting feedback, we introduce the
directives monitor-uri and monitor-to. This feedback can be use-
ful for many reasons. First, even if an application has been heavily
tested, it is not excluded that an attacker can find a vulnerability
and inject malicious content in the application. Moreover, an error

in a CSP may result in the policy being more permissive than ex-
pected, allowing attacker-injected content to load [14]. Furthermore,
browser extensions are widespread on major browsers [2, 6, 8, 10].
In particular, they can inject in webpages their own content that
is not always required to comply with the CSP of the page [3, 18].
Nonetheless, extensions content may further inject vulnerabilities
in webpages, which are otherwise restricted by CSP.

Implementation and evaluation. Our proposals add to the security
of web applications since they allow to further restrict a policy in
whitelisting mode, by preventing bypasses due to URL parameters
or unsafe content. We implement the proposed extensions using
service workers. Service workers (we refer to them as a monitor)
intercept HTTP requests initiated by browsers to load content in
a webpage. As such, they act like a proxy for content included
in the page [12]. We deploy a service worker with an example
web application, which deploys a CSP in enforcement mode and
another policy in blacklisting mode to complement the policy in
enforcement mode. The CSP in blacklisting mode is enforced by
the monitor, and the CSP in whitelisting mode is enforced by the
browser. Once the URL of a content matches a policy, the browser
makes a request to fetch its content. Then, the request is sent to
the service worker, which further checks its URL against the black-
listing policy. If the URL matches the blacklisting policy (either
because it is a blacklisted content or carries untrusted arguments),
then the request is blocked, otherwise it is effectively made. For
open redirects, as HTTP redirections are not intercepted by service
workers for security reasons [36], we could not fully implement
the new disallow-redirects directive. Nevertheless, to prevent
redirections to partially whitelisted origins, we assumed that all
open redirects are known by the developer. Then we either used
the new blacklisting mechanism to blacklist the open redirects, or
prevented them from carrying URL parameters by filtering them
out with the new URL parameters filtering mechanism we intro-
duced. Finally, the monitor also logged all the URLs of content that
it intercepted and reported them to the developer, as a feedback
of the runtime enforcement of CSP. We evaluated the overhead
that these extensions would introduce to web applications. The
blacklisting mode has no overhead since it fully relies on CSP in
whitelisting mode, already supported by browsers. The sole differ-
ence is in the final decision: a URL matching a CSP in blacklisting
mode is blocked, while in a whitelisting mode it is allowed. Pre-
venting redirections to partially whitelisted origins, in presence of
the disallow-redirects directive, is achieved by implementing
CSP1 [31] specification regarding redirections, without reporting
the blocked redirection URL. We implemented the algorithm for
checking URL parameters using a dozen lines of codes. Finally, to
support the feedback mechanism, browsers would have to keep
track of all content that match a policy, and report this to whatever
endpoint specified by the monitor-uri or monitor-to directives.

Contributions. In summary, this paper contributes with four new
extensions to address previous known and important weaknesses
of the Content Security Policy. It aims at improving the security
of web applications, by (i) expressing policies in blacklisting mode,
(ii) filtering URL arguments, (iii) disallowing redirects to partially
whitelisted origins and finally (iv) providing developers with an

Directive Content type
script-src scripts
object-src plugins
style-src stylesheets (CSS)
connect-src XMLHttpRequest, ...
img-src images

Table 1: Examples of CSP Directives

efficient way for collecting feedback about the runtime enforcement
of their policies in an application.

2 MOTIVATING OUR PROPOSALS
A problem with the first proposal of CSP, CSP1, is that browsers
cannot distinguish between legitimate and attacker-controlled in-
line scripts. To address this issue, starting from CSP2 [36], nonces
and hashes have been introduced to allow the whitelisting of in-
dividual legitimate inline scripts, so as to distinguish them from
malicious ones. So far, however, there is no way to whitelist indi-
vidual DOM event handlers using nonces, or hashes 2. Such scripts
have to be externalized in files, and hosted on origins that will be
further whitelisted in the CSP of the application. Nonces can also
be used to whitelist individual external or remote scripts. One of
the reasons that hindered a wider adoption of CSP was the lack of a
mechanism for easily accommodating dynamically injected scripts.
Weichselbaum et al. [32] then proposed the ’strict-dynamic’,
a keyword to be used to allow scripts whitelisted with nonces or
hashes, to further dynamically inject additional scripts even if they
are not explicitly whitelisted in a policy.

There are 2 main components in CSP for declaring policies. Di-
rectives target a specific type of content (scripts, images, plug-
ins, etc.) (See Table 1), and directive values are the trusted ori-
gins from which content can be loaded. This includes origins (i.e.
trusted.com, *.trusted.com), schemes (i.e. https:, data:),
keywords (i.e. ’self’, ’unsafe-inline’, ’strict-dynamic’), nonces
and hashes [35, 36].

For the sake of simplicity and throughout the rest of this work,
we describe in more details the issues we addressed by considering
mostly the script-src directive, which sets restrictions on the
origins from which trusted scripts can load. Nonetheless this work
is more general, and concerns CSP as a whole, its other directives
and content types. To illustrate the limitations of CSP and motivate
our proposals, we consider the following policies.
script-src https: // trusted.com https: // redirect.

com https: // partials.com/scripts /;

img-src trusted.com/image.png;

Listing 2: Example of an origin-based CSP

default-src 'none'; form-action 'none';

frame-ancestors 'none'; report-uri /allcontent

Listing 3: Restrictive policy in report-only mode to get the list of
content loaded in a webpage

2There is draft proposal in the current CSP3 [35], to be able to use hashes for whitelist-
ing individual DOM event handlers. This mechanism is however not yet implemented
by browsers

script-src 'nonce-random1234 ' 'strict-dynamic '

Listing 4: Example of CSP with nonces, or nonce-based policy

Listing 2 presents a CSP where trusted scripts are whitelisted by
their origins. We refer to them as origin-based policies. Only scripts
from the explicitly specified origins are allowed to load in the web-
page on which this policy will be deployed. The injection of a script
with the URL https://trusted.com/script.js in the webpage is allowed
since the script comes from the whitelisted origin https://trusted.
com. Listing 3 presents a restrictive policy that basically prevents a
page from loading content. Listing 4 presents a nonce-based policy.
When a nonce-based policy makes use of the ’strict-dynamic’
keyword, we refer to the overall policy as a strict CSP. Nonces
are used to whitelist individual scripts. To allow a script to load,
one injects <script src="https://trusted.com/script.js"
nonce="random1234"></script> in the page. Note the use of the
nonce attribute on the script tag. Its value is the nonce whitelisted in
the policy (See Listing 4).With the presence of the ’strict-dynamic’
keyword, whitelisted scripts (with nonces) that load in the page
can further dynamically inject additional scripts, even though the
additional scripts are not assigned whitelisted nonces 3. Hence,
contrary to the origin-based CSP in Listing 2 where one knows the
exact origins from which content can load, in the case of strict CSP
in Listing 4, scripts that effectively load are known only at runtime
(when the page is loaded in a browser and the policy enforced).

2.1 Partially whitelisted origins
In the CSP of Listing 2, from the domain https://partials.com, only
scripts with the path /scripts/ (for instance https://partials.com/
scripts/a.js) are trusted. Hence, trying to inject https://partials.com/
script.js will fail. Nonetheless, one can get this script loaded and
executed if it is loaded as the result of an HTTP redirection [35, 36].
To illustrate the bypass of partially whitelisted origins, let’s assume
that the origin https://redirect.com, which is also whitelisted in the
CSP of Listing 2, hosts an open redirect endpoint https://redirect.
com/r. In other words, instead of directly injecting https://partials.
com/script.js, one passes the URL of the script as an argument to
the open redirect endpoint by injecting a script with the URL https:
//redirect.com/r?url=https://partials.com/script.js. Instead of return-
ing a script to be executed, the open redirect generates an HTTP
redirection Location: https://partials.com/script.js. Since
this is an HTTP redirection, the browser will not check whether the
whole URL matches the CSP. It is sufficient that the origin of the
request be fully or partially whitelisted in the CSP of the page for
the script to be allowed via the HTTP redirection. And since this is
the case (See Listing 2), then the script https://partials.com/script.js
is allowed to load, even though its URL does not match the CSP.
This bypass works in CSP2 [36] and CSP3 [35].

2.2 Excluding content from whitelisted origins
Now let’s assume that from the CSP of Listing 2, most of the scripts
from the https://trusted.com origin are trusted. However, the origin
also hosts the insecure script https://trusted.com/untrusted.js and
hosts sensitive scripts in the /admin/ folder (scripts which paths
start with https://trusted.com/admin/) that must be not be loaded in

3Nonces and hashes work quite similarly [35, 36]

https://trusted.com/script.js
https://trusted.com
https://trusted.com
https://partials.com
https://partials.com/scripts/a.js
https://partials.com/scripts/a.js
https://partials.com/script.js
https://partials.com/script.js
https://redirect.com
https://redirect.com/r
https://redirect.com/r
https://partials.com/script.js
https://partials.com/script.js
https://redirect.com/r?url=https://partials.com/script.js
https://redirect.com/r?url=https://partials.com/script.js
https://partials.com/script.js
https://trusted.com
https://trusted.com/untrusted.js
https://trusted.com/admin/

the current page. CSP does not provide a mechanism for excluding
content from an origin. When an origin is whitelisted, it is trusted
in its entirety.

2.3 URL parameters
URL parameters are not taken into consideration when browsers
match a URL against a policy. Consider the CSP of Listing 2, the
URLs https://trusted.com/script.js and https://trusted.com/script.js?
func=eval&arg=1 all match the CSP if they are used to inject a script,
and the URL https://trusted.com/image.png?data=someuserdata&
cookie=usercookies matches the policy it is the URL of an image
injected in the page. In the first case, the URL does not have any
parameter. In the second case, the same URL is provided the pa-
rameters func with the value eval and arg with the value 1. If
according to CSP, these 2 URLs are exactly the same, in practice
they may result in the execution of completely different content.
Considering the second case, if the parameters provided are used to
generate the response which is returned back, we run into JSONP
requests which can lead to CSP bypass [20, 32]. In the third case,
the URL to load the image is passed some user data and cookies as
parameters, so that they are exfiltrated to trusted.com.

2.4 CSP violations
CSP can be used in 2 modes. In the report-only mode, policies are de-
livered to browsers using the Content-Security-Policy-Report-Only
header. In this mode, content not matching the policy are not
blocked by the browser. They are simply reported as CSP violations
to the developer. In the dual enforcement mode on the other hand,
policies are delivered to browsers using the Content-Security-Policy
header. When browsers enforce such a policy, content that do not
match the policy are effectively blocked, and a violation report is
also sent. CSP allows to combine policies in different modes, or
even deploy multiple policies in the same mode. Multiple policies
are all enforced individually. In this case, a resource is allowed to
load if it is allowed by all the policies. The directives report-uri
(in CSP1, CSP2) and report-to (in CSP3) are used in a policy to
indicate where CSP violations will be submitted to [35, 36].

The violations report mechanism of CSP can be used to build the
list of content that load in a webpage. To do so, one has to deploy
2 policies: a policy in enforcement mode (as the ones in Listing 2
and 4), and a policy in report-only mode that does not allow any
content, as the policy shown in Listing 3. Since the policy is in report
only mode, any content that attempts to load in the webpage will
trigger a CSP violation. Hence, every content triggers a violation.
It is therefore impossible to distinguish between malicious and
trusted content by analyzing the violations reported by a single
policy in report-only mode. So one has to also collect violations
triggered by the enforcement of the policy in enforcement mode
deployed to effectively prevent malicious content from loading
(i.e. policies shown in Listing 2 and Listing 4). Hence violations in
this policy are triggered only by content not matching the policy.
Computing the difference between the 2 reports then gives the
content that effectively loaded because they are allowed by the
CSP of the webpage. It is worth mentioning the case of browser
extensions, whose content are not always subject to the CSP of the
page [3, 18]. For instance, if the policy in Listing 2 is deployed on a

webpage, this does not prevent a browser extension from injecting
a script with the URL https://untrusted.com/vulnerable.js, even if
this URL is not allowed by the policy. Worryingly, the browser
extension may be injecting a content that introduces vulnerabilities
in the webpage. Moreover, the injection of this script will not trigger
a CSP violation report, even in presence of a CSP in report-only
mode as the one in Listing 3.

2.5 (In-)Security of CSP Nonces
To help mitigate the CSP bypasses due to JSONP and open redi-
rects, Weichselbaum et al. [32] suggested the use of nonces for
whitelisting individual scripts instead of whitelisting the origins,
URLs or path to the scripts. Nevertheless, recent studies question
the security of nonces, mostly because nonces are included in the
DOM of webpages, and thereby are subject to leakage by script-
less attacks [15]. Moreover, the use of nonces does not prevent a
script which is already loaded in a webpage from making requests
with unsafe JSONP parameters, using open redirects, or loading
untrusted content. If a whitelisted script gets compromised by an
attacker, then he can bypass the CSP at will. The use of nonces apply
only to scripts (script-src) and stylesheets (style-src) content
types, and not to other types of content. The violation reporting
mechanism is more indicated for violations that occur from time
to time, and is not suited for efficiently collecting feedback about
content that load in a webpage. Moreover, it does not report con-
tent injected by browser extensions. Also when the page deploys a
strict CSP, collecting feedback is useful because one cannot know in
advance the content allowed by the strict CSP before it is enforced.

2.6 Our proposal
To successfully address the aforementioned issues, we propose to
complement CSP with (i) a blacklisting mode, (ii) a URL arguments
filtering mechanism, (iii) new directives for preventing redirections
to partially whitelisted origins and (iv) a mechanism for efficiently
collecting feedback about the runtime enforcement of the policy of
a webpage by browsers.

3 MONITOR EXTENSION FOR CSP
In this section, we introduce our extensions on top of CSP.

3.1 CSP in blacklisting mode
Similarly to the headers used for deploying a CSP in enforcement
and report-only modes respectively, we propose a new header
Content-Security-Policy-Blacklisting for deploying CSP in
blacklisting mode. Semantically, the blacklisting mode is the exact
opposite of the enforcement mode. Hence, when a URL matches a
CSP in blacklisting mode, then it is not allowed to load. Consider
the policy in Listing 5.
script-src cdn.cloudfare.com/angular.js;

Listing 5: A CSP in blacklisting mode to exclude angular.js

In enforcementmode, this policywould have allowed the angular.js
script to load. By deploying the policy in blacklisting mode, then
the script is blacklisted and hence not allowed to load. One can
therefore combine this policy with another policy in enforcement
mode to prevent only angular.js from loading, while allowing any

https://trusted.com/script.js
https://trusted.com/script.js?func=eval&arg=1
https://trusted.com/script.js?func=eval&arg=1
https://trusted.com/image.png?data=someuserdata&cookie=usercookies
https://trusted.com/image.png?data=someuserdata&cookie=usercookies
https://untrusted.com/vulnerable.js

other content from cdn.cloudfare.com to load. Listing 6 presents
the two policies.
Content-Security-Policy: script-src cnd.cloudfare.

com

Content-Security-Policy-Blacklisting: script-src

cdn.cloudfare.com/angular.js

Listing 6: Combining 2 policies: one in enforcement mode, and the
other one in blacklisting mode

3.2 Checks on URL arguments
To illustrate this proposal, let’s consider the following scenario.
Listing 7 shows an example of a JSONP endpoint which expects
the parameter callback and uses it to generate a function call, and
passes it data.
Content-Security-Policy: script-src jsonp.com

Listing 7: CSP with insecure JSONP endpoint

If an attacker injects http://jsonp.com/?callback=eval in a webpage,
the returned response is a function call to eval(...). Note that the
URL argument is used to generate the function call. To prevent the
URL from loading when it is passed the callback parameter, one
could also deliver a CSP in blacklisting mode as shown in Listing 8
in addition to the CSP in Listing 7 that allows parameters to be
passed to the insecure JSONP endpoint.
Content-Security-Policy-Blacklisting: script-src

jsonp.com/? callback

Listing 8: Supporting URL parameters in CSP

The CSP in blacklisting mode mandates that, for URLs to load con-
tent from jsonp.com, they must not have the argument callback.
While the first policy only (Listing 7) would have allowed http:
//jsonp.com/?callback=eval to load, deploying also the second pol-
icy in blacklisting mode (Listing 8) would block it. By enforcing the
CSP in blacklisting mode, one detects that the URL of the resource
to load has an argument, whose name is callback. Therefore the
URL is blocked. Note that this design does not prevent the webpage
from loading other content from jsonp.com. For instance, it is com-
pletely possible to load http://jsonp.com/script.js, but not to load
http://jsonp.com/script.js?callback=foo. If the script has some other
arguments, then they are allowed to load. For instance, loading
http://jsonp.com/script.js?foo=bar is allowed by the policy above.

We have shown how to prevent URLs with a specific argument
(callback in our example). Now we illustrate additional scenarios
on how to filter URLs parameters.

Blocking all URLs with arguments To prevent URLs with
arguments, one simply ends their origins (paths or URLs) with ? in
a blacklisting CSP.
Content-Security-Policy: script-src jsonp.com

Content-Security-Policy-Blacklisting: script-src

jsonp.com/?

Listing 9: Blocking all URLs with arguments

The policy in Listing 9 stipulates that arguments are not allowed
on URLs of scripts from jsonp.com. Without the CSP in blacklisting
mode, any URL from jsonp.com would have been allowed. Now, the
second policy in blacklisting mode will block URLs with parameters.

BlacklistingURLswhen theyhave specific argument value
One can go even more fine-grained, by blocking URLs only when
they have specific parameters that have specific values. Listing 10
shows how to blacklist URLs from jsonp.com when the have the
argument callback with the value eval.

Content-Security-Policy: script-src jsonp.com

Content-Security-Policy-Blacklisting: script-src

jsonp.com/? callback=eval;

Listing 10: Blacklisting URLs with specific argument names and
values

While the CSP in blacklisting mode selectively prevents http://jsonp.
com/script.js?callback=eval to load, it will however not prevent
http://jsonp.com/script.js?callback=alert from loading.

Specifying multiple unsafe arguments The different scenar-
ios presented above can be combined to filter out URLs with a set
of unsafe arguments. If multiple arguments are specified for an
origin in a blacklisting policy, then a URL is blocked if it has all
the blacklisted arguments. Listing 11 is a policy which blocks URLs
having both the callback and arg arguments with any values.

Content-Security-Policy: script-src jsonp.com

Content-Security-Policy-Blacklisting: script-src

jsonp.com/? callback&arg;

Listing 11: Blacklisting URLs with multiple unsafe arguments

This policy will block http://jsonp.com/script.js?callback=eval&
arg=1, but not http://jsonp.com/script.js?callback=eval, because the
first URL has both unsafe parameters, while the second one does
not.

Blocking URLs with at least one untrusted argument To
block URLs if they have at least one argument among a set of
unsafe arguments, one can declare the blacklisting policy as shown
in Listing 12.

Content-Security-Policy: script-src jsonp.com

Content-Security-Policy-Blacklisting: script-src

jsonp.com/? callback jsonp.com/?arg;

Listing 12: Blacklisting URLs with at least one of multiple unsafe
arguments

A URL will be blocked if it has either the argument callback or the
arg with any values. Hence, http://jsonp.com/script.js?callback=
eval and http://jsonp.com/script.js?arg=1 will be blocked, while
http://jsonp.com/script.js?foo=bar will not be blocked.

3.3 Preventing redirections
In CSP1, when an origin is partially whitelisted, then only content
that match the partially whitelisted origin can load. In CSP2 and
CSP3 however, any content from partially whitelisted origins are
allowed to load as the result of HTTP redirections [35, 36]. Here, we
propose to extend the CSP specification so as to allow developers to
explicitly prevent redirections to partially whitelisted origins. To do
so, we propose a new directive disallow-redirects. When this
directive is present in a policy, it prevents redirections to partially
whitelisted origins. Consider the following policy

script-src https: // partials.com/scripts /.js;

cdn.cloudfare.com
http://jsonp.com/?callback=eval
jsonp.com
http://jsonp.com/?callback=eval
http://jsonp.com/?callback=eval
jsonp.com
http://jsonp.com/script.js
http://jsonp.com/script.js?callback=foo
http://jsonp.com/script.js?foo=bar
jsonp.com
jsonp.com
jsonp.com
http://jsonp.com/script.js?callback=eval
http://jsonp.com/script.js?callback=eval
http://jsonp.com/script.js?callback=alert
http://jsonp.com/script.js?callback=eval&arg=1
http://jsonp.com/script.js?callback=eval&arg=1
http://jsonp.com/script.js?callback=eval
http://jsonp.com/script.js?callback=eval
http://jsonp.com/script.js?callback=eval
http://jsonp.com/script.js?arg=1
http://jsonp.com/script.js?foo=bar

disallow-redirects;

Listing 13: CSP that uses disallow-redirects to explicitly prevent
redirections to partially whitelisted origins

In case of an HTTP redirection (using an open redirect endpoint for
instance), script from https://trusted.com/script.js would be allowed
in CSP2 and CSP3. The new disallow-redirects directive in the
policy instructs the browser to prevent these redirections to the
partially whitelisted origins.

3.4 Reporting runtime enforcement of CSP
In CSP, to collect violation reports sent by the browsers, one must
use the report-uri directive in CSP1 and CSP2, and the report-to
directive in CSP3. As we have shown, only violations are reported
to developers. Nonetheless, the content that actually load in web-
pages represent valuable information that can be used to improve
the security of the application, by helping to deploy more secure
policies. Therefore, following the semantics of the report-to and
report-uri directives used for reporting violations, we propose
the monitor-uri and monitor-to directives for reporting to de-
velopers content that effectively load within a webpage. When
content are allowed to load within the page upon enforcement of a
CSP, browsers would generate a report, following similar algorithm
used for generating violations [31, 35, 36], and send this to the
developer to whatever endpoint is specified in the monitor-uri
or monitor-to directives. Listing 14 shows an example of a policy
deployed to get feedback on the runtime enforcement of the policy,
as well as collect CSP violations.

script-src trusted.com; object-src 'none';

report-uri /reports/violations;

monitor-uri /reports/feedback;

Listing 14: Policy to collect violations and feedback

In this example, the monitor-uri directive follows exactly the
semantics of report-uri directive of CSP1 and CSP2.

3.5 Unsafe URL parameters
The algorithm for filtering out unsafe URL parameters is rather
simple to implement. We provided an implementation of this addi-
tional algorithm in Section 4 using the URLSearchParams JavaScript
API [11]. We refer to it as the URL parameters checker. It consists of
a dozen lines of code. In doing so, we did not modify the URL match-
ing algorithm itself. We rather implemented a dedicated function
for matching CSP against URLs parameters. As such, we preserve
backwards compatibility in browsers. An implementation of the
URL parameters checker can be plugged into an already existing
implementation of the URL matching algorithm [31, 35, 36] of CSP
in order to further apply filtering on URLs arguments. Hence, after
matching a URL against a request, the URL is passed to the param-
eters checker which further checks that the URL does not carry
unsafe parameters. Otherwise the related content is blocked from
loading.

4 IMPLEMENTATION
In this section, we demonstrate an implementation of the proposed
extensions using service workers. Our implementation can be de-
ployed on real world applications. We measure the overhead as-
sociated with deploying a service worker, which applies CSP in
blacklisting mode, filters URLs arguments, and reports feedback,
by using an example of web application.

In our implementation, we deploy a monitor. It acts like a proxy
as shown by Figure 1. It intercepts requests made by the browser
to load content in a web application. It is seamlessly and easily
integrated to the application by the developer from the server-
side, without requiring users or browsers to undertake any partic-
ular action. In addition to deploying a CSP in enforcement mode
that will be enforced by the browser, the developer also deploys a
CSP in blacklisting mode. In this policy, the developer can express
fine-grained policies regarding unsafe URL parameters, partially
whitelisted origins, blacklisted content and provide an endpoint
where to submit feedback. So the CSP in enforcement mode is
enforced by the browser, while the one in blacklisting mode is en-
forced by the monitor. When a content is injected in a webpage, first
the CSP in enforcement mode is enforced by the browser. When a
URL matches the policy, the browser makes a request to fetch its
content. This request is intercepted by the monitor, and the CSP
in blacklisting mode is applied. Upon enforcement, the monitor
checks whether the URL is not a blacklisted one and does not carry
unsafe parameters. In the particular case of partially whitelisted
origins, HTTP redirections are not visible to service workers for
privacy reasons [36]. Nevertheless, to implement the semantics of
the disallow-redirects directive, one can use the blacklisting
and URL filtering mechanisms to either blacklist open redirects
endpoints or filter out their unsafe parameters. Then once a URL is
allowed by the monitor upon enforcement of the policy in black-
listing mode, the request is made. Otherwise, it is blocked. The
monitor also logs all requests that it intercepts, and reports them
as feedback about the enforcement of CSP in the browser.

The monitor is not meant to replace the CSP enforcement pro-
vided by browsers. It rather complements it by filling the CSP
expressiveness gap at fully mitigating bypasses. It adds a reporting
mechanism for developers to get the set of content being loaded in
the application.

4.1 URL filtering algorithm
Following we provide an example of implementation of URL argu-
ments checker algorithm.

function unsafeArguments(origin , url){

if(origin.indexOf("?") == -1)

return true;

var oArgs = origin.split("?").slice (1).join("?")

,

uArgs = url.split("?").slice (1).join("?");

if(!oArgs && !uArgs)

return false;

var oparams = new URLSearchParams(oArgs || ""),

uparams = new URLSearchParams(uArgs || "");

for(var it of oparams.keys ()){

if(! uparams.has(it)){

https://trusted.com/script.js

Web Application Monitor Internet

Browser

Figure 1: Monitoring CSP enforcement and applying additional checks on resources loaded in webpages after the browser has
enforced CSP. In more details, the browser enforces the CSPs deployed on webpages and issues HTTP requests. The monitor
(service worker) intercepts those requests and further checks and blocks requests whose URLs are blacklisted, or URLs that
carry unsafe arguments (JSONP endpoints and open redirects). The monitor also records all intercepted HTTP requests and
responses and reports them to the web application server as a feedback of the runtime enforcement of the CSP on the web
application.

return false;

}else{

var ovalue = oparams.get(it) || "",

uvalue = uparams.get(it) || "";

if(ovalue && ovalue != uvalue){

return false;

}

}

}

return true;

}

Listing 15: Implementation of the URL arguments matching
algorithm using the URLSearchParams API [11] in JavaScript

The implementation is done in JavaScript, using the URLSearch-
Params API [11]. If the function returns true, then the URL is
blocked, otherwise it is allowed. Recall that blacklisting URL ar-
guments is meant to be used with CSP in blacklisting mode. So,
the URL matching algorithm is first applied. Then, when the URL
matches an origin in the blacklisted CSP, it is further passed to the
arguments checker. If the origin of URL does not declare any unsafe
arguments, it means that the URL must be blocked since it already
matches the blacklisted origin. We can say that the blacklisting
is at the origin level. Otherwise if the blacklisted origin specifies
unsafe arguments, then the URL is blocked if its arguments match
the blacklisted arguments of the origin. In this case, we can say
the blacklisting is at the arguments level. Section 3.2 gives all the
details about filtering out URL parameters.

Given an origin and a URL, the URL arguments checker checks
whether the blacklisted arguments of the origin are found among
the arguments of the URL. Table 2 shows the application of this
algorithm on different origins and URLs. When there is a match
between the origin and the URL, then the URL is blocked.

4.2 Service workers
Service workers [12] are implemented in major browsers including
Chrome, Firefox, Opera, Microsoft Edge and Safari 4. They act as a
proxy, part of the application itself, which can however intercept
4https://jakearchibald.github.io/isserviceworkerready/

Table 2: Matching arguments in an origin against arguments
in a URL

Origin URL Match
a.com/? a.com/s.js no
a.com/? a.com/s.js?func=eval ✓
a.com/? a.com/s.js?func=eval&arg=hello ✓
a.com?func a.com/s.js no
a.com?func a.com/s.js?arg=hello no
a.com?func a.com/s.js?func=alert ✓
a.com?func a.com/s.js?func=alert&arg=hello ✓
a.com?func=eval a.com/s.js no
a.com?func=eval a.com/s.js?arg=hello no
a.com?func=eval a.com/s.js?func=alert no
a.com?func=eval a.com/s.js?func=eval ✓
a.com?func=eval a.com/s.js?func=eval&arg=hello ✓
a.com?func=eval&arg a.com/s.js no
a.com?func=eval&arg a.com/s.js?func=eval&arg=hello ✓
a.com?func=eval&arg a.com/s.js?func=alert&arg=hello no

all HTTP requests made by the browser to load content in an appli-
cation. Service workers are deployed as part of the application, but
once executed, will reside in the browser and intercept all requests
going out of the application, as well as all incoming responses
destined to the application. Service workers have been introduced
among other things, to enable web applications to provide users
with an offline experience when network is unavailable. It appears
that they perfectly fit the needs of our monitor, and we use them
to implement the latter. This quotation from Mozilla Developer
Network defines very well service workers [12]

A service worker is an event-driven worker regis-
tered against an origin and a path. It takes the
form of a JavaScript file that can control the web
page/site it is associated with, intercepting and
modifying navigation and resource requests, and
caching resources in a very granular fashion to

https://jakearchibald.github.io/isserviceworkerready/

give you complete control over how your app be-
haves in certain situations, (the most obvious one
being when the network is not available.)

First of all, the service worker itself is a JavaScript file which
makes use of the specific APIs made available to it by browsers.
Then the service worker is deployed by referencing it in the appli-
cation whose requests it intercepts and manages.

Intercepting requests Following is how service workers inter-
cept requests made from an application.
self.addEventListener('fetch ', function(event) {

url = event.request.url;

content_type = event.request.destination;

page = event.request.headers.referer

}

);

Listing 16: Intercepting requests in service workers

To intercept the URLs of requests, service workers listen for fetch
events, which are triggered each time that a request is initiated
by the browser to load content in the application. Note that those
requests are done after the browser enforces the CSP of the applica-
tion on the URL of the content to load. The request object of the
event contains all the information necessary to make the request
(URL of the request, type of content being loaded, the specific page
from which the request is being made, data sent along the request
in case of HTTP POST requests, ...) [12]. As shown in Listing 16,
url represents the URL of a request intercepted by the service
worker, content_type the type of content that the URL will load
(script, image, ...) 5, and page, the specific page of the application
from which the request is being made. This helps for instance, to
deploy a single service worker for an entire application made of
multiple pages. The monitor specifically makes use of this three
categories of information (URL of request, content type and URL of
the page), which are sufficient for it to check whether the request
of the particular type should be allowed or not, in the specific page.
When the request is allowed, the monitor lets it proceed using the
fetch API [5], as shown in the following Listing 17.
event.respondWith(

return fetch(event.request).then(function(

response) {

return response;

})

);

Listing 17: Making a request from the service worker

Otherwise, the request is blocked. This is achieved by gener-
ating and returning an empty response in the monitor, using the
Response API 6.
event.respondWith(

return new Response ();

);

Listing 18: Blocking a request

5This information is not available on Firefox service workers
6https://developer.mozilla.org/en-US/docs/Web/API/Response

Deployment To deploy the service worker (monitor), one has
to indicate to the browser the location (URL) of its code on the
application server. Additionally, one indicates whether the monitor
is deployed for a specific page or for an entire application (origin).
To deploy service workers for an entire application, one can simply
modify the main (HTML) page of the application, and the service
worker will be deployed for the entire application.
...

<script>

if ('serviceWorker ' in navigator) {

navigator.serviceWorker.register('/sw.js', {

scope: '/'})

.then(function(reg) {

console.log('Service Worker Started ');

}).catch(function(error) {

console.log('Service Worker Failed ');

});

}

</script>

...

Listing 19: Deploying a service worker for an application

In Listing 19 above, sw.js is the JavaScript file of the service worker
located on the application server, and the service worker is regis-
tered for the entire application scope: ’/’.

4.3 Enforcement of the CSP in blacklisting
mode

We have already described an implementation of the URL checker
algorithm (See Listing 15), included in the service worker file that is
deployed. When a web server sends a CSP in blacklisting mode with
the response to a request to load a webpage, the monitor intercepts
and saves on the fly the CSP in blacklisting mode. Then, when a
request to load content on the page is intercepted (Listing 16), the
URL of the request is checked against the blacklisting policy of the
page. If the URL of request does not match the blacklisting policy,
the request is normally made (Listing 17). Otherwise, the request is
blocked. In this case, the monitor (service worker) returns an empty
response (Listing 18).

In any case, requests that are intercepted, are logged. Requests
that are blocked (because they are blacklisted content or because of
their unsafe parameters) are also logged. This is submitted to the
endpoint specified by the developer in the monitor policy. In our
implementation, the reports are sent every 15 seconds 7. That is
the feedback about the enforcement of CSP on the application. In
our implementation, we fix the URL where the feedback is sent to.

We provide online (Location blinded for review) our ready-to-
deploy monitor and guidelines on how to easily integrate it to web
applications.

5 EVALUATION
We deployed the monitor on an example web application (located
on the localhost), with different types of content (scripts, images,
stylesheets, fonts, XMLHttpRequests, etc.).
7We have chosen this number randomly, as all content on our example pages are
loaded before this delay expires

https://developer.mozilla.org/en-US/docs/Web/API/Response

The CSP of the page is shown in the following Listing 20.
script-src 'self' http:// localhost:5000 http://

localhost:7000

Listing 20: CSP in enforcement mode deployed on the webpage

It allows scripts of the site own origin, and from 2 third party origins.
To simulate third party origins, we deployed multiple example
applications on different ports of the localhost (ports 5000 and 7000).
The application itself is deployed on port 8000. To further apply
additional checks on URLs of requests to these origins (the 2 third
party origins in particular), we deployed the CSP in blacklisting
mode shown in Listing 21
script-src http:// localhost:5000/ajax/libs/

angular.js/ http:// localhost:7000 /?

Listing 21: Blacklisting CSP used to apply further checks on the
content allowed by the CSP in enforcement mode

It blacklists (excludes) scripts whose paths start with http://
localhost:5000/ajax/libs/angular.js/ from the origin http://localhost:
5000 whitelisted in the CSP of Listing 20. URLs to http://localhost:
7000 that carry any arguments will also be blocked by the monitor.

The deployed monitor has been able to successfully enforce the
blacklisting policy on content we injected in the application. We
also tested the monitor with nonce-based strict CSPs, and with
toy browser extensions injecting content in the webpage. All such
content have been successfully intercepted by the monitor and
applied the CSP in blacklisting mode. Finally, the monitor was also
able to log and report all content intercepted, blocked, and loaded.
On a real web application, by analyzing the reported feedback, one
may be able to detect potentially malicious or untrusted content
loaded as a result of errors or misconfigurations, or as a result
of an attacker exploiting a content injection vulnerability in the
application. This also includes content dynamically injected in strict
CSPs, and content injected by browser extensions.

The following is a report sent by the monitor upon enforcement
of the blacklisting policy.
[

{

"url": "http:// localhost:8000/script.js?

BNfWB8tsrM",

"type": "script",

"blocked": false

},

{

"url": "http:// localhost:8000/script.js?

K3Vc6ksIeV",

"type": "script",

"blocked": false

},

{

"url": "http:// localhost:7000/scripts/

cspinclusion.js?callback=zleYLgrXNQ",

"type": "script",

"blocked": true

},

{

"url": "http:// localhost:5000/ajax/libs/

angular.js /1.7.2/ angular-animate.js",

"type": "script",

"blocked": true

},

{

"url": "http:// localhost:7000/scripts/

cspinclusion.js",

"type": "script",

"blocked": false

},

{

"url": "http:// localhost:8000/script.js?

AyhR4pkCaJ",

"type": "script",

"blocked": false

},

{

"url": "http:// localhost:8000/script.js?

VPJS8xfJbn",

"type": "script",

"blocked": false

},

{

"url": "http:// localhost:7000/scripts/

cspinclusion.js?callback=QZ4d2uiq8Y",

"type": "script",

"blocked": true

},

{

"url": "http:// localhost:7000/scripts/

cspinclusion.js?callback=cmkRJvjPih",

"type": "script",

"blocked": true

}

]

Listing 22: Feedback reported by the monitor

Entries in the report array with the "blocked": true property are
content that are allowed by the CSP of the page as enforced by the
browser, but blocked by the monitor after applying the blacklisting
CSP.

5.1 Performance overhead
We evaluated the overhead introduced in a web application, with
the use of a monitor (See Figure 2). To do so, our example webpage
is embedding a set of content of different types. In particular it has
3 scripts for measuring the load time of the application:

• A first script which, when executed, registers the start time.
It is the first script loaded in the webpage.

• A second script is responsible for dynamically loading in the
webpage many content of different types (scripts, stylesheets,
fonts, images, etc.).

• A third script injected at last, is responsible for measuring
the end time. It is the last script executed in the webpage.

The page is composed of the following content:

http://localhost:5000/ajax/libs/angular.js/
http://localhost:5000/ajax/libs/angular.js/
http://localhost:5000
http://localhost:5000
http://localhost:7000
http://localhost:7000

• 20 scripts, each further making 1 synchronous XMLHttpRe-
quest;

• 20 stylesheets, further loading 1 font each;
• 20 (JPG) images.

The application is served from the localhost to avoid latency
and delay introduced with the network if it was deployed on a
remote server. Time is measured using the performance 8 API, 100
times in different browsers (Chrome, Firefox, Opera, and Brave).
All resources loaded are never cached, so that all measurements are
done in the same conditions.

A Figure 2 shows, a first measurement is done when the appli-
cation is not deploying any monitor (No Monitor). Then, another
measurement is done when the monitor does not perform any ac-
tion apart from simply forwarding all the requests that it intercepts
(Unenforced Monitor) without applying the monitor policy. This
is done to measure the overhead introduced by the use of service
workers. Finally, a last measurement is done when the monitor
enforces a blacklisting policy (Enforced Monitor).

The different times are shown in Figure 2 for Chrome browser,
version 66, on an Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz,
64 bits, with 16GB of RAM. Results in other browsers are similar
and therefore omitted.

tim
e (

ms
)

No Monitor Unenforced Monitor Enforced Monitor

0 20 40 60 80 100
0

200

400

600

800

1000

Figure 2: Performance overhead of deploying the monitor.
As one can obverse, there is an observable overhead due
to the use of service workers themselves (No Monitor vs.
Unenforced Monitor). However the implementation of our
monitor within the service worker itself induces very little
overhead (Unenforced Monitor vs. Enforced Monitor).

As one may observe from Figure 2, the main overhead is due to
the use of service workers to implement the monitor (Unenforced
Monitor vs. No Monitor). Comparatively, enforcing the monitor
policy itself introduced a negligible overhead (Enforced Monitor
vs. UnEnforced Monitor). We think that this is an acceptable over-
head, not only due to the security benefits that one gains with the
deployment of the monitor, but because in our evaluation, we are
not leveraging the full capabilities of service workers. In fact, in
real world web applications, the Cache API of service workers can
be used to cache resources, therefore reducing, or even completely
removing this overhead.
8https://developer.mozilla.org/en-US/docs/Web/API/Performance

5.1.1 Overhead of applying the CSP in blacklisting mode.
We further measured the specific overhead of applying CSP within
the monitor to blacklist content. To do so, we collected the CSP and
scripts of 100k Alexa sites (home pages and up to 100 pages related 9

to the site). When the page had a CSP, we extracted the whitelisted
origins of its script-src directive. This resulted in 6,481 unique
sets of script-src directives and the associated values. We further
gathered all the origins whitelisted in all script-src directives
into a single set of unique origins, totaling 11,982 of them.

Then we randomly selected 6,481 scripts, corresponding to the
number of unique script-src directives. To each script, using our
implementation of the CSP URL matching algorithm, we applied all
the 11,982 unique origins to check whether there was a match or
not, and saved the time it took for the algorithm to terminate. Then,
we compute the average time for applying all the 11,982 origins to
the script. Figure 3 presents the results.

Unique Scripts

Tim
e (

ms
)

0 1k 2k 3k 4k 5k 6k
0.005

0.01

0.015

0.02

0.025

Figure 3: Overhead introduced by applying CSP to inter-
cepted requests within the monitor. As one can observe,
our implementation does not introduce any observable over-
head (less than 2.5ms) in our examples evaluations.

The overhead introduced with applying CSP is really negligible.
Assume that a directive contains 100 origins, in the worst case, the
overhead introduced by applying CSP is less than 2.5 ms, which in
our opinion, is acceptable, compared to the security benefits gained
with deploying CSP in blacklisting mode.

6 DISCUSSIONS AND LIMITATIONS
Here we discuss the limitations of the service workers we used to
implement the monitor in this work.

6.1 Service workers
Service workers is still a working draft at theW3C 10, even though it
is already supported by major browsers, including Firefox, Chrome,
Opera, Microsoft Edge and Safari. They are backwards compatible:
browsers not supporting them will not deploy the monitor, without
breaking the application. Developers do not have to serve specific
versions of the application for browsers not supporting service
9Pages from the same origin as the site, and pages from a subdomain
10https://w3c.github.io/ServiceWorker/

https://developer.mozilla.org/en-US/docs/Web/API/Performance
https://w3c.github.io/ServiceWorker/

workers. Deploying the monitor as shown in Listing 19 (Section 4)
ensures its backwards compatibility. The only modification required
is in the entry page to the application, where the monitor should
be indicated, using an HTML script tag. Even though, using ser-
vice workers introduce an overhead, there are many improvements
which can compensate this overhead, in addition to the security
benefits that one would gain by deploying them. Responses to re-
quests can be cached in the monitor. Later on, when the application
makes a request for the same content, it is retrieved from the cache
and returned to the application. In this work, we have shown an
implementation of the monitor using service workers. The monitor
presents the advantage of laying outside of the browser enforce-
ment of CSP. It only intercepts requests after they are allowed by
the browser upon enforcement of the CSP of the page. This allows
to further check for blacklisted content or content with unsafe ar-
guments. In the monitor, we log requests, and can delay the report
time. Nonetheless, service workers have limitations. They work
only for secure (HTTPS) web applications (and the localhost). They
do not work in Firefox private browsing mode. Service workers
cannot intercept requests to load cross-origin iframes, for security
reasons. Nonetheless, the monitor can be successfully deployed for
content which executes in the context of the application such as
scripts, plugins, stylesheets, images, etc.

Alternative methods can also be used to implement the mon-
itor especially for browsers not yet supporting service workers:
JavaScript proxies [7], or redefining JavaScript objects to intercept
the injection of content [28]. To get all content that are injected
in a webpage, similarly to a restrictive CSP in report-only mode
(See Section 2), one can make use of Mutation Observers [9]. They
allow to watch all changes made to the DOM of a webpage. As
such, one can record all content that are injected in the webpage.
These methods have many drawbacks. The first one is that they can
potentially interfere with CSP enforcement as done by browsers.
Moreover, contrary to these methods, service workers are easy to
deploy, and can monitor all pages of entire web applications.

6.2 Browser extensions
Contrary to CSP in report-only mode, our monitor intercepts all
content even those injected by browser extensions directly in the
context of web applications. Content that browser extensions di-
rectly inject in the context of web applications 11, are usually not
subject to the CSP of the page, and browsers would not block them.
Such content are also intercepted in the monitor. If the browser
allows them to load, even though they do not match the CSP of the
page, the monitor instead would block them if they are not allowed
by the blacklisting policy. Blocking such requests may however
break extensions functionality. We did not assess how widespread
this practice is among extensions, but applications developers have
to take this into consideration when deploying our monitor. Should
extensions content be blocked or not? Developers have to find a
trade-off between the security of their applications and preserving
the functionality of extensions [26].

11These are not content scripts, as content scripts execute in their own contexts. These
are content further injected by content scripts directly in the context of web pages
(See https://developer.chrome.com/extensions/content_scripts). In Chrome and Opera,
even web accessible resources are also intercepted (See https://developer.chrome.com/
extensions/manifest/web_accessible_resources)

6.3 Privacy implications of the reporting
mechanism

In general, our proposal of monitoring the runtime enforcement
of CSP, has to be discussed in the scope of browser extensions.
Currently, a developer can observe content injected by browser
extensions in web applications, by inspecting the DOM, setting up
a Mutation Observer [9] or deploying a service worker as we have
done. Since content injected in web pages by browser extensions
are visible to web pages, we argue that browser vendors may also
report such content to developers when reporting the runtime
enforcement of CSP. Therefore reporting content does not leak
any further information than what could already be obtained with
the examples of techniques given above. Our proposal is just an
efficientway for getting feedback, without relying on the techniques
presented here, given their limitations.

There are however cases where extension developers would like
to hide their injected content from web applications. For instance,
in Firefox, injecting browser extensions own content, called web
accessible resources, leak the extension unique identifier, which is
unique on a per user basis. If this identifier is leaked to the web
application, it can serve to uniquely identify and track her in future
browsing sessions, as the identifier is unique for the extension and
does not change throughout browsing sessions [25]. In general, it
is difficult to hide this identifier from web applications. Setting up a
mutation observer allows to intercept the identifier. We think that
such content must also be reported as they can already be observed
by different means.

There is however one case, recommended to prevent leaking
extension’s identifiers, in the particular case of iframes injection,
as discussed on Bugzilla [1].

var f = document.createElement("iframe");

document.body.appendChild(f);

f.contentWindow.location = chrome.extension.getURL

("iframe.htm");

As shown in the listing above, one can inject an iframe without
leaking the unique identifier of the extension. From a mutation
observer, is is not possible to observe the URL of such an iframe,
and scripts running in the page cannot also observe it. Finally,
service workers cannot intercept the URLs of cross-origin iframes.
In this situation, and for the sake of user privacy, onemay argue that
the monitor of the runtime enforcement of CSP must not report the
URLs of iframes included as such. We think that since such content
are included in the webpage, they must also be reported.

7 RELATEDWORK
Content Security Policy has been first proposed by Stamm et al. [30],
and standardized by theW3C. Since its introduction, CSP has gained
significant consideration from the research community, with propo-
sitions aimed at improving its effectiveness and security [31, 36, 36].
It is supported by major browsers, and its adoption on websites in
the wild is growing, even though slowly [14, 29, 32, 34]. To help
improve CSP adoption, many tools have been proposed [21, 23, 24].

Martin Johns [20] then Weichselbaum et al. [32] reported CSP
bypasses due to JSONP, open redirects, and symbolic execution
enabled by libraries such as AngularJS library. Weichselbaum et

https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources

al. [32] proposed the use of nonces for whitelisting scripts. Because
an attacker cannot guess in advance which nonces will be assigned
to trusted scripts, they cannot inject untrusted content, or abuse
JSONP and open redirects to load arbitrary content in the appli-
cation. They also first proposed the ’strict-dynamic’ keyword
to be used in script-src directive, for easily loading dynamic
scripts. In this setting, a whitelisted script is allowed to further load
any additional script. However, nonces are included in the DOM,
and their security is questionable. Furthermore, the trust propa-
gation enabled by ’strict-dynamic’ only applies to scripts and
stylesheets, and is too liberal since it allows any whitelisted script
to further inject any other script without restrictions. To limit this
trust propagation, Calzavara et al. [15] proposed Compositional
Content Security Policy (CCSP). In their proposal, scripts which are
included in the application are individually whitelisted in the CSP
of the application, instead of whitelisting their origins. Furthermore,
each of them is assigned an upper bound in the additional content
it can further inject in the application. The upper bound is a CSP
specifying which additional content a whitelisted script can fur-
ther load. Besides requiring significant modifications in the current
CSP specification, CCSP also requires content providers to declare
all the dependencies needed by content that they host. This helps
developers build the upper bounds when including such content
in their policies. CSP is a page-specific policy. Collin Jackson and
Adam Barth [19] have shown that page-specific policies can be by-
passed by origin-wide policies. Somé et al. [29] demonstrated that
this also applies to CSP, by analyzing the interactions between CSP
and the Same Origin Policy (SOP). They showed that because CSP
is a page-based policy, while the SOP allows all same-origin pages
to access each other’s execution context, CSP can be bypassed by
scripts running in other same origin pages, even though they are
not explicitly whitelisted in the CSP-protected page. Many studies
have analyzed the effectiveness of CSP at mitigating content injec-
tion attacks. Most of them report that the majority of CSP deployed,
are ineffective because they are liberal, allow inline scripts and
related unsafe APIs [14], insecure JSONP endpoints or more subtle
bypasses [32], DNS and resource prefetching [13]. Hausknecht et
al. [18] found many browser extensions tampering with CSP, lead-
ing to enforced policies being more or less permissive, and thus
ineffective against attacks. More recently, Calzavara et al. [16] pre-
sented a formalization of CSP semantics, especially the directives
values.

8 CONCLUSION
In this work, we propose four new extensions to complement via
monitoring the current CSP specification: a new blacklisting mode,
the ability to blacklist content based on unsafe URL arguments,
new directives for explicitly preventing redirections to partially
whitelisted origins and an efficient monitoring mechanism for col-
lecting feedback of the runtime enforcement of CSP. We implement
the new extensions using service workers, to monitor and intercept
content that load on the policy, and apply additional checks on
the URLs of content. We then evaluated the overhead of deploying
such a policy on a web application. The monitor is easily integrated
to the application by the developer from the server-side, without
requiring users or browsers to undertake any particular action.

Although our current monitor is completely independent of CSP
and browser implementations, these extensions have the potential
to be integrated in future versions of CSP and be implemented
directly in browsers. Our extensions would only introduce a few
modifications to the implementations of CSP in browsers. For in-
stance, the blacklisting mode does not require browsers to support
a new algorithm, but uses exactly the URL matching algorithm
already implemented by browsers [35, 36]. There is only need for
supporting a new CSP header. If the browser already implements
CSP, it just enforces a blacklisting policy as a normal one. The sole
difference is in the final decision: when a URL matches a blacklist-
ing policy, the URL is not allowed, while in whitelisting mode, it is
allowed. The only modifications needed to the CSP URL matching
algorithm are those to support the URL parameters filtering mech-
anism and the new directives. These extensions are all backwards
compatible. Hence they do not break the current state of the speci-
fication, nor do they require significant modifications from current
browsers implementations of the specification.

REFERENCES
[1] [n.d.]. Bug 1372288 - WebExtensions UUID can be used as user

fingerprint. https://bugzilla.mozilla.org/show_bug.cgi?id=1372288
[2] [n.d.]. Chrome Extensions. https://chrome.google.com/webstore/category/

extensions?hl=en-US
[3] [n.d.]. Chrome Extensions API - Content scripts and Content Security

Policy. https://developer.chrome.com/extensions/contentSecurityPolicy
[4] [n.d.]. Cross-Site-Scripting. https://www.owasp.org/index.php/Cross\

protect\discretionary{\char\hyphenchar\font}{}{}site_Scripting_(XSS).
[5] [n.d.]. Fetch Specification. https://fetch.spec.whatwg.org/.
[6] [n.d.]. Firefox Add-ons. https://addons.mozilla.org/en-US/firefox/
[7] [n.d.]. JavaScript Proxy. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global_Objects/Proxy
[8] [n.d.]. Microsoft Edge Extensions. https://www.microsoft.com/en-us/store/

collections/edgeextensions/pc
[9] [n.d.]. MutationObserver API . https://developer.mozilla.org/en-US/docs/

Web/API/MutationObserver
[10] [n.d.]. Opera Add-ons. https://addons.opera.com/en/extensions/
[11] [n.d.]. URLSearchParams API. https://developer.mozilla.org/en-US/docs/Web/

API/URLSearchParams
[12] [n.d.]. Using Service Workers. https://developer.mozilla.org/en-US/docs/

Web/API/Service_Worker_API/Using_Service_Workers
[13] Steven Van Acker, Daniel Hausknecht, and Andrei Sabelfeld. 2016. Data Ex-

filtration in the Face of CSP. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security, AsiaCCS 2016,
Xi’an, China, May 30 - June 3, 2016, Xiaofeng Chen, XiaoFeng Wang, and
Xinyi Huang (Eds.). ACM, 853–864. https://doi.org/10.1145/2897845.2897899

[14] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2016. Content Security
Problems?: Evaluating the Effectiveness of Content Security Policy in the Wild,
See [33], 1365–1375. https://doi.org/10.1145/2976749.2978338

[15] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2017. CCSP: Controlled
Relaxation of Content Security Policies by Runtime Policy Composition, See
[22], 695–712. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/calzavara

[16] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2017. Semantics-Based
Analysis of Content Security Policy Deployment. ACM Trans. Web 12, 2, Article
10 (Jan. 2017), 36 pages. https://doi.org/10.1145/3149408

[17] Gábor György Gulyás, Dolière Francis Somé, Nataliia Bielova, and Claude Castel-
lucia. 2018. To Extend or not to Extend: on the Uniqueness of Browser Extensions
and Web Logins. In To appear in the Proceedings of the 2018 ACM
on Workshop on Privacy in the Electronic Society, WPES@CCS 2018,
Toronto, Canada, October 15 - 19, 2018.

[18] Daniel Hausknecht, Jonas Magazinius, and Andrei Sabelfeld. 2015. May I? -
Content Security Policy Endorsement for Browser Extensions. In Detection
of Intrusions and Malware, and Vulnerability Assessment - 12th
International Conference, DIMVA 2015, Milan, Italy, July 9-10,
2015, Proceedings (Lecture Notes in Computer Science), Magnus Alm-
gren, Vincenzo Gulisano, and Federico Maggi (Eds.), Vol. 9148. Springer, 261–281.
https://doi.org/10.1007/978-3-319-20550-2_14

[19] Collin Jackson and Adam Barth. 2008. Beware of Finer-Grained Origins. In Web
2.0 Security and Privacy (W2SP 2008). https://seclab.stanford.edu/websec/

https://bugzilla.mozilla.org/show_bug.cgi?id=1372288
https://chrome.google.com/webstore/category/extensions?hl=en-US
https://chrome.google.com/webstore/category/extensions?hl=en-US
https://developer.chrome.com/extensions/contentSecurityPolicy
https://www.owasp.org/index.php/Cross\protect \discretionary {\char \hyphenchar \font }{}{}site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross\protect \discretionary {\char \hyphenchar \font }{}{}site_Scripting_(XSS)
https://fetch.spec.whatwg.org/
https://addons.mozilla.org/en-US/firefox/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://www.microsoft.com/en-us/store/collections/edgeextensions/pc
https://www.microsoft.com/en-us/store/collections/edgeextensions/pc
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://addons.opera.com/en/extensions/
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API/Using_Service_Workers
https://doi.org/10.1145/2897845.2897899
https://doi.org/10.1145/2976749.2978338
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/calzavara
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/calzavara
https://doi.org/10.1145/3149408
https://doi.org/10.1007/978-3-319-20550-2_14
https://seclab.stanford.edu/websec/origins/fgo.pdf
https://seclab.stanford.edu/websec/origins/fgo.pdf

origins/fgo.pdf
[20] Martin Johns. 2014. Script-templates for the Content Security Policy. J. Inf.

Sec. Appl. 19, 3 (2014), 209–223. https://doi.org/10.1016/j.jisa.2014.03.007
[21] Christoph Kerschbaumer, Sid Stamm, and Stefan Brunthaler. 2016. Injecting CSP

for Fun and Security. In Proceedings of the 2nd International Conference
on Information Systems Security and Privacy, ICISSP 2016, Rome,
Italy, February 19-21, 2016., Olivier Camp, Steven Furnell, and Paolo Mori
(Eds.). SciTePress, 15–25. https://doi.org/10.5220/0005650100150025

[22] Engin Kirda and Thomas Ristenpart (Eds.). 2017. 26th USENIX Security
Symposium, USENIX Security 2017, Vancouver, BC, Canada, August
16-18, 2017. USENIX Association. https://www.usenix.org/conference/
usenixsecurity17

[23] Xiang Pan, Yinzhi Cao, Shuangping Liu, Yu Zhou, Yan Chen, and Tingzhe Zhou.
2016. CSPAutoGen: Black-box Enforcement of Content Security Policy upon
Real-world Websites, See [33], 653–665. https://doi.org/10.1145/2976749.2978384

[24] Kailas Patil and Braun Frederik. 2016. A Measurement Study of the Content
Security Policy on Real-World Applications. I. J. Network Security 18, 2
(2016), 383–392. http://ijns.femto.com.tw/contents/ijns-v18-n2/ijns-2016-v18-
n2-p383-392.pdf

[25] Iskander Sánchez-Rola, Igor Santos, and Davide Balzarotti. 2017. Extension Break-
down: Security Analysis of Browsers Extension Resources Control Policies, See
[22], 679–694. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/sanchez-rola

[26] Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld. 2017. Discovering
Browser Extensions via Web Accessible Resources. In Proceedings of the
Seventh ACM on Conference on Data and Application Security and
Privacy, CODASPY 2017, Scottsdale, AZ, USA, March 22-24, 2017,
Gail-Joon Ahn, Alexander Pretschner, and Gabriel Ghinita (Eds.). ACM, 329–336.
https://doi.org/10.1145/3029806.3029820

[27] Dolière Francis Somé, Nataliia Bielova, and Tamara Rezk. [n.d.]. Use of Content
Security Policy and Cookies in Top 10,000 Alexa Sites. https://webstats.
inria.fr/popsecurity.php

[28] Dolière Francis Somé, Nataliia Bielova, and Tamara Rezk. 2017. Control What
You Include! - Server-Side Protection Against Third Party Web Tracking. In
Engineering Secure Software and Systems - 9th International
Symposium, ESSoS 2017, Bonn, Germany, July 3-5, 2017, Proceedings

(Lecture Notes in Computer Science), Eric Bodden, Mathias Payer, and Elias
Athanasopoulos (Eds.), Vol. 10379. Springer, 115–132. https://doi.org/10.1007/978-
3-319-62105-0_8

[29] Dolière Francis Somé, Nataliia Bielova, and Tamara Rezk. 2017. On the Content
Security Policy Violations due to the Same-Origin Policy. In Proceedings of
the 26th International Conference on World Wide Web, WWW 2017,
Perth, Australia, April 3-7, 2017, Rick Barrett, Rick Cummings, Eugene
Agichtein, and Evgeniy Gabrilovich (Eds.). ACM, 877–886. https://doi.org/10.
1145/3038912.3052634

[30] Sid Stamm, Brandon Sterne, and Gervase Markham. 2010. Reining in the web
with content security policy. In Proceedings of the 19th International
Conference on World Wide Web, WWW 2010, Raleigh, North Carolina,
USA, April 26-30, 2010, Michael Rappa, Paul Jones, Juliana Freire, and Soumen
Chakrabarti (Eds.). ACM, 921–930. https://doi.org/10.1145/1772690.1772784

[31] Brandon Sterne and Adam Barth. 2012. Content Security Policy 1.0. W3C
Candidate Recommendation. http://www.w3.org/TR/2012/CR-CSP-20121115/

[32] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. 2016.
CSP Is Dead, Long Live CSP! On the Insecurity of Whitelists and the Future of
Content Security Policy, See [33], 1376–1387. https://doi.org/10.1145/2976749.
2978363

[33] Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. My-
ers, and Shai Halevi (Eds.). 2016. Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016. ACM. http://dl.acm.org/citation.cfm?id=
2976749

[34] Michael Weissbacher, Tobias Lauinger, and William K. Robertson. 2014. Why Is
CSP Failing? Trends and Challenges in CSP Adoption. In Research in Attacks,
Intrusions and Defenses - 17th International Symposium, RAID 2014,
Gothenburg, Sweden, September 17-19, 2014. Proceedings (Lecture
Notes in Computer Science), Angelos Stavrou, Herbert Bos, and Georgios
Portokalidis (Eds.), Vol. 8688. Springer, 212–233. https://doi.org/10.1007/978-3-
319-11379-1_11

[35] Mike West. 2016. Content Security Policy Level 3. W3C Working Draft.
http://www.w3.org/TR/CSP3/

[36] Mike West, Adam Barth, and Dan Veditz. 2015. Content Security Policy Level 2.
W3C Candidate Recommendation.

https://seclab.stanford.edu/websec/origins/fgo.pdf
https://doi.org/10.1016/j.jisa.2014.03.007
https://doi.org/10.5220/0005650100150025
https://www.usenix.org/conference/usenixsecurity17
https://www.usenix.org/conference/usenixsecurity17
https://doi.org/10.1145/2976749.2978384
http://ijns.femto.com.tw/contents/ijns-v18-n2/ijns-2016-v18-n2-p383-392.pdf
http://ijns.femto.com.tw/contents/ijns-v18-n2/ijns-2016-v18-n2-p383-392.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/sanchez-rola
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/sanchez-rola
https://doi.org/10.1145/3029806.3029820
https://webstats.inria.fr/popsecurity.php
https://webstats.inria.fr/popsecurity.php
https://doi.org/10.1007/978-3-319-62105-0_8
https://doi.org/10.1007/978-3-319-62105-0_8
https://doi.org/10.1145/3038912.3052634
https://doi.org/10.1145/3038912.3052634
https://doi.org/10.1145/1772690.1772784
http://www.w3.org/TR/2012/CR-CSP-20121115/
https://doi.org/10.1145/2976749.2978363
https://doi.org/10.1145/2976749.2978363
http://dl.acm.org/citation.cfm?id=2976749
http://dl.acm.org/citation.cfm?id=2976749
https://doi.org/10.1007/978-3-319-11379-1_11
https://doi.org/10.1007/978-3-319-11379-1_11
http://www.w3.org/TR/CSP3/

	Abstract
	1 Introduction
	2 Motivating Our Proposals
	2.1 Partially whitelisted origins
	2.2 Excluding content from whitelisted origins
	2.3 URL parameters
	2.4 CSP violations
	2.5 (In-)Security of CSP Nonces
	2.6 Our proposal

	3 Monitor Extension for CSP
	3.1 CSP in blacklisting mode
	3.2 Checks on URL arguments
	3.3 Preventing redirections
	3.4 Reporting runtime enforcement of CSP
	3.5 Unsafe URL parameters

	4 Implementation
	4.1 URL filtering algorithm
	4.2 Service workers
	4.3 Enforcement of the CSP in blacklisting mode

	5 Evaluation
	5.1 Performance overhead

	6 Discussions and limitations
	6.1 Service workers
	6.2 Browser extensions
	6.3 Privacy implications of the reporting mechanism

	7 Related Work
	8 Conclusion
	References

